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Abstract
Recently, some hypergraph-based methods have been pro-
posed to deal with the problem of model fitting in computer
vision, mainly due to the superior capability of hypergraph to
represent the complex relationship between data points. How-
ever, a hypergraph becomes extremely complicated when the
input data include a large number of data points (usually con-
taminated with noises and outliers), which will significantly
increase the computational burden. In order to overcome the
above problem, we propose a novel hypergraph optimization
based model fitting (HOMF) method to construct a simple
but effective hypergraph. Specifically, HOMF includes two
main parts: an adaptive inlier estimation algorithm for ver-
tex optimization and an iterative hyperedge optimization al-
gorithm for hyperedge optimization. The proposed method is
highly efficient, and it can obtain accurate model fitting re-
sults within a few iterations. Moreover, HOMF can then di-
rectly apply spectral clustering, to achieve good fitting per-
formance. Extensive experimental results show that HOMF
outperforms several state-of-the-art model fitting methods on
both synthetic data and real images, especially in sampling
efficiency and in handling data with severe outliers.

Introduction
Robust fitting of geometric structures for multi-structural
data contaminated with a number of outliers is one of the
most important and challenging research tasks for many ap-
plications of computer vision (Fischler and Bolles 1981),
such as 2D line fitting (Li 2009), vanishing point detection
(Tardif 2009), two-view segmentation (Magri and Fusiello
2014) and 3D-motion segmentation (Ochs and Brox 2012).
The task of robust model fitting is to accurately and ef-
ficiently recover meaningful structures from data. How-
ever, data in many applications are often contaminated with
noises and outliers, which makes the problem of model fit-
ting challenging.

In the past few decades, the hypergraph representation has
attracted much attention in many computer vision applica-
tions (Parag and Elgammal 2011; Jain and Govindu 2013;
Huang et al. 2016). A hypergraph modelling is an extended
version of the traditional graph modelling. A graph mod-
elling can be used to describe data through vertices and
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edges (an edge of a graph connects only two vertices), and
a pairwise similarity measure (Saito, Mandic, and Suzuki
2018). Compared with a graph modelling, a hypergraph
modelling can be used to effectively describe complex data
relationship based on hyperedges (each of which may con-
nect more than two vertices). For example, a probabilistic
hypergraph method proposed by Huang et al. (Huang et al.
2010) establishes the relationship between the vertices and
the hyperedge in terms of the local grouping information and
the similarity in a probabilistic way. Generally speaking, the
hypergraph modelling not only inherits the basic properties
of the graph modelling, but also shows superior advantages
over the graph modelling.

Recently, hypergraph analysis has been successfully ap-
plied to robust model fitting and it has achieved promis-
ing performance (Zhou, Huang, and Schölkopf 2007; Agar-
wal et al. 2005). The traditional hypergraph analysis usually
considers the relationship between hyperedges and vertices.
However, since data in practical tasks are often contaminated
with noises and outliers, the traditional hypergraph-based
methods suffer from two issues: 1) the hypergraph construc-
tion becomes quite complex when data points are contami-
nated with many outliers, and 2) a large number of hyper-
edges generating from noisy vertices generally increase the
computational cost. Therefore, it is quite important to opti-
mize hypergraphs to reduce the computational complexity,
which has not been well studied yet.

In this work, we propose a novel hypergraph optimiza-
tion method (i.e., HOMF) for robust model fitting (as shown
in Fig. 1) to overcome the above problems. HOMF can not
only fit multi-structural data contaminated with both noises
and outliers, but also effectively reduce the computational
complexity. The main contributions of this paper are sum-
marized as follows:

• We present an adaptive inlier estimation algorithm (AIE)
based on the weighting scores of data points. As a result,
AIE can effectively distinguish significant data points
(i.e., inliers) from insignificant data points (i.e., outliers).

• We develop an iterative hyperedge optimization algorithm
(IHO) to accelerate the optimization of hyperedges. IHO
can quickly generate the optimized hyperedges with only
a few iterations based on an effective ‘exiting criterion’,
which is satisfied when the samples are selected from the
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Figure 1: The overview of the proposed framework for two-view motion segmentation. (a) The outliers and the inliers are
denoted in the yellow color. (b) Sampling points are marked with the white color. (c), (d) and (f) The sampled points are
denoted in the red color and the other points are denoted in the yellow color. The red curves are denoted as the hyperedges. (e)
Sampling points are marked with the white color and the red points surrounded by the white color means that they are assigned
with a lower sampling probability. (g) The hypergraph with four hyperedges and some vertices. (h) The inliers belonging to
different structures are denoted in the red, green, cyan and blue colors, respectively. The outliers are denoted in the yellow color.

same structure.

• We propose a novel hypergraph optimization method
(HOMF) by taking advantage of IHO and AIE, which can
be used for the guided sampling of different structures.
Therefore, the proposed method is highly efficient and can
efficiently obtain competitive fitting results.

The rest of the paper is organized as follows. Firstly, we
review the related work. Then, we propose an adaptive inlier
estimation algorithm and an iterative hyperedge optimiza-
tion algorithm for hypergraph optimization. Next, we report
the experimental results obtained by our method and by sev-
eral competing methods, on both synthetic data and real im-
ages. Lastly, we draw conclusions.

Related Work
As the proposed method is closely related to scale estima-
tion, guided sampling and hypergraph modelling, in this sec-
tion, we briefly review work related to these.

Robust scale estimation plays a critical role for model
fitting. A number of robust scale estimation methods (e.g.,
(Wang, Chin, and Suter 2012; Litman et al. 2015; Tiwari,
Anand, and Mittal 2016)) have been proposed for the multi-
structural fitting task. Wang et al. (Wang, Chin, and Suter
2012) propose the Iterative K-th Ordered Scale Estimator
(IKOSE), which is one of the popular robust scale estima-
tion methods due to its accuracy and efficiency. However,
in practice, IKOSE is sensitive to the K-th sorted abso-
lute residual. Tiwari et al. (Tiwari, Anand, and Mittal 2016)
present the Density Preference Analysis (DPA) that esti-
mates the scale of inlier noise by using linear extrapola-
tion based residual density profile. But DPA overly relies
on preference analysis, which focuses on the preference of
data points to different models. In this paper, we propose a

novel robust adaptive scale estimator (i.e., AIE). The pro-
posed AIE can efficiently estimate the scale of significant
data points for heavily corrupted multi-structural data. As a
result, the performance of model fitting can be significantly
improved by using AIE.

Guided sampling can accelerate multi-stuctural data
search by utilizing meta-information on the data distribu-
tion (Pham et al. 2014; Tennakoon et al. 2018). The Ran-
dom Cluster Model Simulated Annealing (RCMSA) (Pham
et al. 2014) guides promising hypothesis generation by con-
structing a weighted graph in a simulated annealing frame-
work. However, the disadvantage of RCMSA is that it as-
sumes spatial smoothness of the inliers, which is compu-
tationally expensive and may not apply to particular situa-
tions. The guided sampling method that is most closely re-
lated to ours, cost-based sampling (CBS) (Tennakoon et al.
2018) uses a data sub-sampling strategy to generate the hy-
potheses. Specifically, CBS employs a K-th order statistical
cost function to improve the distribution of hypotheses. That
method, however, relies on prior knowledge and the greedy
algorithm. Unlike these previous works, we use AIE to iden-
tify the insignificant data points (i.e., outliers) for guided
sampling, which is more efficient for rapidly sampling min-
imal subsets for different structures.

Recently, some hypergraph-based methods have been
proposed in computer vision, e.g., (Ochs and Brox 2012;
Wang et al. 2018). For example, Wang et al. (Wang et al.
2018) propose a mode-seeking algorithm for searching the
representative modes on hypergraphs, which is more effec-
tive than the conventional mode-seeking methods for model
fitting. Note that, the proposed method focuses on hyper-
graph optimization, which aims to generate an optimized
hypergraph that is more suitable for spectral clustering. The
hypergraph optimization problem can be treated as the com-
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bination of the vertex labeling problem and the hyperedge
estimation problem. However, it is challenging to solve both
problems simultaneously. In this paper, we solve the hyper-
graph optimization through an iterative updating strategy, by
which the hypergraph can be optimized step by step dur-
ing the iterative process. Then, spectral clustering is used
for partitioning the optimized hypergraph after hypergraph
optimization.

Methodology
In this section, we describe the proposed HOMF, which
takes advantage of an adaptive inlier estimation algorithm
(AIE) and an iterative hyperedge optimization algorithm
(IHO), for the geometric model fitting problem. Specifically,
we first develop AIE to select the significant data points (i.e.,
inliers). Then we propose IHO for accelerating the optimiza-
tion of initial hyperedges. Lastly, we present the complete
HOMF method.

Adaptive Inlier Estimation
The inlier scale estimation plays a critical role in the hyper-
graph optimization. However, most of the scale estimators
need to manually choose a threshold for determining the
number of model instances (Wang, Chin, and Suter 2012).
To address the above problem, we propose AIE to adap-
tively estimate the inlier noise scale. Specifically, AIE re-
fines IKOSE (Wang, Chin, and Suter 2012) and kernel den-
sity estimation (KDE) (Silverman 1986) to compute the
weighting score of each data point xi for a generated model
hypothesis h using the following equation:

ωi =
1

nb

[
EK

(
rhi /b

)]
(1)

where EK(·) is the popular Epanechnikov kernel function
(Wand 1995); rh = {rhi }ni=1 is the residual set between each
data point xi and the model hypothesis h; n is the number
of data points. b is a bandwidth defined as follows (Wand
1995):

b =

[
7
∫ 1

−1
EK

(
rh
)2
dr

n
∫ 1

−1
(rh)2EK (rh) dr

]0.2
(2)

Inspired by (Sezgin and others 2004; Ferraz et al. 2007),
we select significant data points by using a simple but ef-
fective data driven thresholding technique. Given a set of
data points X = {x1, x2, ..., xn} and the corresponding
squared weighting scores w2 = {ω2

1 , ω
2
2 , ..., ω

2
n}, we define

ξi = max{w2} − ω2
i , which denotes the gap between the

squared weighting score of data points X and the squared
weighting score of the data point xi for the given model hy-
pothesis h. Note that the logarithm is not meaningful when
the gap ξi is a negative value. The prior probability p(ξi) can
be computed as p(ξi) = ξi

/∑n
j=1 ξj .

The entropy of the prior probability for all data points can
be computed as follows:

Π = −
n∑
i=1

p(ξi) log p(ξi) (3)

Algorithm 1: The adaptive inlier estimation (AIE)

Input: The residuals (to a hypothesis) rh and the
number of data points n.

Output: The significant data points ϑ∗.
1 Compute the bandwidth b of the kernel density function

by Eq. (2).
2 Estimate the weighting score for each data point by Eq.

(1).
3 Calculate the entropy Π based on the set of the

weighting scores by Eq. (3).
4 Select the significant data points (i.e., inliers) ϑ∗ by Eq.

(4).

The entropy is chosen as the threshold to distinguish the
significant data points from the insignificant data points, as
follows:

ϑ∗ =

{
xi

∣∣∣∣− log p(ξi) > Π

}
(4)

Here, we use information theory (Wang, Chin, and Suter
2012) in Eq. (4) to select the significant data points and
reject the other insignificant data points. It is worth point-
ing out that the difference between (Wang, Chin, and Suter
2012) and the proposed is that AIE can adaptively choose
the number of significant data points independent of the K-
th sorted absolute residual.

Hypergraph Optimization for Model Fitting
In this paper, a hypergraph is defined as G = (V, E ,W),
which includes the vertex set V = {v1, v2, ..., vn}, the hy-
peredge set E = {e1, e2, ..., em}, and the weight set W =
{ω1, ω2, ..., ωn}, where n and m are respectively the num-
ber of vertices and the number of the hyperedges. Each ver-
tex is assigned a weighting score ωi (see Sec. Adaptive Inlier

Algorithm 2: The iterative hyperedge optimization
(IHO)

Input: The initial hyperedge E(e), the vertices
V = {vi}ni=1, the minimum tolerable size q, the
higher than minimal subset l and the number of
iterations Tmax.

Output: The optimized hyperedge Ê(et).
1 for t=1 to Tmax do
2 Calculate the residual rh between the hyperedge

and the vertices.
3 Estimate the weighting score ω of each element in

rh by Eq. (1) to obtain the weighting score set wt.
4 Sort wt in the ascending order to obtain the

permutation w̃t.
5 Generate a new hyperedge Ê(et) by refitting the

vertices corresponding to the [w̃t]
q
q−l.

6 Evaluate Qe in Eq. (6).
7 if Qe == 1 then break;
8 end
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Estimation). The hypergraph modelling G is an extension of
an ordinary graph modelling, where the hyperedge e might
connect more than two vertices, to also include weights.

In our hypergraph construction, each vertex is defined as
a data point and each hyperedge corresponds to a model hy-
pothesis. We construct the hyperedge of hypergraph based
on the higher than minimal subset sampling (HMSS) algo-
rithm due to its good accuracy and efficiency, which has
been demonstrated in (Tennakoon et al. 2016).

Similar to (Govindu 2005; Ochs and Brox 2012; Ten-
nakoon et al. 2018), in order to make the hypergraph opti-
mization tractable, we decompose the hypergraph by mul-
tiplying the pairwise affinity matrix H with its transpose.
Each column of the affinity matrix H, which is obtained by
encoding more than two vertices as a subset, corresponds to
the hyperedge. The affinity matrix H characterizes the rela-
tionships between hyperedges E and vertices V . Specifically,
the simple version of the hypergraph G∗ is represented as
follows:

G∗ = HHT =
m∑
i

[
exp−

wi
2σ2

][
exp−

wi
2σ2

]T
(5)

where exp(·) is the exponential map. wi is the set of weight-
ing scores, which is computed by Eq. (1) between the hy-
peredge ei and vertices V . σ is a normalization constant. [·]T
is the transpose of [·]. m is the number of hyperedges. The
hypergraphG∗ contains many redundant vertices and hyper-
edges, which will lead to the high computational complexity.
Thus, it needs to be optimized step by step during the sub-
sequent iterative updating process (see Alg. 2). The detail of
the hypergraph optimization is given as follows:

Firstly, we generate a new model hypothesis using the ran-
dom sampling with HMSS (Tennakoon et al. 2016) to add an
initial hyperedge in the hypergraph.

Then, we estimate the set of weighting scores wi that will
be sorted as an ordered weighting scores permutation w̃i.

Thirdly, we adopt an iterative algorithm to effectively and
efficiently optimize the hypergraph. Similar to (Tennakoon
et al. 2016), we determine whether the hypergraph construc-
tion process converges based on the last three iterations.
However, the difference between the proposed method and
(Tennakoon et al. 2016) is that we use the weighting scores
of the vertices as condition for the ‘exiting criterion’, whose
advantage is that it can reduce the sensitivity to residuals. In
contrast, (Tennakoon et al. 2016) uses the residual of data
points as conditions. Specifically, the ‘exiting criterion’ Qe
is formulated as follows:

Qe =

(
ω2
q,t<

q∑
j=q−l

ω2
j,t−1

)
∧
(
ω2
q,t<

q∑
j=q−l

ω2
j,t−2

)
(6)

where l and q are respectively the higher than minimal sub-
set (i.e., the minimal subset p+2) and the minimum tolerable
size of the same structure (q � l, in our experiment, we set
the q to be 0.1×n). t denotes the number of current iteration.
ωq,t is the weighting score in current iteration t with respect
to the minimum tolerable size q. The results obtained from
the last three iterations (i.e., t, t − 1 and t − 2 iterations)
are more likely to belong to the same structure (Tennakoon

Algorithm 3: The hypergraph optimization based model
fitting (HOMF) method

Input: A set of data points X = {xi}ni=1, the number
of model hypothesis m and the number of
structures c.

Output: The model instances and the hyperedges.
1 Initialize the sampling probability P = {ρi}ni=1 of all

data points to 1.
2 Generate a model hypothesis h by random sampling.
3 Construct a hypergraph G∗ based on the generated

model hypothesis h.
4 for j=1 to m do
5 if j >1 then
6 Generate a new model hypothesis hj according

to the sampling probability P and add a
hyperedge E(ej) according to hj in G∗.

7 end
8 Generate an optimized hyperedge Ê(ej) by Alg. 2.
9 Calculate the residual rhj between the vertices and

optimized hyperedge Ê(ej).
10 Optimize the vertices connected to the optimized

hyperedge Ê(ej) using AIE by Alg. 1.
11 Update the sampling probability of the vertices P .
12 end
13 Segment the hypergraph by spectral clustering to obtain

the model instances and the hyperedges.

et al. 2016). The above steps can quickly generate the op-
timized hyperedge but cannot effectively remove some re-
dundant vertices (i.e., insignificant data points), which will
affect the following sampling procedure (guided sampling).
Hence, we use AIE (see Sec. Adaptive Inlier Estimation) for
estimating the vertices (corresponding to the significant data
points) of optimized hyperedge to solve this problem.

After that, the weighting scores of vertices correspond-
ing to the significant data points are selected to optimize the
affinity matrix H and the vertices corresponding to the in-
significant data points are assigned a higher sampling prob-
ability. Specifically, the sampling probability of the signifi-
cant vertices is gradually increased about 2-10 times, while
the sampling probability of the other vertices is gradually
reduced about 2-10 times during each update process.

Finally, these vertices (corresponding to the insignificant
data points) will guide the following sampling procedure,
which will focus on sampling for different structures. This
way can effectively improve the contribution of vertices cor-
responding to the insignificant data points for hypergraph
optimization.

After the hypergraph optimization, the vertices of each
hyperedge can be extracted as the optimized column of the
affinity matrix H, so that we only need to deal with a small
hypergraph. At the same time, it allows us to directly ap-
ply the spectral clustering-based algorithm to obtain the final
segmentation results.
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The Complete Method
In the previous subsections, we gave all the components of
the proposed HOMF method. Now we describe the complete
algorithm in Alg. 3. Firstly, random sampling is used for
generating an initial hypergraph. Then, IHO is employed to
accelerate the optimization of hyperedges. The vertices (cor-
responding to the significant data points) of the optimized
hyperedges are then estimated using AIE. Secondly, we as-
sign a lower sampling probability for each vertex (corre-
sponding to the significant data point) and a higher sampling
probability for other vertices (corresponding to the insignif-
icant data points). In this way, the vertices corresponding to
the significant data points can be selected to reduce the com-
putational complexity and the vertices corresponding to the
insignificant data points can be used for guided sampling,
which in turn enhances hypergraph construction. This opti-
mization process is performed iteratively until the ‘exiting
criterion’ is reached (or the fixed number of iterations is
reached). Fortunately, the ‘exiting criterion’ causes the pro-
posed method only perform only a few iterations. Lastly,
spectral clustering is applied to obtain the model instances
and the hyperedges.

Experiments
In this section, we firstly evaluate the performance on syn-
thetic data of AIE compared several robust scale estimation
methods including the median (MED), the median abso-
lute deviation (MAD), KOSE (Lee, Meer, and Park 1998),
IKOSE (Wang, Chin, and Suter 2012), AIKOSE (Wang,
Cai, and Tang 2013) and DPA (Tiwari, Anand, and Mit-
tal 2016). Then we compare the performance on real im-
ages of proposed HOMF with several state-of-the-art model
fitting methods including CBS (Tennakoon et al. 2018),
MSHF (Wang et al. 2018), RPA (Magri and Fusiello 2015),
RCMSA (Pham et al. 2014) and UHG (Lai et al. 2017). All
experimental results are obtained by running 50 times.

Experiments on Scale Estimation (Synthetic Data)
The experiments undertaken in this section are described
as follows. Two intersecting lines are generated lying on a
plane that contains a total number of 2000 data points. The
number of the data points of the left line is decreased from
1900 to 100, which means that the outlier ratio is gradually
increased from 5% to 95%. Meanwhile, the right line is hold
fixed at 100 data points. We report the standard variances,
the mean scale estimation errors, the median scale estima-
tion errors and the maximum scale estimation errors in Ta-
ble 1. We then respectively display the data points with the
outlier percentages on 50% and 95% in Fig. 2 (a) and 2 (b),
and the mean and maximum errors in Fig. 2 (d) and 2 (e).
Similar to (Wang, Chin, and Suter 2012), we use Eq. (7) to
compute the scale of inlier noise.

sh = |r̃κ|
/

Φ−1

(
1 + κ/ñ

2

)
(7)

where ñ is the number of significant data points ϑ∗, which
are selected according to the entropy. Then, the scale esti-
mation is measured through the following (Wang, Chin, and

(a) Two intersecting lines
data with 50% outliers

(b) Two intersecting lines
data with 95% outliers

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Outlier percentage (%)

-5

0

5

10

15

20

25

30

35

40

45

50

55

M
e

a
n

 s
c
a

le
 e

s
ti
m

a
ti
o

n
 e

rr
o

r 
(%

) MED

MAD

KOSE

IKOSE

AIKOSE

DPA

OURS

(c) The mean errors in scale
estimation

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Outlier percentage (%)

0

2

4

6

8

10

12

14

16

18

20

M
a

x
im

u
m

 s
c
a

le
 e

s
ti
m

a
ti
o

n
 e

rr
o

r 
(%

)

MED

MAD

KOSE

IKOSE

AIKOSE

DPA

OURS

(d) The maximum errors in
scale estimation

Figure 2: Comparisons of the performance obtained by
seven methods for scale estimation on synthetic data with
5%-95% outliers. (a) and (b) are respectively the data points
with the outlier percentages on 50% and 95%. (c) and (d)
display the mean and maximum errors among the scale esti-
mation, which are obtained from all the competing methods.

Table 1: Quantitative evaluation of the seven inlier scale es-
timation methods on synthetic data (the best results are bold-
faced).

MED MAD KOSE IKOSE AIKOSE DPA OURS

Std. 16.43 12.01 4.26 1.03 1.48 6.26 0.40
Mean 12.13 10.19 2.04 0.74 0.68 2.59 0.32
Med. 0.83 2.04 0.59 0.44 0.19 0.74 0.16
Max. 54.02 35.04 18.40 4.84 6.32 28.05 1.59

Suter 2012):

Λ(se, st) = max
(se
st
,
st
se

)
− 1 (8)

where st is the true scale, and se is the estimated scale. As
displayed in Table 1 and Fig. 2, all the scale estimation meth-
ods can work well when the outlier ratio is less than 50%.
However, MED and MAD fail to estimate the scales when
the outlier ratio is larger than 50%. The error of KOSE be-
gins to increase when the outlier ratio is larger than 65%,
but is still better than MED and MAD. KOSE and DPA be-
come gradually worse when the outlier ratio is larger than
75%. IKOSE and AIKOSE can also achieve better results
than other methods when the outlier ratio is larger than 90%.
Among all the competing methods, the proposed method is
able to achieve the best results, since it can adaptively esti-
mate the inlier scale.

Experiments on Segmentation (Real Images)
In this section, we evaluate the performance of the six state-
of-the-art model fitting methods on 16 representative im-
age pairs with ‘single-structure’ and ‘multiple-structural’
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(a) Biscuitbookbox (b) Breadcartoychips (c) Breadcubechips

(d) Cubechips (e) Cubetoy (f) Cube

Figure 3: Some results obtained by the proposed method on
six image pairs for two-view motion segmentation (only one
view is shown).

data from the AdelaideRMF datasets (Wong et al. 2011) for
two-view motion segmentation and multi-homography seg-
mentation, respectively. Then, the average misclassification
rates and the CPU time (including sampling and fitting) are
both reported in Table 2 and Table 3 for the two tasks, re-
spectively. The misclassification rate is adopted to measure
the performance of these methods. It is defined as (Mittal,
Anand, and Meer 2012):

error =
number of misclassified points

total number of points
× 100%. (9)

The sampling frequency has a significant influence on
sampling time. More sampled minimal subsets can usually
achieve better segmentation results. In fairness to the best
accuracy of all the competing methods in our experiment,
we also analyze the influence of sampling frequency on the
six methods, where the number of minimal subsets is grad-
ually increased from 100 to 20000 times on both fundamen-
tal matrix estimation and homography estimation. We repeat
the experiments 50 times and show the mean results in Fig.
4. Note that RPA fails to obtain the fitting results on a num-
ber of image pairs, when the sampling frequency is 100 and
500 times. Therefore, the results on these two sampling fre-
quencies are not given. As shown in Fig. 4, the experimen-
tal results show that CBS, MSHF, RPA, RCMSA and UHG
achieve the minimum average misclassification rates at 500,
20000, 5000, 10000 and 1000 times, respectively, and these
values will be used in all experiments. The proposed method
obtains the stable average misclassification rates due to the
IHO, the AIE and the guided sampling. Therefore, we fix the
sampling frequency to 200 times for the proposed method in
the experiments.

Two-view Motion Segmentation In this section, we eval-
uate the partitioning capability of the six competing methods
to identify two-view motion segmentation. From the data
reported in Table 2 and Fig. 3 (except for Cubebreadtoy-
chips and Game due to the space limit), we can see that
our method achieves the fastest running time (in seconds)

http://cs.adelaide.edu.au/hwong/doku.php?id=data
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Figure 4: The average results are obtained by the six meth-
ods on a different number of sampled minimal subsets from
the AdelaideRMF datasets.

among all the competing methods. Although the segmenta-
tion accuracy of HOMF is slightly lower than CBS, it has
significantly improved computational speed over CBS for
all the representative image pairs. CBS achieves the low-
est average misclassification rates due to the kth-order cost
function and the greedy algorithm. RPA achieves the third
lowest average misclassification rates, however it takes more
time to sample the minimal subset than other methods. UHG

Table 2: Misclassification rates (in percentage) and the CPU
time (in seconds) for two-view motion segmentation on six
methods (the best results are boldfaced).

Data M1 M2 M3 M4 M5 M6

Std. 0.37 0.97 1.72 1.14 1.51 2.65
Mean 0.39 3.51 4.53 4.96 5.14 5.18
Med. 0.39 3.68 4.26 4.84 5.02 4.63Biscuitbookbox

Time 3.90 26.64 122.56 105.76 10.16 2.66
Std. 4.83 1.28 0.69 1.90 5.52 2.83
Mean 5.76 27.84 8.70 9.18 10.76 6.09
Med. 3.68 28.14 8.66 9.31 8.02 5.70Breadcartoychips

Time 3.36 28.79 115.47 93.88 9.19 2.73
Std. 1.16 1.92 2.84 4.47 7.80 3.99
Mean 2.48 5.04 5.57 10.87 9.04 4.50
Med. 2.39 5.65 6.09 9.13 4.35 4.87Breadcubechips

Time 3.61 24.77 108.55 91.90 8.99 1.82
Std. 0.11 0.84 0.56 3.65 0.65 0.33
Mean 0.71 2.64 2.92 5.52 3.28 1.01
Med. 0.68 2.37 3.05 5.19 3.31 0.99Cube

Time 12.87 30.57 129.35 177.21 11.92 3.20
Std. 0.94 0.68 1.18 5.75 6.90 0.86
Mean 1.94 15.00 5.38 12.52 19.08 1.49
Med. 1.59 15.13 5.41 11.31 14.98 1.53Cubebreadtoychips

Time 4.21 28.66 169.13 138.08 12.63 3.85
Std. 1.81 1.44 1.08 6.20 4.40 0.38
Mean 2.17 3.79 4.30 7.40 6.69 0.25
Med. 1.26 3.61 4.15 5.05 5.11 0.00Cubechips

Time 6.05 33.16 134.04 117.55 11.15 3.22
Std. 0.81 2.33 0.71 2.17 1.10 1.64
Mean 1.13 5.86 3.64 6.40 4.54 1.90
Med. 1.05 5.44 3.56 6.90 5.02 1.61Cubetoy

Time 4.96 31.79 97.72 96.01 9.56 2.92
Std. 0.21 1.88 1.01 5.71 0.76 0.60
Mean 0.13 2.70 3.30 8.87 3.43 0.56
Med. 0.00 2.61 3.04 5.43 3.43 0.43Game

Time 9.02 22.34 100.70 153.58 9.05 2.24

Std. 1.28 1.42 1.22 3.87 3.58 1.66
Mean 1.84 8.30 4.79 8.21 7.75 2.62
Med. 1.38 8.33 4.78 7.15 6.15 2.47Average

Time 6.00 28.34 122.19 121.75 10.33 2.83

(M1-CBS; M2-MSHF; M3-RPA; M4-RCMSA; M5-UHG; M6-HOMF.)
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achieves relatively good performance due to the promis-
ing hypothesis generation which is effectively accelerated.
RCMSA and MSHF obtain similar average misclassification
rates, but MSHF runs much faster than RCMSA. This is be-
cause that RCMSA employs a simulated annealing frame-
work, which is time-consuming. In contrast, our method
achieves good average misclassification rates (only slightly
worse than CBS) with low computational cost. Therefore,
our method achieves good tradeoff between the segmenta-
tion performance and running time.

Multi-homography Segmentation In this section, we
also evaluate the performance of the six competing meth-
ods for multi-homography segmentation. From the data re-
ported in Table 3 and Fig. 5 (omitting Oldclassicswing
and Unionhouse due to the space limit), we can see that
our method can more efficiently recover the real plane
structure on multi-homography segmentation. Our method
achieves superior speed (in seconds) over the other com-
peting methods, although the average misclassification rates
are higher than MSHF and RCMSA. This is because that
the lower number of sampled minimal subsets leads to fail-
ure of multi-structural data with high complexity (e.g., Fig.
5 (c)). MSHF achieves the lowest average misclassification

Table 3: Misclassification rates (in percentage) and the CPU
time (in seconds) for multi-homography segmentation on six
methods (the best results are boldfaced).

Data M1 M2 M3 M4 M5 M6

Std. 0.18 1.40 5.70 1.35 0.24 0.14
Mean 0.08 1.39 4.09 2.64 2.37 0.05
Med. 0.00 1.36 2.07 2.59 2.53 0.00Bonython

Time 4.75 11.93 103.61 156.50 28.46 1.29
Std. 0.00 1.12 0.00 6.20 6.43 0.07
Mean 0.47 1.97 1.40 8.21 15.14 0.93
Med. 0.47 2.15 1.40 6.07 14.25 0.93Elderhalla

Time 4.24 14.74 128.02 113.89 28.86 1.27
Std. 2.03 1.77 4.08 6.32 0.54 1.63
Mean 12.72 4.42 12.07 7.17 3.40 11.94
Med. 13.17 4.25 11.05 5.67 3.22 12.33Johnsona

Time 4.30 27.25 240.34 165.64 34.13 1.71
Std. 16.97 5.00 0.90 1.74 0.85 13.49
Mean 24.17 3.70 7.13 7.48 7.59 16.38
Med. 26.74 1.96 7.17 7.39 7.47 5.60Neem

Time 4.07 21.12 150.43 91.85 29.60 1.32
Std. 0.35 3.77 0.46 0.00 2.17 0.50
Mean 0.62 2.70 2.12 0.83 2.60 0.46
Med. 0.41 0.62 2.07 0.83 1.97 0.39Nese

Time 4.12 22.88 136.90 98.37 29.67 1.29
Std. 0.49 0.53 0.23 0.00 0.22 10.71
Mean 3.97 1.13 2.67 0.55 19.13 10.12
Med. 3.99 1.24 2.75 0.55 19.00 2.90Oldclassicswing

Time 4.61 43.93 228.49 178.88 32.60 1.76
Std. 0.40 0.61 0.18 0.00 7.51 0.46
Mean 0.85 0.97 2.20 1.27 5.16 0.42
Med. 0.85 0.80 2.12 1.27 1.60 0.80Sene

Time 4.09 20.48 150.17 100.57 29.05 1.31
Std. 0.16 0.20 0.17 0.40 0.10 1.50
Mean 0.87 0.38 1.61 1.68 1.54 1.30
Med. 0.93 0.31 1.56 1.56 1.51 0.40Unionhouse

Time 7.45 20.40 199.34 299.50 33.20 1.55

Std. 2.57 1.80 1.46 2.00 2.26 3.56
Mean 5.47 2.08 4.16 3.73 7.12 5.20
Med. 5.82 1.59 3.78 3.24 6.44 2.92Average

Time 4.70 22.84 167.16 150.65 30.70 1.44

(M1-CBS; M2-MSHF; M3-RPA; M4-RCMSA; M5-UHG; M6-HOMF.)

(a) Bonython (b) Elderhalla (c) Johnsona

(d) Neem (e) Nese (f) Sene

Figure 5: Some results obtained by the proposed method on
six image pairs for multi-homography segmentation (only
one view is shown).

rate (in percentage) among all the competing methods be-
cause of the effectiveness of the constructed hypergraph.
However, the running time of MSHF is slower than our
method. Both RCMSA and RPA achieve similar results in
accuracy and performance, but obtain slow speeds due to
the time-consuming sampling process. CBS fails in the im-
age pairs due to the loss of useful information during the
data sub-sampling strategy. UHG does not achieve reliable
fitting performance since it selects the model instance by
using T-Linkage (Magri and Fusiello 2014). Nevertheless,
the experimental results show that HOMF performs faster
than the other five competing methods in practice, includ-
ing sampling and fitting time. Experimental results show that
our method can segment multi-structural data with outliers
quickly and efficiently.

Conclusion
In this paper, we have developed a novel hypergraph opti-
mization based model fitting (HOMF) method, which aims
to rapidly fit multi-structural data contaminated with a large
number of noise and outlier data points. We construct a sim-
ple but effective hypergrah based on the generated model
hypotheses. In the constructed hypergraph, each vertex rep-
resents a data point and each hyperedge denotes a model hy-
pothesis. To optimize the hypergraph, we develop the AIE
scale estimator and the IHO hyperedge optimization algo-
rithm for optimizing the hypergraph. In particular, we effi-
ciently generate an optimized hyperedge by IHO, and then
employ AIE to distinguish significant vertices from insignif-
icant vertices. The significant vertices are used to construct
the optimized hypergraph for reducing the computational
complexity, and the insignificant vertices are used to guide
the following sampling for different structures. Based on
the constructed hypergraph, the hyperedges and the vertices
can be effectively optimized during each iteration. The two
parts are tightly coupled to optimize the hypergraph for both
computational efficiency and accuracy. The experimental re-
sults on synthetic data and real images have shown that the
proposed HOMF method can obtain better performance and
much faster than the other competing methods.
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