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Abstract

Sequence-to-sequence models incorporated with attention
mechanism have shown promising improvements on video
captioning. While there is rich information both inside and
between frames, spatial attention is rarely explored and mo-
tion information is usually handled by 3D-CNNs as just an-
other modality for fusion. On the other hand, researches about
human perception suggest that apparent motion can attract
attention. Motivated by this, we aim to learn spatial atten-
tion on video frames under the guidance of motion informa-
tion for caption generation. We present a novel video caption-
ing framework by utilizing Motion Guided Spatial Attention
(MGSA). The proposed MGSA exploits the motion between
video frames by learning spatial attention from stacked op-
tical flow images with a custom CNN. To further relate the
spatial attention maps of video frames, we designed a Gated
Attention Recurrent Unit (GARU) to adaptively incorporate
previous attention maps. The whole framework can be trained
in an end-to-end manner. We evaluate our approach on two
benchmark datasets, MSVD and MSR-VTT. The experiments
show that our designed model can generate better video rep-
resentation and state of the art results are obtained under pop-
ular evaluation metrics such as BLEU @4, CIDEr, and ME-
TEOR.

1 Introduction

Automatically describing the content of a video using nat-
ural language, i.e., video captioning, is a challenging task
in computer vision. Lots of practical applications such as
auxiliary aid for visually impaired people, human computer
interaction, and video retrieval can benefit from video cap-
tioning, thus it has drawn great research attention. In gen-
eral, video captioning systems can be roughly divided into
two components: video representation and sentence gener-
ation. Traditional approaches (Krishnamoorthy et al. 2013;
Thomason et al. 2014; Guadarrama et al. 2013) used var-
ious visual classifiers/trackers to detect visual concepts and
then generate sentences with predefined language templates.
For video representation, these approaches rely on hand-
crafted features which do not generalize well and can not
be trained in an end-to-end manner. With the rapid devel-
opment of deep learning, two major changes have been
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Figure 1: Best viewed in color. Example video frames shown
with optical flow in the bottom row. The frame in red box is
the sampled key frame. The flow images in green and yel-

low boxes are the horizontal and vertical component of the
optical flow computed around the key frame, respectively.

made to video captioning systems: convolutional neural net-
works (CNNs) for video representation and recurrent neu-
ral networks (RNNs) for sequence modeling. Earlier re-
searchers (Venugopalan et al. 2015a; 2015b; Donahue et al.
2015) directly extracted global feature (i.e., a single vector
to represent one frame) of video frames from a pre-trained
CNN and fed to RNNs (LSTM (Hochreiter and Schmidhu-
ber 1997), GRU (Chung et al. 2014), etc.) for sentence gen-
eration. While these plain sequence-to-sequence approaches
can achieve significant improvements over traditional meth-
ods, they still suffer from loss of both spatial and tempo-
ral information in videos. Later works (Yao et al. 2015;
Baraldi, Grana, and Cucchiara 2017; Pan et al. 2016) tried
to exploit the temporal structure of videos by adaptively as-
signing weights to video frames at every word generation
step, which is known as temporal attention. But in these
works, video frames are still represented by global feature
vectors extracted from CNNs. Thus, the rich visual contents
in video frames are not fully exploited. Spatial attention is
widely adopted in image captioning. (Xu et al. 2015) pro-
posed to learn a set of attention weights for image regions'
to represent their relevance to the generated words, so that
the regional features can be better combined. Motivated by

'For convenience, we refer the 2D attention weight matrix as
“attention map” hereinafter.



the success of spatial attention in image captioning, recent
works (Yang, Han, and Wang 2017; Li, Zhao, and Lu 2017)
in video captioning have also adopted spatial attention, in
which the attention weights are learned from scratch.

Videos by nature have clear indication of where the ac-
tions/events are happening, that is the motion between video
frames. Prior researches of human perception (Itti and Baldi
2005; Howard and Holcombe 2010) have shown that hu-
man attentions are also more likely to be drawn to the ap-
parently changing regions of a video. Motivated by this, we
propose to guide the spatial attention by optical flow, which
can capture the pattern of apparent motion between consecu-
tive video frames. An example is shown in Figure 1: the mo-
tion captured by optical flow in both horizontal and vertical
direction is a strong indication of the action and the related
objects in the video. Besides, the actions in videos is related
across time. So we also consider the temporal relation be-
tween attention maps, and propose a GRU-like Gated Atten-
tion Recurrent Unit (GARU) to model this relationship.

Our contributions of this work are as follows: (1) We
present a novel video captioning framework named Motion
Guided Spatial Attention (MGSA), which utilizes optical
flow to guide spatial attention. To the best of our knowl-
edge, this is the first work that incorporates optical flow for
attention guidance in video captioning. (2) We show that in-
troducing recurrent relations between consecutive spatial at-
tention maps can give a boost to captioning performance and
designed a recurrent unit called Gated Attention Recurrent
Unit (GARU) for this purpose. (3) We achieve the current
state of the art results on two large-scale datasets: MSVD
and MSR-VTT. We also investigate spatial attention maps
learned by our MGSA model and show that it can better lo-
cate regions of interest.

2 Related Works

Temporal Attention. One of the first works that have
adopted CNN and RNN for video captioning is (Venu-
gopalan et al. 2015b), in which video representation is ob-
tained by mean-pooling CNN features extracted from a se-
quence of sampled video frames and then fed it to LSTM for
caption generation. This approach actually treated video as
an image and ignored the temporal structure of videos. Thus,
following works tries to encode the videos while exploiting
their structures. S2VT (Venugopalan et al. 2015a) first en-
codes the video feature sequence with two layers of LSTM
and then the language generation (decoding) is conditioned
on the final encoding state. The LSTMs in these two stages
share the same parameters. This kind of encoding-decoding
approach have been successfully applied to neural machine
translation (Sutskever, Vinyals, and Le 2014). In (Yao et
al. 2015), the authors exploit the temporal structure of a
video by introducing soft-attention mechanism in the decod-
ing stage, which assigns weights to video frames calculated
from the decoder state and video features. (Baraldi, Grana,
and Cucchiara 2017) further propose to model the hierar-
chical structure of videos by detecting the shot boundaries
while generating captions. (Zhu, Xu, and Yang 2017) also
propose Multirate Gated Recurrent Unit to encode frames of
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a video clip with different intervals, so that the model can be
capable of dealing with motion speed variance.

Spatial Attention. Our focus in this paper is to exploit the
spatial information of video frames. Due to the large amount
of video data, spatial information has been overlooked in
video captioning due to the high computational cost. But
in image captioning, spatial information is widely utilized
through attention. In (Xu et al. 2015), two forms of atten-
tion mechanism are proposed for image captioning. One is
stochastic hard attention, which selects a single image region
according to a multinoulli distribution and requires Monte
Carlo sampling to train. The other is a differentiable approx-
imation of the former, which computes weights for all the
image regions and then a weighted sum over all the regional
features. Although the hard attention was shown to give bet-
ter performance, later researchers have preferred the soft ap-
proximation for its ease of training. (Liu et al. 2017) show
that if supervision for attention is available during training
image captioning models, the trained models can better lo-
cate regions that are relevant to the generated captions. How-
ever, due to the vast amount of video data, there are no
such fine-grained spatial annotation in existing video cap-
tioning datasets. Recently, there are works that try to incor-
porate spatial attention in video captioning. (Li, Zhao, and
Lu 2017) apply region-level (spatial) soft attention to ev-
ery video frame and then frame-level (temporal) attention
to all the frames to obtain a multi-level attention model for
video captioning. (Yang, Han, and Wang 2017) propose to
generate spatial attention under the guidance of global fea-
ture, which is the mean-pooled regional features. They also
designed a Dual Memory Recurrent Model (DMRM) to in-
corporate the information of previously encoded global and
regional features. The MAM-RNN (Li, Zhao, and Lu 2017)
applies spatial attention in the encoding stage followed by
temporal attention in the decoding stage. The spatial at-
tention maps are directly propagated during encoding. (Li,
Zhao, and Lu 2017) and (Yang, Han, and Wang 2017) are
most related to our work, however, their spatial attentions
are generated from the regional features and recurrent states
of the RNNs, without direct guidance.

Optical Flow for Visual Recognition. We propose to
generate spatial attention from a more explicit clue: opti-
cal flows. Our idea is motivated by the success of optical
flow in video action recognition. Recent works (Simonyan
and Zisserman 2014; Wang et al. 2016) have shown that
CNNs trained on multi-frame dense optical flow is able
to achieve good action recognition performance in spite of
limited amount of training data. Although the C3D net-
work (Tran et al. 2015), which operates on consecutive RGB
frames has also been proven to be successful for recognizing
action in videos, it requires training on large-scale datasets.
As a result, video captioning approaches (Hori et al. 2017;
Xu et al. 2017; Chen et al. 2017) have always used motion
information from C3D as just another modality for fusion
only. (Venugopalan et al. 2015a) tries to feed optical flow
to a CNN pre-trained on UCF101 video dataset for feature
extraction and then for multi-modal fusion. None of these
works have used optical flow as guidance for visual atten-
tion.
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Figure 2: The architecture of our proposed MGSA for video feature encoding. Left: Overview of MGSA. Dashed connections
have some components omitted for clarity. A} is the rough attention map produced by the CNN that operates on stacked optical
flow images. G, is obtained by spatially mean-pooling L,,. G% is the weighted sum of L,, with A, as the weights. Right: The
details of GARU. Solid lines stands for weighted connections, i.e., the inputs are multiplied by a weight matrix, and dashed lines
stands for direct connections. ®, ¢ and o stands for element-wise multiplication, addition and sigmoid function, respectively.

3 Approach

Different from many existing works, which focus on fully
exploiting the multimodal information in videos, we aim at
designing a video captioning model that effectively attends
to spatial regions-of-interest under the guidance of motion
information in videos. We use dense optical flow to explic-
itly capture the motion between consecutive frames. First,
stacked dense optical flow extracted around sampled key
frame is fed to a CNN to compute a rough spatial atten-
tion map. To utilize the relation between attention maps, we
then designed a gated attention recurrent unit (GARU) to in-
corporate attention information from previous frames. The
GARU outputs refined attention map, and the regional fea-
tures are aggregated into a discriminative global representa-
tion with the help of the attention map.

Our approach is also in a sequence-to-sequence manner,
and can be divided into encoding and decoding stages. We
first give an overview of our approach in Section 3.1. We
then introduce the encoding stage, including our proposed
MGSA and GARU in Section 3.2. Finally we describe the
decoding stage in Section 3.3.

3.1 Overview

Given a video, we uniformly sample N frames as the key
frames. We compute horizontal and vertical components of
optical flow for M frames centered at each key frame to cap-
ture the short-term motion information. These optical flows
are stacked as a tensor’ F with shape (N, Hy, Wy,2M),
where H; and W are the height and width of the frames,

2Following the programming convention in Tensorflow, we use
tensor to denote multidimensional arrays in this paper. A tensor
T with shape (No, N1, ..., Np_1) is an array of rank D, and its
axis ¢ has length IV;. We use subscript to index sub-tensors, e.g.,
T; stands for T’s ¢-th sub-tensor in the first axis, which has shape
(N1,....,Np_1).
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respectively. The video frames are fed to a pre-trained CNN
to extract regional features. We generally take the activa-
tions of the last convolutional layer of the CNN. The re-
sulting feature is also a tensor L with shape (N, H, W, D),
where D is the number of output channels of the pre-trained
CNN, and H and W are the spatial dimensions. As fig-
ure 2 shows, the stacked flows are fed to a custom CNN
denoted by @, and the output will be a tensor A™ with shape
(N,H,W,1), or (N,H,W) if we squeeze the last dimen-
sion. Each sub-tensor of A", which is denoted as A] and
has shape of (H, W), is the rough spatial attention map of
each corresponding frame. The rough attention map itself
can also be used to aggregate the regional features. But we
wish to refined it by considering the interrelationship of the
attention maps across time. Thus the rough attention maps
are then sequentially processed by our designed Gated At-
tention Recurrent Unit (GARU) to incorporate previous at-
tention maps. We also feed global feature vector G,,, which
is the spatially mean-pooled L,, with length D to the GARU
to provide high-level information of the key frame. The re-
fined attention maps A is applied to weigh L, obtaining the
attended global representation of the corresponding frames,
denoted as G®. The above encoding stage can be formalized
as below:

A" — & (F), (1)
B, Ap = GARU(hp_1, A7, G), )
G?L = fatt(Lna A’VL)7 (3)

where n = 1,2,..., N and f,s is the attention operation
along the spatial dimensions of L,, with A,,, the attention
map refined by GARU as the weights. h,, is the hidden state
of GARU. G* is the concatenation of G¢, G$, ..., G%;.

As Figure 3 shows, the decoding stage of our approach
also use a stack of two LSTMs as in state of the art
works (Xu et al. 2017; Song et al. 2017; Venugopalan et al.
2015a). The input word sequence are encoded as one-hot



vectors (21,22, ..., x1), where T is the length of the sen-
tence. We then embed the one-hot vectors to I -dimensional
vectors, and the embedding is trained jointly with the model.
At each time step t, the decoder is trained to predict the ¢-
th word conditioned on the previous ¢ — 1 words and G*.
The output of the decoder is thus a conditional probability
distribution:

“

where 6 stands for all the trainable model parameters. We
define the objective function as negative log-likelihood:

p(ze|z1, 22y ooy i1, G 0),

T
Loss = — Zlogp(xt|m1,x2, o o1, G 0). (5)

t=1

The model learns to minimize the negative log-likelihood by
stochastic gradient descent during training.

3.2 Motion-Guided Spatial Attention

In video action recognition (Simonyan and Zisserman 2014;
Wang et al. 2016), the CNNs that take optical flow as in-
put are designed to have similar or identical architecture as
the CNNs that process RGB frames, which are usually deep.
Unlike recognizing actions and events, learning spatial at-
tention map from optical flow images is an easier task. Since
optical flow already explicitly captures the motion, which is
a good hint for where the model show attend to. Thus for
this task, we designed a 5-layer CNN, i.e., the ®. in Eq. (1).
We interleave max-pooling with convolution to reduce the
spatial resolution and increase receptive field.

We have also experimented with deeper CNN architec-
tures and found that the increase of performance is not sig-
nificant. Thus we chose a lightweight CNN for better train-
ing efficiency.

The rough spatial attention map A" produced by @, is
solely generated from short-term motion information around
a key frame. While this attention map is already applicable,
we wish to take one step further. Since an action in video is
continuous in time, the attention maps of nearby key frames
should also be related. Based on this observation, we design
a GRU-like gated recurrent unit named GARU to incorpo-
rate previous spatial attention map when generating the cur-
rent one.

As shown in Figure 2, the proposed GARU take the rough
attention map generated by the flow CNN, A7 and the global
feature of the key frame, G,,. At each time step, GARU pro-
duces the refined attention map A ,,, and propagates the state
h,, to the next time step. The detailed computation of GARU
is as follows:

rn=a(WOAL + U, +VIG,),
2y =a0(WHAL + UBh, 1 +VEG,),
Ry = tanh (WMAT + 7, © UMh,_y),
ho = hn1 © 2 + W'y © (1= 2,),

Q)

where o stands for the sigmoid function and ® stands for
element-wise multiplication. U, V and W with different su-
perscripts are all trainable parameters. Note that h,,_; is
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Figure 3: The decoder structure used in our approach.

equivalent to A,,_;. 7, is the reset gate that controls how
much information from previous hidden state we should
keep. z, is the element-wise update gate that directly con-
trols how much of the previous attention map should be kept.
The initial state of GARU is simply set to zero.

The attention weights of every region is obtained by ap-
plying softmax function to A,, along the spatial dimensions:

e‘rp(Anhw)

H w :
Zh:l Zw:l exp(Anhw)

Then the attended global feature by a weighted sum over the
regional features:

H W
Gg; - Z Z anthnhw'

h=1w=1

)

Anhw =

®)

Eq. 7 and Eq. 8 also complement the details of the f,u
operation in Eq. 3. The generated global feature sequence
(G§,GY, ..., G%) is the encoded feature representation for
each frame and is fed to the decoder for sentence generation.

3.3 The Decoding Stage

In previous methods (Pan et al. 2016; Yang, Han, and Wang
2017), temporal attention in decoding stage is shown to im-
prove the captioning performance. As shown in Figure 3,
we further apply temporal attention to the spatially-attended
feature sequence (G{, G%, ..., G% ) at each word generation
step to further obtain a temporally attended feature:

N
G =>"pMaGs, ©)
n=1

where 6£t), ét), e B](\’;) are the attention weights dynami-

cally decided at ¢-th time step. The computation of b’,(f) re-
lies on the recurrent states of decoder LSTMs, which stores
the information of previously seen words and features, and
is computed as

h{ et = LSTM 1 (2,1, (B, ),

(10)
h?, e = LST™M 2([n), GW], (b, ),



where hgl), cgl) are the hidden and cell state of the [-th LSTM

at time step ¢, and [-] stands for tensor concatenation. ﬂff) is
then computed as

e® = W tanh(W A", h{?] + UG +b),

e:cp(egf))

SN exp(el)

11
B = : o
)
where W4, W, U and b are trainable parameters that are
shared across all time steps. We use a single output layer
that maps the output of LSTM_2 into a distribution over the
vocabulary:

Y = softmax(W(o)hEQ))

) (12)
= p(xt‘x17x27 vy Tt—1, G 70)

During testing time, the ground truth sentence
(21, xa, ...,x7) is not given. Thus the input to the LSTM_1
is the previous word prediction of the model:

Tt :argrnaxp(UJ|x1,x2,...,xt_l,Ga;Q), (13)
wey

where V is the vocabulary. The whole framework can be

trained in an end-to-end manner.

4 Experiments
4.1 Datasets

MSVD. The MSVD dataset (Chen and Dolan 2011) is a
widely used benchmark dataset for video captioning meth-
ods. It contains 1,970 videos clips collected from YouTube
with an average duration of 9.6 seconds. Each video has
around 40 human annotated sentences. In our experiments,
we follow the split settings in prior works (Xu et al. 2017;
Yao et al. 2015): 1,200 videos for training, 100 videos for
validation and 670 videos for testing. The resulting training
set has a vocabulary size of 9,657.

MSR-VTT. The MSR-VTT dataset (Xu et al. 2016) is
a large scale open-domain video captioning dataset. It con-
tains 10,000 video clips with an average duration of 14.9
seconds and 20 human annotated captions per clip. Besides,
each clip has an expert-defined category label. We follow
the standard dataset split in the dataset paper: 6,513 video
for training, 497 videos for validation and 2,990 videos for
testing. The resulting training set has a vocabulary size of
23,393.

4.2 Implementation Details

Feature Extraction. For every video, we uniformly sam-
ple 20 key frames. Optical flows in both horizontal and
vertical directions are computed for 6 consecutive frames
centered at each key frame. The flow magnitude is clipped
to [—20, 20] and then normalized to [0, 255]. The flow im-
ages are then cropped and resized so that the CNN out-
puts match the spatial size of image features. We extract
static image features from models pre-trained on the Im-
ageNet: GoogleNet (Szegedy et al. 2015) and Inception-
Resnet-V2 (Szegedy et al. 2017). Futures from the C3D net-
work are also included to model the short-term motion in-
formation. Note that C3D learns motion information from
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RGB images, while could be a complement to our model.
For the MSR-VTT dataset, we also include audio feature
(BoAW (Pancoast and Akbacak 2014)) and the coarse cat-
egory information.

Training Settings. The LSTMs used in our model all
have 1024 hidden units and the word embedding size is
set to 512. The optical flow images are normalized so that
their pixel values are in the range [—1, 1] before being fed
to CNN. We apply dropout with rate of 0.5 to all the ver-
tical connections of LSTMs and Lo regularization with a
factor of 5 x 107° to all the trainable parameters to miti-
gate overfitting. We apply ADAM optimizer with a learning
rate of 10~* and batch size of 32 to minimize the negative
log-likelihood loss. All the components of our model and
training are implemented in Tensorflow?. On a commodity
GTX 1080 Ti GPU, the times needed to extract frame fea-
tures and optical flows for a typical 10-second video clip are
400ms and 800ms, respectively. After feature extraction, our
model can generate caption for a video in 45ms.

Evaluation Settings. During evaluation/testing, we use
beam search with size 5 for sentence generation. We employ
three common metrics in video captioning task: BLEU @4,
CIDEr, and METEOR. All the metrics are computed by the
codes from the Microsoft COCO Evaluation Server*.

4.3 Compared Methods

We choose to compare our proposed approach with the fol-

lowing state of the art methods. Their major approaches can

be grouped to three categories: Temporal attention (1,2,3),

spatial attention (4,5,6) and multi-modal fusion (7,8,9,10).

1. HRNE with Attention (Pan et al. 2016). HRNE considers
the hierarchical structure of the video when encoding,
and decodes the sentence with temporal attention.

. Soft Attention (SA) (Yao et al. 2015). As introduced in
Section 2.

. hLSTMat (Song et al. 2017). In decoding stage, hLST-
Mat adaptively selects how much of the temporally at-
tended features should be used for generating a specific
word.

. DMRM (Yang, Han, and Wang 2017). As introduced in
Section 2.

. MAM-RNN (Li, Zhao, and Lu 2017). As introduced in
Section 2.

. Dense Caption (Shen et al. 2017). This approach aims to
select multiple spatial region sequences via a mapping
between frame regions and lexical labels for dense video
captioning.

. MA-LSTM (Xu et al. 2017). MA-LSTM is conceptually
similar to Attention Fusion, except that modality-wise
fusion is done by the proposed Child-Sum fusion unit.

. Attention Fusion (Hori et al. 2017). In decoding stage,
temporal attentions are computed for multiple modalities
and then fused by a modality-wise attention.

. M&M-TGM (Chen et al. 2017). M&M-TGM uses a
multi-modal multi-task training scheme which learns to
jointly predict the captions and topic of the videos.

3https://github.com/tensorflow/tensorflow
*https://github.com/tylin/coco-caption



Dataset MSVD MSR-VTT

Model Features | B@4 C M Features | B@4 C M

HRNE w/ Attention (Pan et al. 2016) G 43.8 - 33.1 - - - -
SA (Yao et al. 2015) G 41.9 51.7 29.6 V+C 36.6 - 25.9
hLSTMat (Song et al. 2017) G 48.5 - 31.9 R-152 38.3 - 26.3

DMRM w/o SS (Yang, Han, and Wang 2017) G 50.0 73.2 33.2 - - - -

MAM-RNN (Li, Zhao, and Lu 2017) G 41.3 53.9 32.2 - - - -
Dense Caption (Shen et al. 2017) - - - - R-50+C+A | 414 48.9 28.3
MA-LSTM (Xu et al. 2017) G+C 52.3 704  33.6 G+C+A 36.5 41.0  26.5
Attention Fusion (Hori et al. 2017) V+C 524  68.8 32.0 V+C+A 39.7 400 255
M&M-TGM (Chen et al. 2017) 1+C 48.76  80.45 34.36 I+C+A 4433 49.26 29.37
v2t_navigator (Jin et al. 2016) - - - - C+A 40.8 44.8 28.2
Aalto (Shetty and Laaksonen 2016) - - - - G+C 39.8 45.7 26.9
VideoLab (Ramanishka et al. 2016) - - - - R+C+A 39.1 44.1 27.7
MGSA(G) G 49.5 742 322 G 399 450 263
MGSA) I 53.0 86.4 347 I 41.7  48.1 27.5
MGSAI+C) 1+C 534 86.7 35.0 1I+C 424 475 27.6
MGSA(I+A+C) - - - - I[+A+C 454 50.1 28.6

Table 1: Captioning performance comparison on MSVD and MSR-VTT. We note the features used for fare comparison, where
G, V, C, R-N, I and A denote GoogleNet, VGGNet, C3D, N-layer ResNet, Inception-ResNet-V2, and audio features, respec-
tively. Note that audio is not available on MSVD. “-” means that the authors did not report the corresponding results.

10. MM2016 VTT Challenge winners (Jin et al. 2016;
Ramanishka et al. 2016; Shetty and Laaksonen 2016).
These approaches mainly use multimodal fusion en-
coders to fully exploit the visual, motion and audio in-
formation in videos.

4.4 Experimental Results of Model Variants

| Model [B@4 C M |
Spatial Attention 49.8 722 329
Spatial Attention w/ GARU | 51.0 81.8 34.0
MGSA w/o GARU 51.0 833 331
MGSA w/ GARU 53.0 86.4 34.7

Table 2: Comparison of model variants on MSVD.

First, we perform experiments on the MSVD dataset to
test the effectiveness of individual components of our model.
As shown in Table 2, the Spatial Attention is a simplified
model of (Li, Zhao, and Lu 2017) with the propagation of
spatial attention map removed. We make this modification
in order to show the effectiveness of our proposed GARU,
which also has the ability of relating attention maps. It can
be observed that for both Spatial Attention and MGSA,
adding GARU to incorporate the relations of attention maps
across time can significantly improve the performance re-
garding the CIDEr measure: the relative improvement for
Spatial Attention and MGSA is 13.3% and 5.6%, respec-
tively. By comparing MGSA to Spatial Attention, we show
that even without considering the interrelationship of spatial
attention maps, motion-guided attention outperforms spa-
tial attention computed from regional features. Regarding
the CIDEr measure, the relative improvement of our MGSA
over Spatial Attention is 15.4%. Overall, these comparisons
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of model variants prove both of our proposed MGSA and
GARU to be effective.

4.5 Experimental Results on MSVD

We compare our complete model, i.e., the MGSA w/ GARU
in Table 2 to the state of the art models on MSVD. The
results are summarized in Table 1. Our approach outper-
forms approaches which only exploit the temporal structure
of videos (HRNE, hLSTMat and SA). This apparently shows
that exploiting spatial information in video frames can boost
video captioning performance. For models based on spatial
attention, MAM-RNN is the most related approach to ours.
When both using GoogleNet features, ours significantly out-
performs MAM-RNN. This can be attributed to the usage of
motion-guided attention and GARU. As for another related
approach that utilize spatial attention, DMRM, our approach
achieves on-par performance with it. For the multi-modal
fusion methods, ours can already outperform them even
without fusing multiple features (MGSA(I)). Our full model
(MGSAI+C)) significantly outperforms the best competitor
M&M TGM with relative improvements of 9.5%, 7.8% and
1.9% for BLEU @4, CIDEr and METEOR, respectively.

4.6 Experimental Results on MSR-VTT

The performance comparison on MSR-VTT is summarized
in Table 1. MGSA again outperforms spatial and temporal
attention methods. Notably, most approaches on this dataset
are based on multi-modal fusion. Since the videos of MSR-
VTT have audio channel and coarse category label. When
not multi-modal features is used, MGSA(I) can surpass most
of these methods. While our focus in this work is learning
spatial attention, our method is compatible with multi-modal
information and is expected to gain a performance boost by
adding more features to the attended visual feature, i.e., the



GT: a boy is playing the violin.
MGSA w/0 GARU: a man is playing a violin.
Ours: a boy is playing a violin.

GT: a man is lifting the rear end of a truck.
MGSA w/0 GARU: a man is pushing a car.
Ours: a man is lifting a car.

GT: men are fighting in a field.
MGSA w/o GARU: two men are fighting.
Ours: two men are fighting.

dynamic

scene

GT: alady doing make up for her self on her face.
MGSA w/0 GARU: a woman is applying makeup.
Ours: a woman is applying makeup to her face.

GT: there is a brown hair woman walking on the ramp.
MGSA w/0 GARU: a woman is dancing.
Ours: a woman is walking down the runway.

GT: people are playing in a volleyball match.
MGSA w/o GARU: people are playing volleyball.
Ours: a group of people are playing volleyball.

Figure 4: Sample captions generated by our model with and without GARU. The corresponding attention maps are generated
by our model with GARU and visualized as heatmaps. The three rows to the left and right are from the MSVD and MSR-VTT,
respectively. From top to bottom, the scenes are more and more dynamic.

G® in the decoding stage. When multi-modal features in-
cluding audio (A) and short-term motion (C) are incorpo-
rated, the full model, MGSA(I+A+C) outperforms all other
methods. To summarize, the results achieved by our methods
are the current state of the art on both datasets.

4.7 Qualitative Analysis

To gain an intuition of the spatial attention learned by our
model, we present some example sentences generated by
different models along with the attention maps generated by
our model (MGSA w/ GARU). In order to demonstrate the
effectiveness of motion-guided attention, we select scenes
with different degrees of dynamics. In Figure 4, we can see
that our model can generate relevant sentences while attend-
ing to the important regions of the frames. For example, in
the “man lifting car” video, the important region is the man
and the car. They can both be captured by optical flow, and
our model can then generate accurate attention maps. It is
also shown that without GARU, the model can make mis-
takes in distinguishing the actions such as “pushing/lifting”
and “walking/dancing”. This indicates that considering the
interrelationship between attention maps is essential. For
relatively static scenes like in the “playing violin” video, our
model can capture the slight action of the person and attend
to the important regions. For more dynamic scenes, such as
the ones in the third row, there will be dramatic changes
caused by camera motion. Our model can still robustly cap-
ture the correct attention region. The reason behind this
could be that inputing stacked optical flow from multiple
frames can mitigate the affection of sudden changes. In the
“men fighting” video, our MGSA consistently focus on the
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fighting men, the changing background does not disturb the
attention. Interestingly, in the “volleyball match” video the
camera focus rapidly switches between two sides and our
MGSA always attends to the focus of the match: it tracks
the volleyball.

5 Conclusions

We propose a novel video captioning framework by learn-
ing spatial attention under the guidance of motion informa-
tion. The proposed MGSA utilize motion information be-
tween consecutive frames by applying CNN to stacked op-
tical flows. In addition, a gated recurrent unit named GARU
is designed to adaptively relate spatial attention maps across
time. With all the designs, we achieve the current state of the
art results on both MSVD and MSR-VTT. Our future work
will consider incorporating semantic information for spatial
attention, which may complement the motion-guided atten-
tion in recognizing visual concepts.
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