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Abstract

Most real-world problems have huge state and/or action
spaces. Therefore, a naive application of existing tabular so-
lution methods is not tractable on such problems. Nonethe-
less, these solution methods are quite useful if an agent has
access to a relatively small state-action space homomorphism
of the true environment and near-optimal performance is
guaranteed by the map. A plethora of research is focused on
the case when the homomorphism is a Markovian representa-
tion of the underlying process. However, we show that near-
optimal performance is sometimes guaranteed even if the ho-
momorphism is non-Markovian.

Introduction
The task of learning a near-optimal behavior from a se-
quence of experiences can naturally be formulated as a Rein-
forcement Learning (RL) problem (Sutton and Barto 2018).
In a typical RL framework, an agent interacts with an envi-
ronment by taking an action and receiving a feedback.

It is typically assumed that the agent is facing a small
state-action space1 Markov Decision Process (MDP) so the
agent can advise a stationary policy as a function of state
(Puterman 2014). Unfortunately, the number of state-action
pairs in most of real-world problems is prohibitively large,
e.g. driving a car, playing Go, personal assistance, control-
ling a plant with real-valued inputs, and so forth. The agent
can neither simply visit each state-action pair nor can it keep
record of these visits to learn a near-optimal behavior. This
explosion of state-action space is known as the curse of di-
mensionality (Sutton and Barto 2018). Therefore, it is essen-
tial for the agent to generalize over its experiences in such a
huge state-action space problem.

The curse of dimensionality is not a mere artifact of lim-
ited experience and computation constraints if the prob-
lem has an infinite state-action space. In a typical Gen-
eral Reinforcement Learning2 (GRL) framework the agent is
faced with an environment without any known structure. The
GRL setup is arguably the most general setup: it can rep-
resent MDP, k−MDP, partially observed MDP (POMDP)
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1We refer a state and action space/pair jointly as a state-action
space/pair.

2We formally define a typical GRL setup in Preliminaries.

and other typical environment models (Hutter 2016; Leike
2016). But this generality comes at the cost of an infinite
state-action space: every agent-environment interaction gen-
erates a unique history. Hence, there is no other option but
to consider every history as a unique state of the environ-
ment. Therefore, GRL suffers, inevitably, from the curse of
dimensionality.

A homomorphism framework originated by Whitt (1978)
is a well-studied solution to handle the state-action space
curse of dimensionality. In the homomorphism framework a
problem of a large state-action space is solved by using an
abstract problem with a relatively small state-action space.
The (near-)optimal policy of the abstract problem is a solu-
tion if it is also a (near-)optimal policy in the true environ-
ment.

It is important to highlight that homomorphism is not the
only technique for abstracting actions. The options frame-
work is a competing method for temporal action abstrac-
tions (Sutton, Precup, and Singh 1999). In the option/macro-
action framework, the original action space is augmented
with long-term/built-in policies (McGovern, Sutton, and
Fagg 1997). The agent using an option/marco-action com-
mits to execute a fixed set of actions for a fixed (expected)
time duration. This temporal action abstraction framework is
arguably more powerful but beyond the scope of this work.
Because, to the best of our knowledge, there are no theoreti-
cal performance guarantees available for such methods, and
most probably such bounds might not exist.

In the homomorphism framework, it is typically assumed
that the abstract problem is an MDP (Ravindran and Barto
2003; 2004; Taylor, Precup, and Panangaden 2008). How-
ever, the size of the abstract state-action space can be signif-
icantly reduced if non-MDP abstractions are possible (Abel,
Hershkowitz, and Littman 2016; Li, Walsh, and Littman
2006). Moreover, the reduction of abstract state-action space
roughly translates into faster learning and planning3 (Strehl,
Li, and Littman 2009; Lattimore and Hutter 2014).

It has recently been shown that the MDP restriction is not
a necessary condition for near-optimal performance guar-
antees in state-only abstractions of GRL (Hutter 2016). In

3Although reduction of state-action space is necessary for faster
learning/planning but not sufficient (Littman, Dean, and Kaelbling
1995).
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this work, we use similar notation and techniques of Hut-
ter (2016) but investigate and prove optimality bounds for
non-MDP state-action homomorphisms in GRL. Since state
abstraction is a special case of homomorphism (the action
space is not reduced/mapped), our work is a generalization
of Extreme State Aggregation (ESA) (Hutter 2016).

The homomorphism framework has been extended be-
yond MDPs to finite-state POMDPs (Wolfe 2010). As men-
tioned earlier, GRL has an infinite set of histories and no two
histories are alike. We can represent a finite-state POMDP
environment as a history-based process by imposing a struc-
ture that there is an internal MDP that generates the observa-
tions and rewards. The GRL framework, by design, is more
powerful and expressive than a finite-state POMDP (Wolfe
2010; Leike 2016). Therefore, our results are more general
than finite-state POMDP homomorphisms.

Preliminaries
This section provides the required notation, a typical GRL
framework and our homomorphism setup. We consider a
simple agent-environment setup (Sutton and Barto 2018).
The agent has a finite set of actions A. The environment
receives an action from the agent and gives a standard obser-
vation from a finite set of observations O and a real-valued
reward from a finite setR ⊆ R. The agent interacts with the
environment in cycles, and in each cycle the agent performs
an action and receives an observation and reward from the
environment. This agent-environment interaction generates
a possibly infinite history from an infinite set of histories
H :=

⋃∞
t=0(A × O ×R)t. Hence, the original state-action

space is the history-action space4, i.e.H×A. Similarly, we
define an abstract finite state space S and action space B to
form the abstract state-action space, i.e. S × B.

We use a consistent notation throughout the paper un-
less stated otherwise. We use ∆(·) to denote a probability
distribution over its argument, ‖·‖1 expresses the 1-norm,
x̃ is a local variable and x′ is a different member of the
same set. We use a shorthand notation ∀f(x) = y to imply
∀x, y : f(x) = y. We often make references to the results
presented later in the paper. The reader is not encouraged to
follow these justifying references during the first reading.

General Reinforcement Learning Framework
This section provides a formal layout of a typical GRL
framework and some assumptions we make about the setup.
We start our setup by defining two center pieces of any RL
setup: the environment and the agent/policy5. The environ-
ment, also referred as the original process P , is defined as a
stochastic mapping from a history-action pair to a distribu-
tion over the observation-reward pairs, i.e. P : H × A →
∆(O × R). The history-based agent/policy Π is defined to
be a function that stochastically maps a history to the actions
as Π : H → ∆(A).

4In general, histories are considered as the states of the envi-
ronment, so we interchangeably call the history-action space the
original state-action space.

5While it can be argued that an agent and a policy are two sep-
arate entities, in this work we use them interchangeably.

Assumption 1. (Geometric discounting) We assume a ge-
ometric discounting over the rewards — i.e. the agent dis-
counts its future rewards by a constant discount factor γ ∈
[0, 1).

The goal of the agent is to maximize the expected dis-
counted sum of rewards which is generally expressed with
Bellman equations of (action-)value functions (Sutton and
Barto 2018). The agent tries to maximize this value function
and strives to reach the most valuable states. We define the
action-value function QΠ for any history h ∈ H and action
a ∈ A as

QΠ(h, a) :=
∑

õ∈O,r̃∈R
P (õr̃|ha)

(
r̃ + γV Π(h̃)

)
(1)

where h̃ := haõr̃ is an extended history and the correspond-
ing value function V Π is defined as

V Π(h) :=
∑
ã∈A

QΠ(h, ã)Π(ã|h). (2)

The (action-)value functions are maximized if the agent is
following an optimal policy Π∗ ∈ arg maxΠ̃ V

Π̃.
Assumption 2. (Bounded positive reward) We assume
bounded and positive rewards and without loss of generality
we assumeR :⊆ [0, 1].

It is easy to see that the bounded rewards bound the
(action-)value functions between 0 and 1/(1− γ).

Homomorphism Setup
We define a homomorphism as a surjective mapping ψ from
the original state-action space H × A to the abstract state-
action space S × B.

For a succinct exposition, we also define a few marginal-
ized mapping functions. These marginalized maps do not
have any special significance other than making the notation
a bit simpler.
Histories mapped to an sb-pair. For a given abstract action
b ∈ B, we define a marginalized abstract state map as

ψ−1
b (s) := {h ∈ H | ∃a ∈ A : ψ(h, a) = (s, b)} . (3)

Actions mapped to an sb-pair. Similarly, we also define a
marginalized abstract action map for any abstract state s ∈ S
and history h ∈ H as

ψ−1
s (b) := {a ∈ A | ψ(h, a) = (s, b)} . (4)

It is important to note that ψ−1
s (b) is also a function of

history. This dependence is always clear from the context,
so we suppress it in the notation.
Abstract states mapped by a history. By a slight abuse of
notation we overload ψ, and define a history to abstract state
marginalized map as

ψ(h) := {s ∈ S | ∃a ∈ A, b ∈ B : ψ(h, a) = (s, b)}. (5)

Histories mapped to an abstract state. Finally, an abstract
state to history marginalized map is defined as

ψ−1(s) := {h ∈ H | ∃a ∈ A, b ∈ B : ψ(h, a) = (s, b)}.
(6)
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Assumption 3. (ψ(h) = s) We assume that an abstract
state is determined only by the history — i.e. ψ(h, a) :=
(s = f(h), b), where f is any fixed surjective function of
history and is independent of actions a and b.

The above assumption implies that ψ(h) is singleton. This
is not only a technical necessity but a requirement to make
the mapping causal, i.e. the current history h corresponds to
a unique state s independent of the next action taken by the
agent. If we drop this assumption then the current history
might resolve to a different state based on the next (future)
action taken by the agent.

A homomorphic map ψ lets the agent merge the experi-
ences from P and induces a history-based abstract process
Pψ . Formally, for all ψ(h, a) = (s, b) and any next abstract
state s′, we express Pψ as

Pψ(s′r|ha) :=
∑

õ:ψ(haõr)=s′

P (õr|ha). (7)

The map ψ also induces a history-based abstract policy
Πψ as

Πψ(b|h) :=
∑

ã∈ψ−1
s (b)

Π(ã|h). (8)

It is clear from (7) and (8) that the induced abstract pro-
cess and policy are in general non-Markovian, i.e. both are
functions of the history h and not only the abstract state s.
Non-MDP homomorphisms. In this work we consider two
types of non-Markovian homomorphisms: a) Q-uniform ho-
momorphisms, where the state-action pairs are merged if
they have close Q-values, i.e. QΠ(h, a) ≈ QΠ(h′, a′) for
all ψ(h, a) = ψ(h′, a′), and b) V-uniform homomorphisms,
when the merged state-action pairs have close values , i.e.
V Π(h) ≈ V Π(h′) for all ψ(h) = ψ(h′). A formal treatment
of these non-MDP homomorphisms is provided in the main
results section. In both Q and V-uniform homomorphisms,
Pψ can be history-dependent, i.e. the abstract process is non-
MDP.

Motivation for Non-MDP Homomorphisms
In this section we motivate the importance of non-MDP ho-
momorphisms by an example. We show that a non-MDP ho-
momorphism can cater to a large set of domains and allows
more compact representations.
Navigational Grid-world. Let us consider a simplified ver-
sion of the asymmetric grid-world example by Ravindran
and Barto (2004) in Figure 1. In this navigational domain,
the goal of an agent Π is to navigate the grid to reach the tar-
get cell T . The unreachable cells are grayed-out. The agent
receives a large positive reward if it enters the cell T , oth-
erwise a small negative reward is given to the agent at each
time-step. The agent is capable of moving in the four di-
rections, i.e. up, down, left and right. This domain has an
almost similar transition and reward structure across a diag-
onal axis. We call this an approximate MDP axis and denote
it by ≈MDP. This axis of symmetry enables us to create a
homomorphism of the domain using approximately half of
the original state-space (see Figure 2).

T

Π

Π

≈MDP

Figure 1: The original navigational grid-world with the axis
of approximate symmetry. The gray cells are not reachable.
The target cell is at the top right corner. The figure shows two
possible positions of the agent and corresponding optimal
actions.

This grid-world example has primarily been studied in the
context of either exact, approximate or Bounded parame-
ter MDP (BMDP) homomorphisms (Ravindran and Barto
2004): the abstract model approximately preserves the one-
step dynamics of the original environment. However, as we
later prove in this paper (see Theorem 8ii), some non-MDP
homomorphisms can also be used to find a near-optimal pol-
icy in the original process. We motivate the need of non-
MDP homomorphisms, first, by highlighting the fact6 that
in the grid-world domain, the states with similar dynam-
ics have similar optimal action-values. Afterwards, we mod-
ify the grid-world domain such that the modified grid-world
does not have an approximate MDP symmetry axis, but still
has the same approximate optimal action-values symmetry.

We apply Value Iteration (VI) (Bellman 1957) with some
fixed but irrelevant parameters on the grid world (see Figure
3). The grid world has the same approximate symmetry axis
for the optimal values, denoted by ≈Q-uniform axis. It is
easy to see that each merged state in Figure 2 has the same
action-values. Hence, the≈MDP axis is also an≈Q-uniform
axis in the grid-world.
Modified Navigational Grid-world. Now we modify the
grid world such that it does not have an ≈MDP axis (Fig-
ure 1) but it still has the same ≈Q-uniform axis (Figure 3).
The idea is to take a pair of merged states from Figure 1
and change the reward and transition probabilities such that
the states no longer have similar one-step dynamics but still
have similar action-values. For example, let us consider the
cells highlighted with dashed borders in Figure 3 and denote
the cell in the bottom half with s23. Let u, d, pu and pd de-
note the actions up and down, and the probabilities to reach
the desired cell by taking the corresponding action, respec-
tively. Let ru and rd be the expected rewards for each action

6This section is an informal motivation, we formally deal with
this fact in the main results section (Theorem 6i).
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T

π

Figure 2: A possible MDP homomorphism by merging the
mirror state-action pairs together. The presence of a hashed
cell indicates that it is not an exact homomorphism. The
agent π solves the problem in this abstract domain.
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Figure 3: The optimal values at each approachable cell. The
bold-faced values are not exactly matched across the sym-
metry axis.

in the state s23. In general, we get an under-determined set
of equations for the action-value function at state s23 as

Q∗(s23, a) =

{
ru + 0.73γpu + 3.01γ if a = u

rd − 0.73γpd + 3.74γ if a = d.
(9)

In the original navigational grid-world problem pu =
pd = 1, i.e. each action leads deterministically to the in-
dented reachable cell, and ru = rd = rn, where rn is a
fixed small negative reward. We can break the ≈MDP sim-
ilarity by setting7 pu = pd := 0, i.e. the actions behave in
the opposite way in the lower half, ru := rn + 0.73γ and
rd := rn − 0.73γ, without changing the ≈Q-uniform simi-
larity. In fact, we can have infinite combinations of rewards
and transitions to get a set of modified domains since the set
of equations (9) is under-determined.

7pu = 0 implies that the action u now takes the agent to the
down cell and vice versa for the action d.

This set of modified domains, by design, no longer allows
the approximate MDP homomorphism of Figure 2. Every
state is different in terms of reward and transition structure
across the ≈MDP axis of Figure 1. Any one-step model
similarity abstraction would be approximately of the same
size as the original problem. However, if we consider Q-
uniform homomorphisms, i.e. state-action pairs are merged
if the action-values are close, then the set of modified do-
mains has a same Q-uniform homomorphism.

In GRL, it is natural to assume that the (expected) rewards
are function of realized history. The above modification ar-
gument is more likely to hold in a GRL setting: the reward
and transition similarity might be hard to satisfy. Therefore,
a GRL agent is better to consider such non-MDP homomor-
phisms to cover more domains with a single abstract model.
Now we ask the main question, does such a non-MDP ho-
momorphism, e.g. Q-uniform homomorphism, have a guar-
anteed solution for the original problem? In the next section,
we answer this question in affirmative for Q-uniform homo-
morphisms (Theorem 8ii), but in negative for V-uniform ho-
momorphisms with a weaker positive result (Theorem 10ii).

Key Elements to Go Beyond MDPs
This section introduces the key elements of the paper that
enables us to prove performance bounds for non-MDP ho-
momorphisms.

A Stochastic Inverse and Surrogate MDP
The key idea to get a near-optimal policy of the true envi-
ronment P is to transform Pψ into a surrogate MDP on the
abstract state-action space. Afterwards, the optimal policy
of this surrogate MDP is uplifted to P . This technique of
casting a non-MDP process as an MDP has been used in
ESA (Hutter 2016). To get this surrogate MDP, we define a
stochastic inverse B of the homomorphism ψ as a probabil-
ity measure over the history-action space given an abstract
state-action pair, formally, B : S × B → ∆(H×A). More-
over, we require B(ha|sb) := 0 for any ψ(h, a) 6= (s, b).
The surrogate MDP is defined as

pB(s′r′|sb) :=
∑

h̃∈H,ã∈A

Pψ(s′r′|h̃ã)B(h̃ã|sb). (10)

It might seem like a paradoxical idea to solve a non-
Markovian Pψ using an MDP pB , but the paradox is su-
perficial. It is the stochastic inverse that complements the
non-Markovianness of Pψ . Finding such an inverse algo-
rithmically, hence the surrogate MDP, is not a trivial task
in general (Hutter 2016).

This action-dependent stochastic inverse separates our
work from the action-independent weighting function con-
sidered by Abel, Hershkowitz, and Littman (2016). Al-
though, learning of such weighting function is beyond the
scope of this paper, an action-independent weighting func-
tion is not learnable. Because, when this weighting func-
tion is built from the true sampling distribution, it becomes
action-dependent. Hutter (2016) constructs such a learnable
action-dependent inverse for the state abstraction case. For-
tunately, the choice of B becomes irrelevant in Q-uniform
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homomorphisms (see Theorem 8), however this is not the
case in V-uniform homomorphisms (see Theorem 10).

Similar to the original process, we also define the
(action-)value functions for the surrogate MDP pB on the
abstract state-action space S×B with an abstract state-based
policy π. The action-value function is given as

qπ(s, b) :=
∑

s̃∈S,r̃∈R
pB(s̃r̃|sb) (r̃ + γvπ(s̃)) (11)

where the value function is

vπ(s) :=
∑
b̃∈B

qπ(s, b̃)π(b̃|s). (12)

An abstract state-based optimal policy π∗ is a value max-
imizer, i.e. π∗ ∈ arg maxπ̃ v

π̃ .

Representative Abstract Policy
As discussed earlier, we are primarily interested in the op-
timal policies of the surrogate MDP. However, it is also in-
teresting to consider a general policy case (e.g. Theorems
4, 5, 7 and 9) akin to an on-policy result where we uplift
a representative policy. We use any arbitrary member as a
representative policy πR on the abstract state s.

πR(·|s) := Πψ(·|h̃), for some h̃ ∈ ψ−1(s). (13)

This arbitrary choice of representative introduces a policy
representation error εΠ for each abstract state s, expressed
as

εΠ(s) := sup
h̃∈ψ−1(s)

∥∥∥πR(·|s)−Πψ(·|h̃)
∥∥∥

1
. (14)

This representation error is small/zero when the induced
abstract policy Πψ is approximately/piecewise constant, i.e.
Πψ(·|h) = Πψ(·|h′) for all ψ(h) = ψ(h′).

In the next section, we provide the main results of this
work. We construct a near-optimal policy for the original
process from the surrogate MDP even if the homomorphism
is non-MDP.

Main Results
We analyze three types of homomorphisms in this work:
MDP, Q-Uniform and V-Uniform homomorphisms8. Both Q
and V-Uniform homomorphisms are non-Markovian by def-
inition. In general, MDP and Q-Uniform homomorphisms
admit a deterministic near-optimal policy of the original pro-
cess, while V-Uniform homomorphisms do not.

Markov Decision Process Homomorphisms
A homomorphism is an MDP homomorphism if the induced
abstract process Pψ is an MDP. Then, there exists a process
pMDP such that for all ψ(h, a) = (s, b) and for all s̃ and r̃,
it holds:

Pψ(s̃r̃|ha) = pMDP(s̃r̃|sb). (15)

8Due to the limited space, we omit the proofs. The proofs can
be found in the extended version of this paper (Majeed and Hutter
2018).

Using the above condition in (10), renders pB = pMDP

and independent of B. The condition (15) is a stronger
version of the bisimulation condition (Givan, Dean, and
Greig 2003) that is generalized to joint history-action pairs.
This condition is strong enough to preserve the optimal
(action-)value functions of the original process (see Theo-
rem 6). But, it is not strong enough to preserve arbitrary
policy (action-)value functions (see Theorem 4). Unless we
define a notion of action-value function representative and
a corresponding representation error. For an abstract state-
action pair, the representative action-value is defined as

QΠ(ψ−1(s, b)) := QΠ(h̃, ã), for some ψ(h̃, ã) = (s, b)
(16)

and the representation error of the action-value function is
expressed as

εQ(s) := sup
h̃,ã,b̃:ψ(h̃,ã)=(s,b̃)

∣∣∣QΠ(ψ−1(s, b̃))−QΠ(h̃, ã)
∣∣∣ .

(17)
Similar to εΠ, this representation error is small/zero if the

action-value function is approximately/piecewise constant.
At this point, we have all the required components properly
defined to state the first theorem of the paper.
Theorem 4. (ψMDPΠ) Let ψ be a homomorphism such that
Pψ is an MDP, then for any policy Π and all ψ(h, a) = (s, b)
it holds:∣∣qπR(s, b)−QΠ(h, a)

∣∣ ≤ γεmax

1− γ
and∣∣vπR(s)− V Π(h)

∣∣ ≤ εmax

1− γ

where εmax := maxs̃∈S

(
εQ(s̃) + εΠ(s̃)

1−γ

)
.

The above theorem shows that the surrogate MDP ap-
proximately preserves the (action-)value functions of the
original process for any arbitrary policy. However, these
(action-)value functions are preserved exactly if we further
impose a policy uniformity condition in addition to an MDP
assumption.
Theorem 5. (ψMDPΠ=) Let ψ be a homomorphism such
that Pψ is an MDP and Π(·|h) = Π(·|h′) (i.e. the policy
similarity condition holds) for some policy Π and for all
ψ(h) = ψ(h′). Then for all ψ(h, a) = (s, b) it holds:

qπR(s, b) = QΠ(h, a) and vπR(s) = V Π(h).

Theorems 4 and 5 are important but not very useful
results. As already discussed, we are interested in the
(near-)optimal policies of the original process. And, we want
to find the abstract policies that can be lifted with a perfor-
mance guarantee from the abstract state-action space to the
original history-action space.
Theorem 6. (ψMDP∗) Let ψ be a homomorphism such that
Pψ is an MDP, then for all ψ(h, a) = (s, b) it holds:

(i) q∗(s, b) = Q∗(h, a) and v∗(s) = V ∗(h).

(ii) V ∗(h) = V Π̆(h)

where Π̆(h) :∈ ψ−1
s (π∗(s)) for any ψ(h) = s.
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For any MDP homomorphism, the performance guarantee
is provided by Theorem 6ii. The abstract optimal policy π∗
is also an optimal policy for the original process when lifted
to the original history-action space.

Q-Uniform Homomorphisms
In this section, we relax the MDP condition (see Equation
15) on the abstract-process provided by the homomorphism.
We show that there still exists an abstract policy that is near-
optimal in the original process (see Theorem 8ii). We start
with proving a value loss bound for an arbitrary policy when
the action-value function of the original process is approxi-
mately ψ-uniform.

Theorem 7. (ψQΠ) Assume
∣∣QΠ(h, a)−QΠ(h′, a′)

∣∣ ≤ ε
for some policy Π and for all ψ(h, a) = ψ(h′, a′). Then for
all ψ(h, a) = (s, b) it holds:∣∣QΠ(h, a)− qπR(s, b)

∣∣ ≤ ε+
γε(s)

1− γ
and∣∣V Π(h)− vπR(s)

∣∣ ≤ ε(s)

1− γ

where ε(s) := 2ε+ εΠ(s)
1−γ .

The following theorem improves the optimal policy value
loss bounds, cf. Theorem 7, and establishes the existence of
a near-optimal policy of the original history-action space in
the abstract state-action space.

Theorem 8. (ψQ∗) Let |Q∗(h, a) − Q∗(h′, a′)| ≤ ε for all
ψ(h, a) = ψ(h′, a′), then for all ψ(h, a) = (s, b) it holds:

(i) |Q∗(h, a)− q∗(s, b)| ≤ 2ε
1−γ and

|V ∗(h)− v∗(s)| ≤ 2ε
1−γ .

(ii) 0 ≤ V ∗(h)− V Π̆(h) ≤ 4ε
(1−γ)2

where Π̆(h) :∈ ψ−1
s (π∗(s)) for any ψ(h) = s.

It is important to note that Theorem 8 holds for any
stochastic inverse B. Every choice of B gives a different
surrogate MDP pB , so the theorem provides a near-optimal
performance guarantee for the uplifted abstract optimal poli-
cies of any possible surrogate MDP. Therefore, for any non-
MDP Q-uniform homomorphism and a fixed B there exists
an uplifted near-optimal policy (Π̆ from Theorem 8ii).

V-Uniform Homomorphisms
All the previous results are valid for any choice of the
stochastic inverse B. However, for V-uniform homomor-
phisms, the results are explicitly dependent on B (see Theo-
rem 9 and 10). We need a couple of more entities to express
the results of this section. We denote the B-average of the
action-value function of the original process as

〈QΠ(ψ−1(s, b))〉B :=
∑

h̃∈H,ã∈A

QΠ(h̃, ã)B(h̃ã|sb). (18)

Furthermore, we can decomposeB into two distinct parts:
action dependent and independent. With an abuse of nota-
tion, assume an arbitrary joint distribution B over H,A,S

and B. By using the chain rule of probability distributions
on B,

B(ha|sb) = B(h|sb)B(a|bhs)

=
B(hs)B(b|hs)

B(sb)
B(a|bhs)

(a)
=

B(hs)B(b|h)

B(sb)
B(a|bh)

= B(h|s)B(b|h)

B(b|s)
B(a|bh)

= B(h|s)︸ ︷︷ ︸
action-independent

·

action-dependent︷ ︸︸ ︷(
B(ab|h)

B(b|s)

)
(19)

(a) follows from Assumption 3, the state is determined only
by the history.

Using the action-dependent part from (19), we define a
history and state based induced measure on the original ac-
tion space for any B and an abstract state based policy π
as

Bπ(a|hs) :=
∑
b̃∈B

(
B(ab̃|h)

B(b̃|s)

)
π(b̃|s). (20)

This seemingly complex and arbitrary relationship has a
well-structured explanation. If approximately, the B distri-
bution is linked to the actual dynamics of an agent π acting
in the abstract state-action space, i.e. B(b|s) ≈ π(b|s), then
Bπ(a|hs) ≈ B(a|h), which is effectively a shadow agent
induced by the agent π on the original history-action space.

To prove a result analogous to Theorem 7 for a V-uniform
homomorphism, we need to impose an extra condition onB,
cf. Theorem 7, which requires a structure onB and/or on the
underlying original process. For general B, there exist some
known counter examples (Hutter 2016).

Theorem 9. (ψV Π) Let
∣∣V Π(h)− V Π(h′)

∣∣ ≤ ε for
some policy Π and for all ψ(h) = ψ(h′), and∣∣∑

ã∈AQ
Π(h, ã)BπR(ã|hs)− V Π(h)

∣∣ ≤ εB for all s =
ψ(h), then it holds:∣∣〈QΠ(ψ−1(s, b))〉B − qπR(s, b)

∣∣ ≤ γ(ε+ εB)

1− γ
and∣∣V Π(h)− vπR(s)

∣∣ ≤ ε+ εB
1− γ

.

In Theorem 7, we had an absolute loss-bound for action-
value functions but in Theorem 9 we only have a B-average
relationship. So far, we were able to get a near-optimal per-
formance guarantee when the optimal policy of a surrogate
MDP is uplifted to the original process (see Theorems 6ii
and 8ii). However, there does not exist such a near-optimal
performance guarantee for V-uniform homomorphisms. A
deterministic abstract policy could be arbitrarily worse off
when uplifted to the original process (Hutter 2016, Theorem
10) in V-uniform state-abstractions, which are a special case
of V-uniform homomorphisms. However, a relatively weak
result is still possible.
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Theorem 10. (ψV ∗) Let |V ∗(h) − V ∗(h′)| ≤ ε for all
ψ(h) = ψ(h′) and |

∑
ã∈AQ

∗(h, ã)Bπ
∗
(ã|hs)−V ∗(h)| ≤

εB for all s = ψ(h), then for all ψ(h, a) = (s, b) it holds:

(i) |〈Q∗(ψ−1(s, b))〉B − q∗(s, b)| ≤ 3γ(ε+εB)
(1−γ)2 and

|V ∗(h)− v∗(s)| ≤ 3(ε+εB)
(1−γ)2 .

(ii) If ε + εB = 0 then ψ(h,Π∗(h)) = (s, π∗(s)) for all
ψ(h) = s.

In the approximate case, i.e. ε + εB > 0, Theorem 10 is
not as useful as Theorem 8 because of the missing perfor-
mance guarantee, cf. Theorem 8ii. However, it is still an im-
portant theorem for the exact V-uniform homomorphisms,
i.e. ε + εB = 0. In that case, it is guaranteed that the opti-
mal actions of all member histories are mapped to the same
abstract optimal action (see Theorem 10ii).

Discussion, Outlook and Conclusion
In this paper we analyzed approximate homomorphisms of
a general history-based environment. The main idea was
to find a deterministic policy in the abstract state-action
space such that, when uplifted, it is a near-optimal policy in
the original problem. Using the surrogate MDP technique,
we proved near-optimal performance bounds for both MDP
(Theorem 6ii) and Q-uniform homomorphisms (Theorem
8ii). In general, there does not exist a near-optimal determin-
istic uplifted policy for V-uniform homomorphisms. How-
ever, we proved a weaker result (Theorem 10ii) for the ex-
act V-uniform homomorphisms: the optimal actions of the
member histories are mapped to the same abstract optimal
action at the corresponding state of the surrogate MDP.
Versus ESA. We borrow some notation and techniques from
Hutter (2016). But this work is crucially different from ESA.
Apart from the obvious difference of being a generalization
to homomorphisms, there are also some other key differ-
ences. In ESA, the policy Π is required to be state uniform
for various of the main results (Hutter 2016, Theorems 1,5,6
and 9), whereas we do not make any such assumption. The
extra conditions on Theorems 9 and 10 are weaker than the
policy-uniformity condition, cf. (Hutter 2016, Theorems 6
and 9), and do not have direct counterparts in ESA.
Versus Options. As briefly addressed in the introduction
section, the options framework does not have any provable
performance guarantees, yet. Whereas our restriction of up-
lifting a state-based policy and using a deceptively “spatial-
looking” abstraction of actions have such guarantees. Since
we allow the action mapping part of ψ to be a function of
history, which is arguably a function of time, our framework
also admits temporal dependencies. It enables ψ to model
much more than mere renaming of the original action space
distributions. A thorough comparison between these two ap-
proaches is left for future work.

Outlook
The results in this work are quite general but there are vari-
ous open questions left for future research.
Reinforcement Learning (Learning Problem). For a given
homomorphism ψ, the most obvious question we left open

is the choice of B. We call this the learning problem. Two
of the three main results in this work (Theorems 6ii and 8ii)
are valid for any choice of B, so any fixed B would suf-
fice. But the third main result (Theorem 10ii) is very much
involved with the choice ofB. However, it is not a strong re-
sult in itself. Nevertheless, in a state-abstraction context, B
facilitates learning of the surrogate MDP from the induced
abstract process (Hutter 2016). Therefore, it is an intriguing
direction to explore for homomorphisms.
Feature Reinforcement Learning (Discovery Problem).
The focus of this paper is to provide performance guaran-
tees for a given homomorphism. While in practice, the agent
has to learn such a reduction/model from experience. It is
known as the discovery problem (Li, Walsh, and Littman
2006) in RL and Feature Reinforcement Learning (FRL)
(Hutter 2009) in the GRL context. It is non-trivial to solve
this problem even in a state-abstraction framework (Hut-
ter 2016). Our result can help to build such an FRL al-
gorithm for homomorphisms, e.g. during the model learn-
ing/building, the algorithm may use the bounds from this
work to select/discard a candidate model.
Special Environment Classes. In general, we do not
use/exploit structure of the underlying original process.
However, effects of a specific model class can be expressed
in terms of the (action-)value functions. For example, if
the original process is a finite state POMDP then our re-
sults provide the performance-loss guarantee by represent-
ing a belief-state based value function of the POMDP by a
state-based value function. A similar argument can be ren-
dered for various other types of model classes. Since the
results in this work are general, they are not expected to
gracefully scale down to some class specific tight perfor-
mance bounds. Nevertheless, it is an important agenda to
get the scaled-down variants of these results for some spe-
cific model classes.
Continuous state-action space. The results in this paper
easily extend to the continuous state-action space homo-
morphisms for measurable maps. The summations change
to integrals and the measurability constraint make sure that
these integrals are well-defined. In this case, a homomor-
phism map has a natural interpretation of being a discretiza-
tion of the underlying space. However, it is sometimes de-
sirable to use a restricted continuity condition, e.g. Lips-
chitz or Holder continuity, rather than the weak measura-
bility constraint. A continuous state-action homomorphism
under some restricted continuity constraints would be a nice
generalization of our results.
Fully Generalized Homomorphism. In a sense our results
are not fully general since we assumed a structure on the ho-
momorphism. A fully generalized homomorphism formula-
tion with no ψ(h, a) = (f(h), b) assumption would be an
interesting extension of this work. However, lifting this con-
dition may lead to some bizarre non-causal effects, e.g. the
current abstract state would be decided by the next action!

Conclusion
In conclusion, our results show that in GRL the near-optimal
performance guarantee is not limited only to MDP homo-
morphisms. It is sometimes possible to have non-MDP mod-
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els, i.e. Q-uniform homomorphisms, with bounded perfor-
mance loss guarantees.
Acknowledgements. We thank Elliot Catt and Amy Zhang
for proofreading earlier drafts and the anonymous re-
viewers for their valuable feedbacks. This work has in
parts been supported by Australian Research Council grant
DP150104590.

References
Abel, D.; Hershkowitz, D. E.; and Littman, M. L. 2016. Near Op-
timal Behavior via Approximate State Abstraction. In Proceedings
of the 33rd International Conference on International Conference
on Machine Learning, 2915–2923.
Bellman, R. 1957. A Markovian Decision Process. Indiana Uni-
versity Mathematics Journal 6(4):679–684.
Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence Notions
and Model Minimization in Markov Decision Processes. Artificial
Intelligence 147(1-2):163–223.
Hutter, M. 2009. Feature Reinforcement Learning: Part I. Unstruc-
tured MDPs. Journal of Artificial General Intelligence 1(1):3–24.
Hutter, M. 2016. Extreme State Aggregation Beyond Markov De-
cision Processes. Theoretical Computer Science 650:73–91.
Lattimore, T., and Hutter, M. 2014. Near-optimal PAC bounds
for discounted MDPs. Theoretical Computer Science 558(C):125–
143.
Leike, J. 2016. Nonparametric General Reinforcement Learning.
Ph.D. Dissertation, Australian National University.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a Unified
Theory of State Abstraction for MDPs. In Proceedings of the Ninth
International Symposium on Artificial Intelligence and Mathemat-
ics 531–539.
Littman, M. L.; Dean, T. L.; and Kaelbling, L. P. 1995. On the
Complexity of Solving Markov Decision Problems. In Proceedings
of the Eleventh conference on Uncertainty in artificial intelligence,
394–402.
Majeed, S. J., and Hutter, M. 2018. Performance Guarantees for
Homomorphisms Beyond Markov Decision Processes.
McGovern, A.; Sutton, R. S.; and Fagg, A. H. 1997. Roles of
Macro-Actions in Accelerating Reinforcement Learning. In incom-
pleteideas.net, 13–18.
Puterman, M. 2014. Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming. John Wiley & Sons.
Ravindran, B., and Barto, a. G. 2003. Relativized Options: Choos-
ing the Right Transformation. Proceedings of the Twentieth Inter-
national Conference on Machine Learning 608–615.
Ravindran, B., and Barto, A. G. 2004. Approximate Homomor-
phisms: A Framework for Non-exact Minimization in Markov De-
cision Processes. Proceedings of the Fifth International Confer-
ence on Knowledge Based Computer Systems (KBCS 04) 19–22.
Strehl, A. L.; Li, L.; and Littman, M. L. 2009. Reinforcement
Learning in Finite MDPs : PAC Analysis. Journal of Machine
Learning Research 10:2413–2444.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learning: An
Introduction Second. MIT press Cambridge, 2nd edition.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial intelligence 112(1):181–211.
Taylor, J.; Precup, D.; and Panangaden, P. 2008. Bounding Perfor-
mance Loss in Approximate MDP Homomorphisms. Advances in
Neural Information Processing Systems (NIPS) 21 1649–1656.

Whitt, W. 1978. Approximations of Dynamic Programs, I. Math-
ematics of Operations Research 3(3):231–243.
Wolfe, A. 2010. Paying Attention To What Matters : Observation
Abstraction In Partially Observable Environments. Open Access
Dissertations (February 2010):188.

7666


