The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

SuperVAE: Superpixelwise Variational Autoencoder for Salient Object Detection

Bo Li, Zhengxing Sun,” Yuqi Guo
State Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract

Image saliency detection has recently witnessed rapid
progress due to deep neural networks. However, there still
exist many important problems in the existing deep learn-
ing based methods. Pixel-wise convolutional neural network
(CNN) methods suffer from blurry boundaries due to the con-
volutional and pooling operations. While region-based deep
learning methods lack spatial consistency since they deal
with each region independently. In this paper, we propose a
novel salient object detection framework using a superpixel-
wise variational autoencoder (SuperVAE) network. We first
use VAE to model the image background and then separate
salient objects from the background through the reconstruc-
tion residuals. To better capture semantic and spatial contexts
information, we also propose a perceptual loss to take advan-
tage from deep pre-trained CNNSs to train our Super VAE net-
work. Without the supervision of mask-level annotated data,
our method generates high quality saliency results which
can better preserve object boundaries and maintain the spa-
tial consistency. Extensive experiments on five wildly-used
benchmark datasets show that the proposed method achieves
superior or competitive performance compared to other al-
gorithms including the very recent state-of-the-art supervised
methods.

Introduction

As a fundamental but challenging problem, salient object de-
tection is derived with the goal of discovering and locating
distinctive objects or regions in an image which attract hu-
man attention. It endows many high-level computer vision
systems with the capability to take advantage of human at-
tention for more promising processing and analysis, such as
object recognition (Ren et al. 2014), image semantic seg-
mentation (Wei et al. 2017), visual tracking (Hong et al.
2015) and video summarization (Mademlis, Tefas, and Pitas
2017), etc.
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Figure 1: (a) Input images, (b) Ground truth masks, (c-e)
Results of (¢c) MDF (Li and Yu 2016b), (d) RFCN (Wang
et al. 2018), and (e) our method.

Conventional saliency detection methods usually utilize
hand-crafted features such as color, texture, contrast to rep-
resent the visual properties of pixels or regions. These meth-
ods then distinguish salient objects from background ac-
cording to the extracted features with heuristic priors and
cues. Despite their great success, however, it is rather dif-
ficult for these methods to capture the semantic and struc-
tural information of salient objects in images because of the
hand-crafted low-level features they use. When encounter-
ing complex images, such as images with low-contrast ob-
jects or cluttered backgrounds, these methods usually pro-
duce unsatisfying saliency results.

Recently, deep learning led a revolution in computer
vision for its superior performance in object recognition
and classification (Russakovsky et al. 2015). By incorpo-
rating deep networks, such as CNN, or fully convolutional
neural network (FCN) into salient object detection algo-
rithms (Li and Yu 2016a; Wang et al. 2018), with the ex-
tracted semantic features the detection accuracy has been
improved rapidly in comparison with previous state-of-the-
art results. However, while pixel-wise saliency prediction
networks are good to evaluate objectness in an image, they
lack the capability to generate clear boundary for salient ob-
ject. As shown in Figure 1(d), after the stridden convolution
and pooling operations, these methods lose much signifi-



cant location information and many fine details of objects,
leading to coarse and blurry boundary results. This prob-
lem can be alleviated in some region-based methods like
superpixel-wise classification networks (Li and Yu 2016b;
Zhao et al. 2015). However, independently processing each
superpixel makes these methods lack of ability to capture
the spatial contexts information of superpixels. Therefore, it
may cause failure detection results in some complex scenes.
And the problem is also illustrated in Figure 1(c). Moreover,
to ensure the performance, both pixel-wise and region-based
networks rely on a great quantity of mask-level annotations.
It is expensive, time-consuming and laborious for a funda-
mental visual task like salient object detection.

In this paper, a novel salient object detection framework
is proposed, in which, a superpixel-wise variational autoen-
coder network is used to address these aforementioned chal-
lenges. Specifically, following the basic rule of photographic
composition that the image boundary is mostly background,
we design a superpixel-wise VAE to model image back-
ground. Then, the salient object detection can be formulated
as an estimation of reconstruction residuals of all super-
pixels in an image using VAE network. More importantly,
inspired by the recent neural style transfer works (Gatys,
Ecker, and Bethge 2016), we propose a perceptual loss in
training our Super VAE network to take advantage from deep
pre-trained CNNSs to capture more semantic and spatial con-
texts information for superpixels. Unlike previous region-
based networks which deal with each superpixel of an im-
age independently, the perceptual loss of each superpixel in
our SuperVAE network is calculated within the entire im-
age. In this manner, our methods can maintain the spatial
consistency of superpixels and generate high quality salient
object detection results with clear boundaries. Meanwhile,
our framework gets rid of the severe reliance on mask-level
annotated data.

The main contributions of this work can be summarized
as follows.

e We introduce a novel salient object detection framework.
By adopting a superpixel-wise variational autoencoder
network, we can separate salient objects from image back-

ground effectively.

We propose a perceptual loss to capture more semantic
and spatial contexts information from deep pre-trained
CNNs for training our SuperVAE network.

The proposed method generates high quality saliency re-
sults which can better preserve object boundaries and
maintain the spatial consistency. Extensive experiments
on five widely-used benchmark datasets show that our
method achieves superior or competitive performance
compared to other algorithms including the very recent
state-of-the-art supervised methods.

Related Work

In this section, representative works including the recent
deep learning methods in salient object detection are re-
viewed. Traditional methods treat salient object detection
as a low level vision problem. Most of them are based on
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low-level manually designed features, such as color, gradi-
ent, texture, contrast, etc. Then, heuristic priors such as s the
center prior (Liu et al. 2011) and the background prior (Wei
et al. 2012) (Wei et al. 2012) or high-level knowledge like
objectness (Jia and Han 2013) are incorporated with hand-
crafted low-level features to predict good salient scores. De-
spite the efficient saliency cues these methods used, the rep-
resentation ability of low-level feature on semantic infor-
mation limits their performance in complex scenes, such
as cluttered backgrounds and low-contrast imaging patterns.
More comprehensive analysis of these low-level feature
based traditional methods are summarized in a survey pa-
per (Borji et al. 2015).

Recent years, deep learning has attracted a lot of at-
tention for its outstanding performance in computer vision
tasks. Based on the supervision of thousands of pixel-level
saliency map annotations, the deep learning based saliency
methods can easily capture the semantic information and
produce more accurate saliency prediction results. For ex-
ample, inspired by the great success of fully convolutional
networks (FCNs) (Long, Shelhamer, and Darrell 2015),
Wang et al (2018) developed a recurrent fully convolutional
network to predict saliency maps based on the original im-
age and then stage-wisely refine the prediction results of
the last recurrent step. Zhang et al (Zhang et al. 2017b)
proposed a bidirectional framework with a novel dropout
technique to learn the deep uncertain convolutional features,
which can improve the robustness and accuracy of saliency
detection. However, while pixel-wise dense saliency predic-
tion is efficient, the resulting saliency maps are coarse and
with blurry object boundaries. It is because the features they
used at deep layers of CNN lose location and fine details
information of objects due to the multiple stridden convolu-
tion and pooling operations. Region-based methods alleviate
this problem by better maintaining the location information
through pre-segmentation. Li et al (Li and Yu 2016b) pro-
posed multi-scale deep features by extracting features of all
superpixels at three scales and then fused them to generate
their saliency scores. Lee et al (Lee, Tai, and Kim 2016)
used hand-crafted low-level features to form a low level dis-
tance map. They concatenated the encoded low level dis-
tance map and the high level features to complement the
low-level detail information, and then used a fully connected
neural network classifier to evaluate the saliency of a query
superpixel. However, these methods simply process each su-
perpixel in an independent way, which cause the loss of spa-
tial contexts information. Lacking spatial consistency usu-
ally leads to detection errors when the salient object consists
of several different parts. Moreover, the added hand-crafted
low-level features are too subjective to capture the spatial
consistency in all the images.

Our method well addresses these challenges in the afore-
mentioned deep learning based methods. Not only our
superpixel-wise salient object detection framework well pre-
serves the location information, but also the proposed per-
ceptual loss can extract more effective detail and seman-
tic information from different layers in the pre-training net-
work. Besides, we calculate the perceptual loss of super-
pixels within the entire image and can better maintain the
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Figure 2: The main framework of our proposed superpixel-wise variational autoencoder network.

spatial consistency. In the meantime, unlike aforementioned
deep learning based methods, the proposed framework also
gets rid of excessive dependence on mask-level annotated
data.

Method

The overview of our method is illustrated in Figure 2. For
an input image, we first over segment it into superpixels by
SLIC algorithm (Achanta et al. 2012). We then select the
background samples from the image boundary. These back-
ground superpixels are used to train the proposed VAE net-
work through the perceptual loss. Next, we use the trained
VAE to reconstruct all superpixels in the input image and
calculate the reconstruction residual. To handle the scale
problem of images in different sizes, we compute the recon-
struction residuals at different scales and fuse them to gen-
erate the final saliency results. In the following subsections,
we will elaborate our superpixel-wise VAE network with the
perceptual loss and how to generate the final saliency results
through the deep reconstruction residuals.

Variational Autoencoder

Essentially, the true aim of salient object detection is to find
objects that are distinctive from the image background (Han
etal. 2015). So, it is natural to come up with the idea of mod-
eling the property of background first and thereby separat-
ing salient objects from the background. Following this idea,
some methods (Han et al. 2015; Lu et al. 2016) intuitively
consider image saliency detection as an estimation of recon-
struction error of whole image with the learned background
model. However, because of lacking generalization ability,
their background models such as sparse coding and denois-
ing autoencoders may fail to well reconstruct some back-
ground regions which are variations of learned background.
This leads to inaccurate salient scores in some regions. To
handle this problem, we propose to use Variational Autoen-
coder (VAE) (Kingma and Welling 2013) in our framework
to model image background. As a probabilistic generative
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neural network, VAE can give calibrated probabilities, while
models of previous methods are deterministic discriminative
model that do not have a probabilistic foundation. Specifi-
cally, VAE encoder network maps an input sample z to a dis-
tribution over latent variables z ~ Enc(z) = ¢(z|z). And
decoder network maps from this latent space distribution to
the original input space Z ~ Dec(z) = p(z|z). Both ¢(z|x)
and p(z|z) are commonly assumed to be Gaussian distribu-
tion. Therefore, instead of predicting a single latent vector z ,
VAE predicts two vectors p and o and sample z = u+o®y,
where ¢ is standard Gaussian (zero mean, unit variance) and
©® is element-wise multiplication. Thus, compared with the
previous models, VAE can model the background patterns
efficiently and generate well variations of background.

To train the VAE model, first we need to maximize the
marginal log-likelihood of each observation in z , and the
VAE reconstruction loss L, is the negative expected log-
likelihood of the observations in x. Meanwhile, the differ-
ence between the distribution of ¢(z|z) and the distribution
of a Gaussian distribution p(z), which is called Kullback-
Leibler divergence, needs to be minimized to control the dis-
tribution of the latent vector z. Therefore, VAE models can
be trained by optimizing the sum of the reconstruction loss
L. and KL divergence loss Ly; .

Lrec = _Eq(z|z) 1ng(l‘|2’) (1)
L = D r(q(z|z)llp(z)) )
Evae = £rec + Ekl (3)

Superpixel-Wise VAE Network Architecture

As we discussed before, region-based methods can better
capture the location information and preserve object bound-
ary, compared with the pixel-wise CNN methods. So we de-
sign a superpixel-wise VAE network with a symmetric CNN
architecture. To be specific, we construct 3 convolutional



layers in the encoder network with 3 x 3 kernels. The stride
of first layer is 1, while the strides of other two layers are
set to be 2 to achieve spatial downsampling instead of using
deterministic spatial functions such as pooling. Each convo-
lutional layer is followed by an adaptive batch normalization
layer and a ReLLU activation layer. Then, to compute the KL.
divergence loss and sample latent variable z, we add two
fully-connected output layers (for mean and variance) to en-
code. As a symmetric architecture, we use 3 deconvolutional
layers with the same 3 x 3 kernel size in the decoder network.
For upsampling we use nearest neighbor method by a scale
of 2 instead of standard zero-padding. We also add batch
normalization layer and ReLU activation layer following de-
convolutional layer to help stabilize training. The details of
our superpixel-wise VAE architecture is shown in Figure 2.

However, an image superpixel may have an irregular
shape with variable pixel number inside, while the convolu-
tional layer usually requires fixed-length inputting vector. To
obtain available inputting for each superpixel, we first gen-
erate the bounding box of a superpixel. Moreover, to make
the inputting vector only relevant to the pixels inside the su-
perpixel, we fill the pixels outside the region but still inside
its bounding box with the mean pixel values of superpixel.
Then, we further perform average spatial pooling over an
adaptive grid as with (He et al. 2015). We divide the bound-
ing box of a superpixel into h x w cells. Let the size of
the bounding box be H x W. Average spatial pooling is
performed within each cell with H/h x W /w pixels. After-
wards, the aggregated feature vector of each superpixel has
h x w x 3 dimensions.

Perceptual Loss

As defined in neural style transfer (Gatys, Ecker, and Bethge
2016), perceptual loss of two images is the difference be-
tween the hidden features in a pre-trained deep convolu-
tional neural network ®. The core idea of feature percep-
tual loss is to seek the consistency between the hidden rep-
resentations of two images. In our method, we propose to
use the perceptual loss to capture important features such as
detail and semantic information from the hidden represen-
tations in different layers. Thus, our superpixel-wise VAE
network can better model the background and reconstruct
high quality superpixel results. Then we can separate salient
objects from the background more accurately through the
reconstruction residuals. Specifically, the 19-layer VGGNet
(Simonyan and Zisserman 2014) is chosen as loss network ®
to construct perceptual loss, which is trained for classifica-
tion problem on ImageNet dataset. Let x represents a super-
pixel in image I, and T represents corresponding VAE out-
put. Contrary to our previous process on x, we first perform
spatial unpooling over Z to restore it to its original super-
pixel size. Then we fill this reconstructed superpixel Z into
its corresponding location in the original image I and obtain
a new image I'. Next, let ®(I)! represents the feature map
of the I*" hidden layer when input image I is fed to network
®. The perceptual loss for one layer (£'.__.) between super-

pixel x and Z can be calculated through tlrlgcdifferent(squared
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euclidean distance) of ®(1)! and ®(I')!,

1

Lree = RF! x C! (@(1)

rec

—o(I')')?, )
where C! is the number of channels of the feature map ®(I)"
and RF! represents the receptive field size of superpixel z in
feature map ®(I)". To accelerate the calculation of percep-
tual loss, we can fill more than one reconstructed superpixels
into image I as long as their receptive fields in /*" hidden
layer do not overlap with each other. Then the only thing
we need to do is replacing RF with the sum of receptive
fields of all filled superpixels in I’. As can be seen, unlike
previous region-based networks which simply process each
superpixel in an independent way, we compute the percep-
tual loss of each superpixel within the entire image. By this
mean, our method can capture the spatial contexts informa-
tion to better maintain the spatial consistency.

The final reconstruction loss is defined as the total loss by
combining different layers of VGG Network. We also add
a pixel-by-pixel reconstruction loss(cross entropy) between
superpixel « and z in RGB space to capture low-level detail
information. For a uniformly expression, we use £, to rep-
resent this loss. To train our superpixel-wise VAE, we jointly
minimize the KL divergence loss L; and the reconstruction
loss L., for different layers,

l
Etotal = Oéﬁk[ + Z(wl‘ci’ec) ) (5)

where o and w; are weighting parameters for KL Diver-
gence and image reconstruction loss in different layers.

Saliency Detection via Reconstruction Residual

As described, after modeling the image background through
our superpixel-wise VAE network, we reconstruct all super-
pixels in the input image and then separate salient objects
from the background through the reconstruction residuals.
Just like what we do in training network, we estimate the
difference between superpixel x and reconstruction result
not only in RGB space but also in hidden representations as
the reconstruction residuals. Let r!(z) represents the recon-
struction residual (squared euclidean distance) of superpixel
x calculated in [*" hidden layer. Then the final reconstruc-
tion residual is defined as the combination of reconstruction
residuals in different hidden representations,

l

r(a) =) (wir'(z)),

i

(6)

where w; are the weighting parameters for reconstruction
residuals in different layers, same as the weighting param-
eters in calculation of image reconstruction loss. After nor-
malization, the salient scores ¢, for each superpixel in the
input image can be obtained.

To handle the scale problem of images in different sizes,
inspired by Lu et al. (2016), we compute the reconstruc-
tion residuals at different scales and fuse them to generate
the final saliency results. For a full-resolution saliency map,



we assign saliency to each pixel by integrating results from
multi-scale superpixel-level saliency

E — Ei\gl Won(s)Epls) B 1
(Z) TN on(s) = T
Zs:ﬂ Wan(s) Hfz — Up(s) H2

where NN, is the number of scale, and €,,(s) is the superpixel-
level saliency in scale s. f, is the low-level detail features
of pixel z, which consist of Lab and RGB color features and
coordinate of z. n(*) denotes the label of the superpixel con-
taining pixel z at scale s and v,,s) is the mean low-level
detail features of all pixels in superpixel n(*). Thus, w._,, )
regards the similarity of pixel z with its corresponding super-
pixel as the weight to average the reconstruction residuals in
multi-scale.

» (D

Experiments
Implementation

Our proposed SuperVAE network has been implemented on
the basis of pytorch, an open source framework for CNN
training and testing. When we select superpixels on the im-
age boundary as background samples to train our VAE net-
work, we calculate the boundary connectivity (Zhu et al.
2014) for each superpixel and then use it to eliminate incor-
rect background examples on image boundary. For multi-
scale reconstruction residuals, we generate superpixels at
three different scales (150, 250, 350 superpixels). All su-
perpixels are resized to 16 x 16 x 3 by average spatial pool-
ing. For reconstruction loss, we use the combination of £,
and perceptual loss from layers relu3_1, relud_1, relub.4,
which are called £2,., £}.., L3, respectively. The weigh-
ing parameters wg, ws, Wy, w5 of reconstruction loss are set
to 0.2, 0.1, 0.2, 0.5 respectively in our experiments. To en-
sure our SuperVAE model can learn as much information
from reconstruction loss as it can, we adopt a KL cost an-
nealing method (Bowman et al. 2016) in our experiments.
Specifically, we add a variable weight to the KL term in the
loss function at training time. At the start of training, we
set that weight to zero, and then, as training progresses, we
gradually increase this weight by 0.01 until it reaches 1.

We run our method on an octa-core PC machine with an
NVIDIA GTX 1080Ti GPU and an i7-6900 CPU. During
the training, we use ADAM stochastic gradient optimization
method with batch size 10, and learning rate 0.005. For a
single input image, the training process usually converges in
200 iterations. The average training time for each image is
6.2s, then it takes 1.3s seconds for the trained model to detect
salient objects in the input image with 400x300 pixels.

Datasets and Evaluation Criteria

We evaluate the performance of our method on five public
datasets: ECSSD (Shi et al. 2016) dataset contains 1,000
natural images, in which many semantically meaningful and
complex structures are included. ASD (Achanta et al. 2009)
consists of 1000 images and most images in this dataset con-
tains single object. SED (Borji et al. 2015) dataset has two
non-overlapped subsets, i.e., SED1 and SED2. SED1 has
100 images each containing only one salient object, while
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SED2 has 100 images each containing two salient objects.
SOD (Wang et al. 2017) dataset contains 300 images and it
was originally designed for image segmentation. Many im-
ages in this dataset have multiple salient objects with low
contrast.

To evaluate the performance of varied methods, we adopt
three metrics, including the widely used precision-recall
(PR) curves, F-measure and mean absolute error (MAE)
(Borji et al. 2015). The PR curve of a specific dataset ex-
hibits the mean precision and recall of saliency maps at dif-
ferent thresholds. The F- measure is a weighted mean of av-
erage precision and average recall, calculated by

(1+ %) x Precision x Recall
B2 x Precision + Recall

Fs = 8)
We set 32 to be 0.3 as suggested in (Borji et al. 2015).

For fair comparison on non-salient regions, we also cal-
culate the mean absolute error (MAE) by

1 W H
MAE = 3= H;;W(w) —Glx.y), ©)

where W and H are the width and height of the input image.
S(z,y) and G(x,y) are the pixel values of the saliency map
and the binary ground truth at (x, y), respectively.

Comparison with the State-of-the-arts

To fully evaluate the detection performance, we compare our
proposed method with other 12 state-of-the-art ones, includ-
ing 6 deep learning based algorithms (LRF (Zhang et al.
2018), UCF (Zhang et al. 2017b), RFCN (Wang et al.
2018), ELD (Lee, Tai, and Kim 2016), MDF (Li and Yu
2016b), BDRS (Han et al. 2015)) and 6 conventional algo-
rithms (MST (Tu et al. 2016), BL. (Lu et al. 2017), MILP
(Huang et al. 2017), GBMR (Zhang et al. 2017a), DSR (Lu
et al. 2016), GS (Wei et al. 2012)). For fair comparison, we
use either the implementations with recommended parame-
ter settings or the saliency maps provided by the authors.

Quantitative Evaluation. In order to better demonstrate the
characteristics of our work, we divide state-of-the-art meth-
ods into two groups. Group 1 contains one deep learning
based method BDRS and all conventional methods which
don’t need pixel-level supervision. While Group 2 consists
of 5 deep learning based methods including LRF, UCF ,
RFCN , ELD , MDF which need the supervision of pixel-
level saliency map annotations. As part of the quantitative
evaluation, we first evaluate our method using precision-
recall curves. As shown in Fig. 3, our method significantly
outperforms all unsupervised methods (dashed line) on all
datasets and obtains a competitive ranking among super-
vised methods. Moreover, a quantitative comparison of max-
imum F-measure and MAE is listed in Table. 1. Our pro-
posed SuperVAE method improves the F-measure achieved
by the best-performing existing unsupervised algorithm by
17.5%, 1.03%, 1.73%, 2.73% and 15.8% respectively on
ECSSD, ASD, SEDI1, SED2 and SOD. And at the same
time, it lowers the MAE by 34.39%, 11.69%, 6.92%, 19.2%
and 28.6% respectively on ECSSD, ASD, SED1, SED2
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Figure 3: The PR curves of the proposed algorithm and other state-of-the-art methods.
Supervision Methods ECSSD ASD SEDI1 SED2 SOD
P F; | MAE | F; | MAE | F; | MAE | F; | MAE | F; | MAE
OURS 0.828 | 0.103 | 0.867 0.068 | 0.822 | 0.121 | 0.789 | 0.101 | 0.733 | 0.159
MST (Tu et al. 2016) 0.705 | 0.157 | 0.859 | 0.098 0.808 | 0.130 | 0.768 | 0.125 | 0.633 | 0.223
Unsupervised BDRS (Han et al. 2015) 0.549 | 0.281 | 0.682 | 0.175 | 0.659 | 0.202 | 0.622 | 0.197 | 0.517 | 0.301
p ’ BL (Lu et al. 2017) 0.605 | 0.216 | 0.752 | 0.129 | 0.780 | 0.185 | 0.661 0.181 0.547 | 0.267
MILP (Huang et al. 2017) 0.651 0.177 | 0.844 0.077 | 0.741 0.152 | 0.753 | 0.129 | 0.560 | 0.243
DSR (Lu et al. 2016) 0.644 | 0.171 | 0.828 | 0.080 | 0.731 | 0.158 | 0.715 | 0.140 | 0.551 | 0.234
GBMR (Zhang et al. 2017a) 0.640 | 0.190 | 0.837 | 0.085 | 0.759 | 0.166 | 0.707 | 0.169 | 0.549 | 0.239
GS (Wei et al. 2012) 0.553 | 0.206 | 0.745 | 0.109 | 0.660 | 0.176 | 0.696 | 0.150 | 0.527 | 0.251
LRF (Zhang et al. 2018) 0.880 | 0.054 - — 0.902 | 0.051 | 0.871 | 0.052 | 0.789 | 0.124
Pixel-level UCF (Zhang et al. 2017b) 0.844 | 0.078 - - 0.865 | 0.065 | 0.810 | 0.069 | 0.738 | 0.148
RFCN (Wang et al. 2018) 0.824 | 0.107 | 0.863 | 0.070 | 0.850 | 0.117 | 0.767 | 0.113 | 0.743 | 0.170
Annotations | ELD (Lee, Tai, and Kim 2016) | 0.810 | 0.080 | 0.886 | 0.037 | 0.871 | 0.153 | 0.759 | 0.104 | 0.712 | 0.164
MDF (Li and Yu 2016b) 0.807 | 0.105 - — 0.779 | 0.123 | 0.768 | 0.115 | 0.721 0.192

Table 1: Quantitative comparison with the state-of-the-arts on five famous benchmark datasets. The bold and underlined num-

bers indicate the best and the second best results, respectively.

and SOD. When compared with the supervised methods in
group 2, our method is weaker than LRF and UCF. But it
is noteworthy that as an unsupervised framework we con-
sistently outperform MDF and achieve competitive perfor-
mance comparing with ELD and RFCN .

Qualitative Evaluation. We further provide some typical
saliency maps of different methods to intuitively demon-
strate advantages of the proposed SuperVAE over other
methods, as shown in Figure 4. From these results, we
can observe that our method is more effective to detect
the salient objects accurately, and obtain more clear ob-
ject boundaries for input images. Specifically, most of the
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means corresponding methods are trained on that dataset.

compared methods can not predict the whole objects in the
first two rows images, while our method captures the whole
salient regions by better maintaining the spatial consistency.
For the images in the 3-4 rows, most of the compared meth-
ods wrongly assign high salient scores to background re-
gions, while our method better suppresses the salient score
of background regions and preserve clear object bound-
aries. The image in the last row is challenging with com-
plicated background and a low-contrast salient object, and
our method still accurately detect the salient object with the
effective information in the hidden representations.
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Figure 4: Comparison of typical saliency maps. (a) original image, (m) ground truth mask. Due to the limitation of space, we
don’t show the results of BL. and MILP.

Models ECSSD ASD SEDI SED2 SOD
F; [MAE| F; |MAE| F; [MAE| F; | MAE | F; | MAE
OURS-BS | 0.813 | 0.127 | 0.862 | 0.078 | 0.811 | 0.129 | 0.781 | 0.116 | 0.715 | 0.191
OURS-MF | 0.821 | 0.109 | 0.865 | 0.069 | 0.820 | 0.123 | 0.785 | 0.104 | 0.730 | 0.164
OURS-PL | 0.759 | 0.138 | 0.861 | 0.072 | 0.813 | 0.128 | 0.776 | 0.122 | 0.707 | 0.196
OURS | 0.828 | 0.103 | 0.867 | 0.068 | 0.822 | 0.121 | 0.789 | 0.101 | 0.733 | 0.159

Table 2: The F-measure and MAE of different settings on five salient object detection datasets.

Ablation Analysis MAE) of the proposed framework gets worse more obvi-
ously, demonstrating the significance of the semantic and
spatial contexts information in the hidden representations.
Meanwhile, even only using LY, loss, OUR-PL still outper-
forms all unsupervised methods in group 1, which demon-

strates the effectiveness of our SuperVAE network.

To verify the effectiveness of the key components in pro-
posed model, we perform ablation experiments on the
datasets mentioned above. Specifically, we compared our fi-
nal results(OURS) with the results without background sam-
ples selection (OURS-BS), the results without multi-scale
fusion (OURS-MF), and the results without using perceptual

loss (OURS-PL). In OURS-BS, we train our VAE network Conclusions
directly using the superpixels on the image boundary, with- In this paper, we propose a novel salient object detection
out using the boundary connectivity to eliminate incorrect framework using SuperVAE network. Our method first use
examples. In OURS-MF, we generate the saliency result for SuperVAE to model the image background and then separate
an input image in three different scales individually, and the salient objects from the background through the reconstruc-
results are not fused. The quantitative evaluation results of tion residuals. For training, we also propose a perceptual
OURS-MF are calculated by averaging the quantitative eval- loss to take advantage of deep pre-trained CNNs to better
uation results in three scales. In OUR-PL, we only use the capture semantic and spatial contexts information. As a re-
reconstruction loss in RGB space (L7 to train our Super- sult, our method generates high quality saliency maps which
VAE network without the perceptual loss in hidden represen- can better preserve object boundaries and maintain the spa-
tations and the reconstruction residuals are also calculated tial consistency, without the supervision of mask-level anno-
only in RGB space. tated data. Extensive experiments on five famous benchmark
The experimental results are shown in Table. 2, from datasets show that the proposed method achieves superior or
which we can see that: (1) OUR-BS obtains worse perfor- competitive performance compared to other algorithms in-
mance than our final results, which demonstrates the ef- cluding the very recent state-of-the-art supervised methods.

fectiveness of background samples selection. (2) Without
multi-scale fusion, the average F-measure decrease about

0.036 and MAE increase about 0.04, respectively, which References
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