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Abstract

Person re-identification (re-ID) solves the task of match-
ing images across cameras and is among the research top-
ics in vision community. Since query images in real-world
scenarios might suffer from resolution loss, how to solve
the resolution mismatch problem during person re-ID be-
comes a practical problem. Instead of applying separate im-
age super-resolution models, we propose a novel network ar-
chitecture of Resolution Adaptation and re-Identification Net-
work (RAIN) to solve cross-resolution person re-ID. Advanc-
ing the strategy of adversarial learning, we aim at extracting
resolution-invariant representations for re-ID, while the pro-
posed model is learned in an end-to-end training fashion. Our
experiments confirm that the use of our model can recognize
low-resolution query images, even if the resolution is not seen
during training. Moreover, the extension of our model for
semi-supervised re-ID further confirms the scalability of our
proposed method for real-world scenarios and applications.

Introduction
Aiming at matching images of the same person across differ-
ent camera views, person re-identification (re-ID) (Zheng,
Yang, and Hauptmann 2016) is among the active research
topics in computer vision and machine learning. With a wide
range of applications ranging from video surveillance to
computational forensics, person re-ID has received substan-
tial attention of communities from both academia and indus-
try. Nevertheless, with the presence of background clutters,
viewpoint and pose changes, and even occlusion, person re-
ID remains a very challenging task.

While a number of methods (Lin et al. 2017; Hermans,
Beyer, and Leibe 2017; Zhong et al. 2018; Si et al. 2018)
have been proposed to address the aforementioned issues in
person re-ID, these methods typically assume that the im-
ages (both gallery and query) are of similar or sufficient
resolution. However, this assumption may not hold in real-
world scenarios, since image resolution may vary drastically
due to the distance between the camera and the person of
interest. For instance, images captured by surveillance cam-
eras (i.e., the queries to be recognized) are often of low res-
olution (LR) whereas the gallery ones typically have high
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Figure 1: Illustration and challenges of cross-resolution per-
son re-identification (re-ID). In addition to recognizing im-
ages across different camera views, one also needs to match
cross-resolution images.

resolution (HR). However, directly matching an LR query
image against the HR gallery ones would entail a non-trivial
resolution mismatch problem, as illustrated in Figure 1.

To address cross-resolution person re-ID, one can sim-
ply up-sample the LR images by leveraging super-resolution
(SR) approaches like (Jiao et al. 2018; Wang et al. 2018b) to
synthesize HR images. However, since these two tasks are
addressed separately, there is no guarantee that synthesized
HR outputs would result in satisfactory re-ID performances.
Moreover, if the input image resolution is not seen by the
SR model, then one cannot properly recover the HR outputs.
Later in the experiments, we will verify the above issues.

In this paper, we propose a novel Resolution Adaptation
and re-Identification Network (RAIN) for cross-resolution
person re-ID. Based on the generative adversarial network
(GAN) (Goodfellow et al. 2014) with an end-to-end learning
strategy, our RAIN is trained to extract resolution-invariant
image representations, without the limitation (or assump-
tion) of the use of LR inputs with pre-determined resolu-
tions. More specifically, our RAIN is able to handle unseen
LR images with satisfactory re-ID performances. For exam-
ple, given training LR images with 128× 128 pixels and 256
× 256 pixels, our model is able to recognize query images
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with 64 × 64 pixels as well (prior re-ID methods requiring
SR models may not properly handle LR images with un-
seen resolution). Finally, as image labeling is of high labor
cost in real-world applications, we conduct a series of semi-
supervised experiments, which supports the use and exten-
sion of our RAIN for cross-resolution person re-ID in such
practical yet challenging settings.

The contributions of this paper are highlighted below:

• We present an end-to-end trainable network that
learns resolution-invariant deep representations for cross-
resolution person re-ID.

• Our advance multi-level adversarial network components
in our proposed architecture effectively aligns and ex-
tracts feature representations across resolutions.

• We demonstrate the robustness of our model in handling
a range of (and even unseen) resolutions for LR query
inputs, while standard SR models are required to train on
images with particular resolutions.

• Extensive experiments are performed to verify the effec-
tiveness of our model, and confirm its use for re-ID in
semi-supervised settings.

Related Work
Person re-ID has been widely studied in the literature. Most
of the existing methods (Cheng et al. 2016; Lin et al. 2017;
Kalayeh et al. 2018; Si et al. 2018; Chang, Hospedales,
and Xiang 2018; Li, Zhu, and Gong 2018; Liu et al. 2018;
Wei et al. 2018; Song et al. 2018; Chen et al. 2018;
Shen et al. 2018) focus on tackling the challenges of match-
ing images with viewpoint and pose variations, or those
with background clutter or occlusion presented. For exam-
ple, Liu et al. (Liu et al. 2018) develop a pose-transferable
GAN-based (Goodfellow et al. 2014) framework to address
image pose variations. Chen et al. (Chen et al. 2018) in-
tegrate the conditional random field (CRF) with deep neu-
ral networks to learn more consistent multi-scale similarity
metrics. The DaRe (Wang et al. 2018a) combines the fea-
ture embeddings extracted from different convolutional lay-
ers into a single embedding to train the model in a supervised
fashion. Several attention-based methods (Si et al. 2018;
Li, Zhu, and Gong 2018; Song et al. 2018) are further pro-
posed to focus on learning the discriminative parts to mit-
igate the effect of background clutter. While promising re-
sults have been presented, the above approaches typically
assume that all images (both query and gallery) are of the
same (or similar) resolution, which might not be practical in
real-world re-ID applications.

To address the challenging resolution mismatch prob-
lem, a couple of methods (Li et al. 2015; Jing et al. 2015;
Wang et al. 2016; Jiao et al. 2018; Wang et al. 2018b)
have been recently proposed. Li et al. (Li et al. 2015)
present a joint learning framework that simultaneously op-
timizes cross-scale image domain alignment and discrim-
inant distance metric modeling. The SLD2L (Jing et al.
2015) learns a pair of HR and LR dictionaries and the map-
ping between the feature representations of HR and LR im-
ages. Wang et al. (Wang et al. 2016) explore the scale-

distance function space by varying the image scale of LR im-
ages when matching with HR ones. Nevertheless, the above
methods employ hand-crafted descriptors, which might limit
the generalization of their re-ID capability.

Driven by the recent success of convolutional neural net-
works (CNNs), a few CNN-based re-ID methods (Jiao et
al. 2018; Wang et al. 2018b) are proposed. For example,
the SING (Jiao et al. 2018) comprises an SR network and
a person re-ID model to address the LR re-ID problem.
Wang et al. (Wang et al. 2018b) propose the CSR-GAN
which cascades multiple SR-GANs (Ledig et al. 2017) in se-
ries to alleviate the resolution mismatch problem. Although
remarkable improvements have been presented, the afore-
mentioned methods require the learning of a separate SR
model. Treating SR and re-ID as independent tasks, there
is no guarantee that solving one task well would be prefer-
able for addressing the other. Moreover, if the resolution of
the LR query input is not seen during training, the CSR-
GAN (Wang et al. 2018b) cannot directly apply the learned
SR models for synthesizing the HR images whereas the
SING (Jiao et al. 2018) requires to fuse the results produced
by multiple learned models, each of which is specifically
designed for a particular resolution. Namely, such models
cannot be easily extended to cross-resolution person re-ID.

To overcome the above limitations, our method advances
the architecture of the GAN and the autoencoder, which
learns cross-resolution deep image representations for re-
ID purposes. Our method not only allows LR queries with
unseen resolution, but can be extended for solving cross-
resolution re-ID in semi-supervised settings. The details of
our proposed model will be discussed in the next section.

Proposed Method
Notations and Algorithmic Overview
For the sake of completeness, we first define the notations to
be used in this paper. We assume that we have access to a
set of N HR images XH = {xH

i }Ni=1 with the associated la-
bel set YH = {yHi }Ni=1, where xH

i ∈ RH×W×3 and yHi ∈ R
represent the ith HR image and its corresponding identity la-
bel, respectively. To synthesize LR images for training pur-
poses, we generate a synthetic image set XL = {xL

i }Ni=1
by down-sampling each image in XH , followed by resiz-
ing them back to the original image size via bilinear up-
sampling (i.e., xL

i ∈ RH×W×3), where xL
i is the synthetic

LR image associated with xH
i (with same label). Thus, the

label set YL for XL is identical to YH .
To achieve cross-resolution person re-ID, we present an

end-to-end trainable network, Resolution Adaptation and re-
Identification Network (RAIN). As presented in Figure 2, our
RAIN learns resolution-invariant deep representations from
training HR and LR images (note that we only need to down-
sample the HR training images to produce the LR ones).

As for testing, our proposed RAIN allows query images
with varying resolutions; more specifically, we not only al-
low query images with HR or LR resolutions which are seen
during training, but our model can further handle LR im-
ages with intermediate resolutions, or resolutions lower than
those of the training images (i.e., those not seen during train-
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Figure 2: Overview of the proposed Resolution Adaptation and re-Identification Network (RAIN). The RAIN consists of a
cross-resolution feature extractor F (in gray), a high-resolution decoder G (in yellow), a resolution discriminatorD (in orange),
and a re-ID classifier C (in green). The associated loss functions (in white) are the high-resolution reconstruction loss Lrec,
adversarial loss Ladv , classification loss Lcls, and the triplet loss Ltri. Note that j denotes the index of feature level.

ing). In the following subsections, we will detail the network
components of RAIN.

Architecture of RAIN
Our proposed network, Resolution Adaptation and re-
Identification Network (RAIN), includes a number of net-
work components. The cross-resolution feature extractor F
encodes input images across different resolutions and pro-
duces image features for both image recovery and person re-
ID. The high-resolution decoder G reconstructs the encoded
cross-resolution features to the HR outputs. The discrimi-
nator D aligns image features across resolutions via adver-
sarial learning, and thus enforces the learning of resolution-
invariant features. Finally, the re-ID classifier C is learned
via classification and triplet losses.
Cross-resolution feature extractor F . Given an HR image
xH ∈ XH and an LR image xL ∈ XL

1, we first forward
xH and xL to the cross-resolution feature extractor F to ob-
tain their feature maps. In this paper, we adopt the ResNet-
50 (He et al. 2016) as the cross-resolution feature extractor
F , which has five residual blocks {R1, R2, R3, R4, R5}. We
denote the feature maps extracted from the last activation
layer of each residual block as {f1, f2, f3, f4, f5}, where
fj ∈ Rh×w×d and d is the number of channels.

Since our goal is to perform cross-resolution person re-
ID, we encourage the cross-resolution feature extractor F to
generate similar feature distributions when observing both
XL and XH . To accomplish this, we advance the strategy of
adversarial learning, and introduce a discriminator Dj . This

1For simplicity, we would omit the subscript i, denote HR and
LR images as xH and xL, and represent their corresponding labels
as yH and yL in this paper.

discriminator takes in the feature maps fH
j and fL

j as inputs
to distinguish whether the input feature map is from XH or
XL. Note that j ∈ {1, 2, 3, 4, 5} represents the index of the
feature level and fH

j and fL
j denote the feature maps of xH

and xL, respectively.
To train the cross-resolution feature extractor F and the

discriminatorDj with cross-resolution input images xH and
xL, we define the adversarial loss as

LDj

adv(XH , XL;F ,Dj) = ExH∼XH
[log(Dj(f

H
j ))]

+ ExL∼XL
[log(1−Dj(f

L
j ))].

(1)

High-resolution decoder G. To reduce the information loss
in the above feature extraction stage, we introduce a high-
resolution decoder G that takes in the feature map f5 ex-
tracted from the cross-resolution feature extractor F as the
input. In contrast to existing autoencoder-based methods that
encourage the decoder to recover the original images given
the observed latent features (i.e., self reconstruction), we ex-
plicitly enforce our HR decoder G to reconstruct the HR im-
ages using features derived from the cross-resolution feature
extractor F . This would further allow F to extract cross-
resolution image features, while having G focus on synthe-
sizing the HR outputs.

To achieve the above goal, we impose an HR reconstruc-
tion loss Lrec between the outputs of the HR decoder G and
the corresponding HR ground truth images. Specifically, the
HR reconstruction loss Lrec is defined as

Lrec(XH , XL;F ,G) = ExH∼XH
[‖G(fH

5 )− xH‖1]
+ ExL∼XL

[‖G(fL
5 )− xL→H‖1].

(2)

Note that xL→H is the HR image corresponding to xL.
Following (Huang et al. 2018), we also use the L1 norm
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to calculate the HR reconstruction loss Lrec, since it would
preserve image sharpness.

Re-ID classifier C. To utilize labeled information of train-
ing data for cross-resolution person re-ID, we finally intro-
duce a classifier C in our RAIN. The input of this classi-
fier is the feature vector v from the global average pooling
(GAP) layer on the feature map f5, i.e., v = GAP(f5), where
v ∈ Rd. With person identity as ground truth information,
we can compute the negative log-likelihood between the pre-
dicted label ỹ = C(v) ∈ RK and the ground truth one-hot
vector ŷ ∈ RK , and define the classification loss Lcls as

Lcls(XH , XL; F , C)

= − E(xH ,yH)∼(XH ,YH)

K∑
k=1

ŷHk log(ỹHk )

− E(xL,yL)∼(XL,YL)

K∑
k=1

ŷLk log(ỹLk ),

(3)

where K is the number of identities (classes).
To further enhance the discriminative property, we impose

a triplet loss Ltri on the feature vector v, which would max-
imize the inter-class discrepancy while minimizing intra-
class distinctness. To be more specific, for each input image
x, we sample a positive image xpos with the same identity
label and a negative image xneg with different identity la-
bels to form a triplet tuple. Then, the following equations
compute the distances between x and xpos/xneg:

dpos = ‖vx − vxpos‖2, (4)

dneg = ‖vx − vxneg‖2, (5)
where vx, vxpos

, and vxneg
represent the feature vectors of

images x, xpos, and xneg, respectively.
With the above definitions, we have the triplet loss Ltri

defined as

Ltri(XH , XL;F , C)
= E(xH ,yH)∼(XH ,YH) max(0,m+ dHpos − dHneg)

+ E(xL,yL)∼(XL,YL) max(0,m+ dLpos − dLneg),

(6)

where m > 0 is the margin used to define the distance dif-
ference between the distance of positive image pair dpos and
the distance of negative image pair dneg.

We note that minimizing the triplet loss in (6) is equiv-
alent to minimizing the intra-class distinctness in (4) while
maximizing the inter-class discrepancy in (5).

Total loss. Finally, the total loss function L for training the
proposed RAIN is summarized as follows:

L(XH , XL;F ,G,Dj , C)
= LDj

adv(XH , XL;F ,Dj) + Lrec(XH , XL;F ,G)
+ Lcls(XH , XL;F , C) + Ltri(XH , XL;F , C).

(7)

With the above total loss, we aim to solve the min-max
criterion:

min
F,G,C

max
Dj

L(XH , XL;F ,G,Dj .C). (8)

In other words, to train our RAIN using training HR im-
ages (and the down-sampled LR ones), we suppress the clas-
sification loss Lcls, the triplet loss Ltri, and the HR recon-
struction loss Lrec while matching feature representations
across resolutions.

Experiments
We describe the datasets and settings for evaluation.

Datasets
We perform evaluations on three benchmark datasets, in-
cluding two synthetic and one real-world person re-ID
datasets. We will explain how we synthesize the LR images
for each dataset to perform multiple low-resolution (MLR)
person re-ID.

MLR-CUHK03. The MLR-CUHK03 dataset is a synthetic
dataset built from CUHK03 (Li et al. 2014) which consists
of 5 different camera views with more than 14, 000 im-
ages of 1, 467 person identities. For each camera pair, we
down-sample images of one camera by randomly selecting a
down-sampling rate r ∈ {2, 3, 4} (i.e., the size of the down-
sampled image will be H

r × W
r × 3), while the image reso-

lution of the other camera view remains the same.

MLR-VIPeR. The MLR-VIPeR dataset is a synthetic
dataset built from VIPeR (Gray and Tao 2008) which con-
tains 632 person-image pairs captured by two cameras. Sim-
ilarly, we down-sample all the images captured by one cam-
era view using the randomly selected down-sampling rate
r ∈ {2, 3, 4}, while the image resolution of the other cam-
era is fixed.

CAVIAR. The more challenging CAVIAR dataset (Cheng
et al. 2011) is a genuine LR person re-ID dataset which con-
tains 1, 220 images of 72 person identities captured from two
camera views. Since the images captured by the more distant
camera have much lower resolution than those captured by
the closer camera, this dataset is suitable for evaluating the
cross-resolution person re-ID. Following (Jiao et al. 2018),
we discard 22 people who only appear in the closer camera.
In contrast to other synthetic datasets, this dataset inherently
contains multiple realistic resolutions.

Experimental Settings and Protocols
We consider cross-resolution person re-ID where the query
set contains LR images while the gallery set is composed
of HR images only. We adopt the standard single-shot per-
son re-ID setting in all of our experiments. Following (Wang
et al. 2016), we randomly divide the MLR-VIPeR and the
CAVIAR datasets into halves for training and test set, with
1, 367/100 training/test identity split for the MLR-CUHK03
dataset. The test (query) set is constructed with all LR im-
ages for each person identity while the gallery image set
contains one randomly selected HR image for each person.

For performance evaluation, we adopt the average cumu-
lative match characteristic and report the results recorded at
ranks 1, 5, 10, and 20. We adopt the multi-level discrimina-
tor which adapts feature distributions at different feature lev-
els. Due to the balance between efficiency and performance,
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Table 1: Experimental results of cross-resolution person re-ID (%). Note that the numbers in bold denote the best results.

Method MLR-CUHK03 MLR-VIPeR CAVIAR
Rank 1 Rank 5 Rank 10 Rank 20 Rank 1 Rank 5 Rank 10 Rank 20 Rank 1 Rank 5 Rank 10 Rank 20

JUDEA (Li et al. 2015) 26.2 58.0 73.4 87.0 26.0 55.1 69.2 82.3 22.0 60.1 80.8 98.1
SLD2L (Jing et al. 2015) - - - - 20.3 44.0 62.0 78.2 18.4 44.8 61.2 83.6
SDF (Wang et al. 2016) 22.2 48.0 64.0 80.0 9.25 38.1 52.4 68.0 14.3 37.5 62.5 95.2
SING (Jiao et al. 2018) 67.7 90.7 94.7 97.4 33.5 57.0 66.5 76.6 33.5 72.7 89.0 98.6
CSR-GAN (Wang et al. 2018b) - - - - 37.2 62.3 71.6 83.7 - - - -

Baseline (train on HR) 60.6 89.4 95.0 98.4 32.5 59.2 69.0 76.2 27.5 63.2 79.3 92.2
Baseline (train on HR & LR) 65.9 92.1 97.4 98.9 36.6 62.3 70.9 82.2 31.7 68.4 84.2 94.1

Ours (single-level) 77.6 96.2 98.5 99.3 41.2 66.3 75.6 87.1 41.5 75.3 85.6 95.8
Ours (multi-level) 78.9 97.3 98.7 99.5 42.5 68.3 79.6 88.0 42.0 77.3 89.6 98.7

we select the index of feature level with j ∈ {4, 5} and de-
note our method as “Ours (multi-level)” and the variant of
our method with single-level discriminator (j = 5) as “Ours
(single-level)”.

Evaluation and Comparisons
We compare our approach with the JUDEA (Li et al. 2015),
the SLD2L (Jing et al. 2015), the SDF (Wang et al. 2016),
the SING (Jiao et al. 2018), and the CSR-GAN (Wang et al.
2018b). We note that our cross-resolution feature extractor is
only pre-trained on the ImageNet (He et al. 2016). However,
SING (Jiao et al. 2018) and CSR-GAN (Wang et al. 2018b)
require their re-ID networks to be pre-trained on large-scale
re-ID datasets like Market1501 (Zheng et al. 2015) (which
contains 32, 668 images of 1, 501 person identities).

Table 1 lists the quantitative results on the three datasets.
We note that our results can be further improved by applying
pre-processing or post-processing method, attention mech-
anisms, or re-ranking. For fair comparisons, no such tech-
niques are applied.

MLR-CUHK03. Our method achieves 77.6% for single-
level discriminator and 78.9% for multi-level discriminator
at rank 1. The proposed method performs favorably against
the state-of-the-art methods and outperforms the previous
best competitor (Jiao et al. 2018) by a large margin 9.9%
for single-level discriminator and 11.2% for multi-level dis-
criminator at rank 1. Our performance gains can be ascribed
to the following two factors. First, unlike most existing re-ID
methods, our model performs cross-resolution person re-ID
and is trained in an end-to-end learning fashion. Second, the
proposed approach would not suffer from the visual artifacts
as our model does not leverage SR models.

Furthermore, the advantage of training on both HR and
LR images, and introducing the discriminator can be ob-
served by comparing the method “Ours (single-level)” with
two baseline methods “Baseline (train on HR)” and “Base-
line (train on HR & LR)”, respectively. Note that the method
“Baseline (train on HR)” is considered as a naive method
that only trains on HR images. A 17.0% performance drop
can be observed from the method “Baseline (train on HR)”.
This indicates that the resolution mismatch problem signifi-
cantly alters the performance if the model is trained on HR
images only. On the other hand, the method “Baseline (train
on HR & LR)” trained on both HR and LR images with-

Table 2: Experimental results of cross-resolution person re-
ID with seen and unseen resolutions on the MLR-VIPeR
dataset evaluated at rank 1 (%).

Train Test MLR-VIPeR
SING CSR-GAN Ours

r ∈ {1, 2, 3, 4} r ∈ {2, 3, 4} 33.5 37.2 42.5
r ∈ {1, 2, 3, 4} r = 8 7 7 37.5

out applying the adversarial loss still suffers a 11.7% per-
formance drop. The result suggests that even if the model
is trained with images of multiple resolutions, without the
adversarial loss which aligns image features across resolu-
tions, the resolution mismatch problem still implicitly alters
the performance.

MLR-VIPeR. Our method achieves the state-of-the-art per-
formance on all four ranks. The performance gains over the
best competitor (Wang et al. 2018b) at rank 1 are 4.0% for
single-level discriminator and 5.3% for multi-level discrim-
inator.

In addition to performance comparisons, our method can
reliably perform cross-resolution person re-ID and general-
ize well on unseen image resolutions. However, most exist-
ing methods (Jiao et al. 2018; Wang et al. 2018b) may not
properly handle image resolutions that are not seen by their
SR models or require to fuse the results produced by mul-
tiple learned models, each of which is specifically designed
for a particular resolution.

We present and compare such results in Table 2. Suppose
that the training set contains images with different down-
sampling rates r ∈ {1, 2, 3, 4} (r = 1 indicates that im-
ages remain their original sizes), if the test set contains im-
ages with down-sampling rates r ∈ {2, 3, 4} which have ap-
peared in the training set, both existing methods (Jiao et al.
2018; Wang et al. 2018b) and our approach perform cross-
resolution person re-ID properly. However, if we consider
another scenario where the training set contains images with
down-sampling rates r ∈ {1, 2, 3, 4}, whereas the test set
contains images with down-sampling rate r = 8 which are
not seen during training, the proposed model works properly
and reliably performs cross-resolution person re-ID with sat-
isfactory result. However, existing methods could not handle
unseen resolutions properly due to the following reasons.
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(a) Colorization with respect to identity. (b) Colorization with respect to resolution.

Figure 3: Visualization of cross-resolution feature vectors v on MLR-CUHK03 via t-SNE. (a) 35 different identities, each of
which is shown in a unique color. (b) With four different down-sampling rates (r ∈ {1, 2, 4, 8}) are considered and shown,
images with the same resolution are shown in the same color. Note that images with r = 8 are not seen during training.

Table 3: Ablation studies on the MLR-CUHK03 dataset (%).

Method MLR-CUHK03
Rank 1 Rank 5 Rank 10 Rank 20 mAP

Ours 78.9 97.3 98.7 99.5 74.5
Ours w/o Lcls 70.8 95.1 97.7 98.9 68.0
Ours w/o Ltri 69.1 92.2 96.6 98.7 64.1
Ours w/o Lrec 67.3 89.5 94.5 97.7 64.2
Ours w/o Ladv 65.9 92.1 97.4 98.9 62.3

For CSR-GAN (Wang et al. 2018b), their SR models are
resolution-dependent and cannot directly apply to LR im-
ages of unseen resolutions for synthesizing HR images. For
SING (Jiao et al. 2018), even though they can still apply their
SR models on the images of unseen resolutions via fusing
the results produced by several models, their SR models are
specifically designed for some particular image resolutions,
which will not reliably address cross-resolution person re-ID
with images of unseen resolutions.
CAVIAR. For the CAVIAR dataset, our method achieves
41.5% for single-level discriminator and 42.0% for multi-
level discriminator at rank 1 score achieving the state-of-
the-art performance on all four evaluated ranks. The perfor-
mance gains over the best competitor (Jiao et al. 2018) mea-
sured at rank 1 are 8.0% for single-level discriminator and
8.5% for multi-level discriminator.

Ablation Studies
Loss functions. To analyze the importance of each loss
function, we conduct an ablation study on the MLR-
CUHK03 dataset using the multi-level discriminator method
abbreviated as “Ours”. Table 3 presents the quantitative re-
sults of the ablation experiments evaluated at ranks 1, 5, 10,
and 20, and the mAP. The results show that without the clas-
sification loss Lcls or the triplet loss Ltri, our model still

Table 4: Effect of training images of multiple low resolu-
tions. The bold numbers indicate the best results (%).

Train MLR-CUHK03 MLR-VIPeR CAVIAR
HR LR Rank 1 mAP Rank 1 mAP Rank 1 mAP

r = 1 r = 2 70.9 67.7 38.9 42.6 36.3 52.9
r = 1 r = 3 72.3 68.8 40.3 43.2 37.9 53.1
r = 1 r = 4 77.2 74.8 41.5 45.4 40.1 54.6
r = 1 r ∈ {2, 3, 4} 78.9 75.9 42.5 47.0 42.0 56.3

achieves favorable performances compared with the state-
of-the-art method (Jiao et al. 2018). This is because both the
classification loss and the triplet loss are introduced to con-
trol the intra-class and inter-class distances. Without either
one of them, our model still has the ability to establish a
well separated feature space for each person identity. How-
ever, our model suffers a 11.6% performance drop without
the HR reconstruction loss Lrec at rank 1. The result indi-
cates that introducing the HR decoder and imposing the HR
reconstruction loss greatly reduce the information loss. In
addition, without the adversarial loss Ladv , our model does
not learn resolution-invariant representations and a 13.0%
performance drop at rank 1 can be observed, which indi-
cates that our model suffers from the severe impact induced
by the resolution mismatch problem. The ablation experi-
ments show that all loss terms play crucial roles in achieving
state-of-the-art performance.

Effect of training images of multiple low resolutions. We
conduct experiments on all three adopted datasets with dif-
ferent combinations of down-sampling rates and present the
results in Table 4. We observe that when our model (bottom
row) is trained with LR images of multiple down-sampling
rates, it achieves the best results compared with our three
variant methods (first three rows), each of which is trained
with LR images of a single down-sampling rate. On the other
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Figure 4: Example of the top-ranked HR gallery images of
the MLR-CUHK03 dataset which are matched by the LR
query input. Images bounded in green and red rectangles de-
note correct and incorrect matches, respectively.

other hand, for Figure 3b, we colorize each image resolution
with a color in each identity cluster (four different down-
sampling rates r 2 {1, 2, 4, 8}). It can be observed that the
projected feature vectors of the same identity but different
down-sampling rates are all well clustered. We note that im-
ages with down-sampling rate r = 8 are not presented in the
training set.

The above visualizations demonstrate that our model
learns resolution-invariant representations, and is able to
generalize well to unseen image resolution (e.g., r = 8) for
cross-resolution person re-ID.

Top ranked gallery images. Given an LR query image with
down-sampling rate r = 8 (the leftmost column), we present
the first 7 top-ranked HR gallery images in Figure 4. We
compare our method (bottom row) with two baseline meth-
ods “Baseline (Train on HR)” (top row) and “Baseline (Train
on HR and LR)” (middle row). The green and red boundaries
indicate correct and incorrect matches, respectively. From
the results in the top row of this figure, we observe that the
method “Baseline (Train on HR)” only achieves 3 out of 7
correct matches. When trained with images of various res-
olutions, the method “Baseline (Train on HR and LR)” im-
proves the matching results to 5 out of 7 correct matches. Fi-
nally, our method achieves 7 out of 7 correct matches, which
again verify the effectiveness and robustness of our model.
Note that the resolution (r = 8) of the query image is not
seen during training.

Semi-Supervised Cross-Resolution Re-ID
To show that, even only a portion of the dataset are with
labels (i.e., computing the classification loss and the triplet
loss is only applicable for such data), the unique design of
our RAIN would still exhibit sufficient ability in learning
cross-resolution person re-ID image features, we conduct a
series of semi-supervised experiments.

We increase the amount of labeled data by 20% each time
(i.e., 0%, 20%, 40%, 60%, 80%, and 100% labeled data)
and record the performance at rank 1 as presented in Fig-

Figure 5: Semi-supervised cross-resolution person re-ID on
the MLR-CUHK03 dataset.

ure 5. Note that the unlabeled data can still compute the
HR reconstruction loss and the adversarial loss. We com-
pare our method with two baseline methods “Baseline (train
on HR)” and “Baseline (train on HR & LR)”. From Fig-
ure 5, we observe that without any labeled information, our
method achieves 3.3% at rank 1. When the amount of la-
beled data is increased to 20%, our model results in 66.3%
at rank 1, which is only slightly worse than the performance
of SING (Jiao et al. 2018) (67.7%) recorded with 100% la-
beled data. When we further increase the amount of labeled
data to 40%, our model achieves 76.1% at rank 1, which out-
performs the result of SING (Jiao et al. 2018) recorded with
fully labeled data by 8.4%.

With the experiments, we confirm that the unique de-
sign and the integration of cross-resolution feature extractor
(with resolution adversarial learning), HR decoder, and clas-
sification components, would allow one to learn resolution-
invariant representations for cross-resolution person re-ID,
even if only a portion of the image data are labeled. Thus,
the use of our RAIN for real-world re-ID problems can be
supported.

Conclusions
We have presented an end-to-end trainable network, Res-
olution Adaptation and re-Identification Network (RAIN),
which is able to learn resolution-invariant representations
for cross-resolution person re-ID. The novelty of this
network lies in the use of adversarial learning for deriving
latent image features across image resolutions, with an
autoencoder-like architecture which preserves the image
representation ability. Utilizing image labels, the classifica-
tion components further exploit the discriminative property
for re-ID purposes. From our experiments, we confirm
that our model performs favorably against state-of-the-art
cross-resolution person re-ID methods. We also verify that
our model is able to handle LR query inputs with varying
image resolutions, even if such resolutions are not seen
during training. Finally, the extension to semi-supervised
re-ID further supports the use of our proposed model for
solving practical cross-resolution re-ID tasks.

Figure 4: Example of the top-ranked HR gallery images of
the MLR-CUHK03 dataset which are matched by the LR
query input. Images bounded in green and red rectangles de-
note correct and incorrect matches, respectively.

hand, from the third variant method (the third row), the re-
sult demonstrates that our method reliably handles unseen
but intermediate resolutions (r ∈ {2, 3}).
Visualization of cross-resolution feature vector v. We
now visualize the feature vectors v on the test set of the
MLR-CUHK03 dataset in Figures 3a and 3b via t-SNE.

In Figure 3a, we select 35 different person identities, each
of which is indicated by a color. We observe that the pro-
jected feature vectors are well separated, which suggests that
sufficient re-ID ability can be exhibited by our model. On the
other hand, for Figure 3b, we colorize each image resolution
with a color in each identity cluster (four different down-
sampling rates r ∈ {1, 2, 4, 8}). It can be observed that the
projected feature vectors of the same identity but different
down-sampling rates are all well clustered. We note that im-
ages with down-sampling rate r = 8 are not presented in the
training set.

The above visualizations demonstrate that our model
learns resolution-invariant representations, and is able to
generalize well to unseen image resolution (e.g., r = 8) for
cross-resolution person re-ID.

Top ranked gallery images. Given an LR query image with
down-sampling rate r = 8 (the leftmost column), we present
the first 7 top-ranked HR gallery images in Figure 4. We
compare our method (bottom row) with two baseline meth-
ods “Baseline (Train on HR)” (top row) and “Baseline (Train
on HR and LR)” (middle row). The green and red boundaries
indicate correct and incorrect matches, respectively. From
the results in the top row of this figure, we observe that the
method “Baseline (Train on HR)” only achieves 3 out of 7
correct matches. When trained with images of various res-
olutions, the method “Baseline (Train on HR and LR)” im-
proves the matching results to 5 out of 7 correct matches. Fi-
nally, our method achieves 7 out of 7 correct matches, which
again verify the effectiveness and robustness of our model.
Note that the resolution (r = 8) of the query image is not
seen during training.
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Figure 5: Semi-supervised cross-resolution person re-ID on
the MLR-CUHK03 dataset (%).

Semi-Supervised Cross-Resolution Re-ID
To show that, even only a portion of the dataset are with
labels (i.e., computing the classification loss and the triplet
loss is only applicable for such data), the unique design of
our RAIN would still exhibit sufficient ability in learning
cross-resolution person re-ID image features, we conduct a
series of semi-supervised experiments.

We increase the amount of labeled data by 20% each time
(i.e., 0%, 20%, 40%, 60%, 80%, and 100% labeled data)
and record the performance at rank 1 as presented in Fig-
ure 5. Note that the unlabeled data can still compute the
HR reconstruction loss and the adversarial loss. We com-
pare our method with two baseline methods “Baseline (train
on HR)” and “Baseline (train on HR & LR)”. From Fig-
ure 5, we observe that without any labeled information, our
method achieves 3.3% at rank 1. When the amount of la-
beled data is increased to 20%, our model results in 66.3%
at rank 1, which is only slightly worse than the performance
of SING (Jiao et al. 2018) (67.7%) recorded with 100% la-
beled data. When we further increase the amount of labeled
data to 40%, our model achieves 76.1% at rank 1, which out-
performs the result of SING (Jiao et al. 2018) recorded with
fully labeled data by 8.4%.

With the experiments, we confirm that the unique de-
sign and the integration of cross-resolution feature extractor
(with resolution adversarial learning), HR decoder, and clas-
sification components, would allow one to learn resolution-
invariant representations for cross-resolution person re-ID,
even if only a portion of the image data are labeled. Thus,
the use of our RAIN for real-world re-ID problems can be
supported.

Conclusions
We have presented an end-to-end trainable network, Res-
olution Adaptation and re-Identification Network (RAIN),
which is able to learn resolution-invariant representations
for cross-resolution person re-ID. The novelty of this
network lies in the use of adversarial learning for deriving
latent image features across image resolutions, with an
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autoencoder-like architecture which preserves the image
representation ability. Utilizing image labels, the classifica-
tion components further exploit the discriminative property
for re-ID purposes. From our experiments, we confirm
that our model performs favorably against state-of-the-art
cross-resolution person re-ID methods. We also verify that
our model is able to handle LR query inputs with varying
image resolutions, even if such resolutions are not seen
during training. Finally, the extension to semi-supervised
re-ID further supports the use of our proposed model for
solving practical cross-resolution re-ID tasks.
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