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Abstract

In person re-identification (ReID) task, because of its short-
age of trainable dataset, it is common to utilize fine-tuning
method using a classification network pre-trained on a large
dataset. However, it is relatively difficult to sufficiently fine-
tune the low-level layers of the network due to the gradi-
ent vanishing problem. In this work, we propose a novel
fine-tuning strategy that allows low-level layers to be suf-
ficiently trained by rolling back the weights of high-level
layers to their initial pre-trained weights. Our strategy alle-
viates the problem of gradient vanishing in low-level lay-
ers and robustly trains the low-level layers to fit the ReID
dataset, thereby increasing the performance of ReID tasks.
The improved performance of the proposed strategy is vali-
dated via several experiments. Furthermore, without any add-
ons such as pose estimation or segmentation, our strategy
exhibits state-of-the-art performance using only vanilla deep
convolutional neural network architecture.

Introduction
Person re-identification (ReID) refers to the tasks connect-
ing the same person, for instance, a pedestrian, among mul-
tiple people detected in non-overlapping camera views. Dif-
ferent camera views capture pedestrians in various poses
with different backgrounds, which interferes with the ability
to correctly estimate the similarity among pedestrian can-
didates. These obstacles makes it difficult to recognize the
identities of numerous pedestrians robustly by comparing
them with a limited number of person images with known
identities. Furthermore, it is infeasible to obtain large train-
ing datasets sufficient to cover the appearance variation of
pedestrians, making the ReID problem difficult to be solved.
When sufficient training data is not available, it is a com-
mon approach to fine-tune the network pre-trained by an-
other large dataset (e.g., ImageNet) which contains abun-
dant information. The fine-tuning approach results in bet-
ter performance than the approaches in which networks are
trained from randomly initialized parameters. This is a prac-
tical approach used in many research areas (Ren et al. 2015;
Long, Shelhamer, and Darrell 2015) to avoid the problem of
overfitting. Likewise, the previous ReID algorithms (Chang,
Hospedales, and Xiang 2018; Si et al. 2018; Sun et al. 2017)
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Figure 1: Training loss and mAP graph changed by introduc-
ing our learning strategy. ‘base’ means that the network is
trained by basic strategy. In our method, the training loss es-
capes from local minimum and the mAP accuracy increases
by utilizing the rolling-back scheme.

have utilized the fine-tuning approach. Most of recent works
in ReID research have attempted to utilize semantic infor-
mation such as pose estimation (Zhao et al. 2017; Xu et al.
2018; Sarfraz et al. 2018), segmentation mask (Song et al.
2018), and semantic parsing (Kalayeh et al. 2018) to im-
prove the accuracy of ReID by considering the additional
pedestrian contexts.

In contrast to the previous studies, we are interested in
incrementally improving the performance of ReID by en-
hancing the basic fine-tuning strategy applied to the pre-
trained network. A few attempts have been made to improve
learning methods by the ways designing a new loss func-
tion or augmenting data in a novel way (Zhang et al. 2017;
Chen et al. 2017; Zhong et al. 2017b; Sun et al. 2017). How-
ever, there has been no research on improving the learning
method to consider the characteristics of each layer filter.

Before suggesting our novel fine-tuning strategy for
ReID, we first empirically analyze the importance of fine-
tuning low-level layers for ReID problems. According to
related research (Zeiler and Fergus 2014; Mahendran and
Vedaldi 2015), the low-level layers concentrate on details of
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appearance to discriminate between samples while the high-
level layers contain semantic information. Thus, we need
to sufficiently fine-tune the low-level layers to improve the
discriminant power for the specific class ‘person’ in ReID
because the low-level layers of the pre-trained network in-
clude detailed information on numerous classes. However,
since the gradients delivered from high-level layers to low-
level layers are reduced through back-propagation, the low-
level layers suffer from a gradient-vanishing problem, which
causes early convergence of the entire network before the
low-level layers are trained sufficiently.

To solve this problem, we propose a novel fine-tuning
strategy in which a part of the network is intentionally
perturbed when learning slows down. The proposed fine-
tuning strategy can recover the vanished gradients by rolling
back the weights in the high-level layers to their pre-trained
weights, which provides an opportunity for further tuning
of weights in the low-level layers. As shown in Figure 1,
the proposed fine-tuning strategy allows the network to con-
verge to a minimum in a basin with better generalization
performance than the conventional fine-tuning method. We
validate the proposed method that uses no add-on schemes
via a number of experiments, and the method outperforms
state-of-the-art ReID methods appending additional context
to the basic network architecture. Furthermore, we apply the
proposed learning strategy to the fine-grained classification
problem, which validates its generality for various computer
vision tasks.

Related Work
Traditionally, the ReID problem has been solved by using a
metric learning method (Koestinger et al. 2012) to narrow
the distance among the images of the same person. Cloth-
ing provides an important hint in the ReID task, and some
approaches (Pedagadi et al. 2013; Kuo, Khamis, and Shet
2013) have used color-based histograms. With the develop-
ment of deep learning, many ReID methods to learn dis-
criminative features by deep architectures appear, which dra-
matically increases the ReID performance (Sun et al. 2017;
Li, Zhu, and Gong 2018; Hermans, Beyer, and Leibe 2017).
Recently, the state-of-the-art approaches (Si et al. 2018;
Song et al. 2018; Zhong et al. 2018) have also used the
advanced deep architecture, especially pre-trained on Ima-
geNet (Deng et al. 2009), as a backbone network.

Add-on semantic information method in ReID To in-
crease the performance, many recent works based on the
deep architectures have tried to consider additional seman-
tic information such as poses of pedestrians and attention
masks. One of the most popular approaches is to use the
off-the-shelf pose estimation algorithms (Cao et al. 2017;
Insafutdinov et al. ) to tackle the misaligned poses of the
candidate pedestrians. In (Su et al. 2017), using the pose in-
formation, Su et al aligned each part of a person, producing
pose-normalized input to deal with the problem of the de-
formable variation of the ReID object. Sarfraz et al. (Sarfraz
et al. 2018) proposed a view predictor network that distin-
guishes the front, back, and sides of a person using pose
information. In addition to using the pose estimation algo-
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Figure 2: The description of the network: ResNet-34,
ResNet-50 and ResNet-101 are utilized as a feature extrac-
tor. The classifiers are re-defined for each ReID dataset.

rithms, there was a method (Song et al. 2018) which embeds
a 4-channel input by concatenating 3-channels of RGB input
image and one channel of segmentation mask. Likewise, an
algorithm (Kalayeh et al. 2018) uses semantic parsing masks
rather than whole body mask. In (Qian et al. 2018), they
generate a realistic pose-normalized image. The synthesized
image can be used as training data because the label is pre-
served. (Xu et al. 2018) proposed attention-aware compo-
sition network. They pointed out the conventional methods
using pose information based on rigid body regions such as
rectangular RoI. They obtained non-rigid parts through con-
nectivity information between the human joints and matched
them individually. In contrast to the previous ReID methods,
we target on improving the training method itself without
any additional semantic information or extra architecture.

Advanced fine-tuning methods There are other studies
to improve learning methods on pre-trained networks. Li
and Hoiem (Li and Hoiem 2017) suggested a method which
can learn a new task without forgetting the existing tasks in
transfer learning. In (Kornblith, Shlens, and Le 2018), Ko-
rnblith et al. analyzed a conventional fine-tuning method,
which concluded that the state-of-the-art ImageNet archi-
tecture yields state-of-the-art results over many tasks. In the
ReID task, several methods have improved learning strategy
on pre-trained networks. The quadruplet loss was proposed
in (Chen et al. 2017). In this research, Chen et al. have de-
veloped an improved version of triplet losses, which does
not only make the inter-class close but also add a negative
sample, making the distance in the intra-class much longer.
In (Zhang et al. 2017), Zhang et al were inspired by the
distillation method (Hinton, Vinyals, and Dean 2015) be-
tween teacher and student networks and proposed a learn-
ing method based on co-student networks which can be
trained without teacher network. However, there has been no
research considering the fine-tuning characteristics for the
ReID problem. In this paper, we propose a novel fine-tuning
strategy adapted to the ReID task, which takes into account
the layer-by-layer characteristic of the network.

Methodology
In this section, we first analyze the conventional fine-tuning
strategy to determine which layer is insufficiently trained for
ReID problems. Based on the analysis, we propose a new
fine-tuning strategy that alleviates the vanishing gradient in
the poorly trained layers, consequently improving the gen-
eralization performance of the fine-tuned network.
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Overall framework
Before describing the empirical analysis and the proposed
fine-tuning strategy, we first introduce an overall framework
including a network architecture with its training and testing
processes. The notations defined in this section are used in
the following sections.

Architecture In this paper, we use a classification-based
network (Zheng, Yang, and Hauptmann 2016) that deter-
mines the entire identity label as a class. We assume that
the deep convolutional neural network consists of two com-
ponents: a feature extractor and a classifier. The feature ex-
tractor is composed of multiple convolutional layers and the
classifier consists of several fully-connected (FC) layers. As
the feature extractor, we utilize convolutional layers of pre-
trained ResNet (He et al. 2016), which are widely used in
many ReID algorithms (Sun et al. 2017; Zhong et al. 2018;
Qian et al. 2018). The three structures ResNet-34, ResNet-
50, and ResNet-101 are used for the feature extractor to
show the generality of the proposed fine-tuning strategy.
According to the resolution of the convolutional layers,
the feature extractor can be partitioned into five blocks
where each block contains several convolutional layers of
the same resolution. The five blocks of ResNet-34, ResNet-
50, and ResNet-101 contain {1, 6, 8, 12, 6}, {1, 9, 12, 18, 9},
and {1, 9, 12, 69, 9} convolutional layers, respectively. Fol-
lowing feature extraction, a feature vector is obtained by a
global average pooling layer that averages the channel-wise
values of the feature map resulting from the last convolu-
tional layer. The resulting feature vector is a 2048-D vec-
tor for ResNet-50 and ResNet-101 and a 512-D vector for
ResNet-34. The network infers the identity of the input sam-
ple by feeding the feature vector obtained from the feature
extractor into the classifier. The classifier is newly defined
in the order of 512-D FC layer, batch normalization, leaky-
rectified linear unit, and FC layer with L-dimension, where
L is the number of identities in the training set and varies be-
tween datasets. Following the last FC layer, a soft-max layer
is located.

Training process We train the network to classify the
identities of training samples based on cross-entropy loss.
The weight parameters to be trained are denoted by θ ≡
{θ1, ..., θN , θFC}, where θn and θFC are weight parameters
of n-th block and FC layers, respectively. Given N train-
ing samples {xi}Ni=1 with L identities and the corresponding
one-hot vectors {yi}Ni=1 where yi ∈ {0, 1}L×1, the proba-
bility that xi corresponds to each label is calculated as:

p(xi|θ) = C(F(xi|θ1, ., θN )|θFC), (1)

where p(xi|θ) ∈ RL×1, F(xi|θ1, ., θN ) denotes feature ex-
tractor for xi with θ1, ., θN , and C( · |θFC) denotes a classi-
fier with θFC . The cross-entropy loss between the estimated
p(xi|θ) and yi is calculated as follows:

L(xi,yi, θ) = −
1

N

N∑
i=1

yT
i log p(xi|θ). (2)

In the training process, a stochastic gradient descent method
is used to train θ by minimizing Eq. 2.
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Figure 3: The training loss convergences by ordinary fine-
tuning (baseline) and rolling-back schemes where block i is
continuously tuned and the other blocks are rolled back to
the pre-trained one.

Table 1: The generalization performance of each scheme in
Figure 3. Bold numbers show the best performance.

remain layers mAP rank-1 rank-5 rank-10

baseline 73.16 89.43 96.35 97.77
Block1 74.08 89.49 96.50 97.62
Block2 74.37 89.96 96.50 97.62
Block3 73.87 89.90 96.20 97.83
Block4 73.82 89.64 95.81 97.62
Block5 71.17 88.45 95.61 97.42

Testing process The identities given to the testing set are
completely different than the identities in the training set.
Thus, the classifier trained in the training process cannot
be used for the testing process. To find correspondence be-
tween pedestrian candidates without using the classifier, we
estimate the similarity of two pedestrians based on the dis-
tance between the feature vectors of each pedestrian ex-
tracted from the trained feature extractor. To evaluate the
performance, the testing set is divided into a query set and a
gallery set with Mq and Mg samples, respectively. The sam-
ples of the query and gallery sets are denoted by {xq,i}

Mq

i=1

and {xg,j}
Mg

j=1, respectively. Each sample in the query set is
a person of interest, which should be matched to the candi-
date samples in the gallery set.

The distance between xq,i and xg,j is calculated by L-2
norm as follows:

q(i) = F(xq,i|θ1, ..., θN ) (3)

g(j) = F(xg,j |θ1, ..., θN ) (4)

si,j = ||q(i) − g(j)||
2

2. (5)

The identity of the gallery sample with the lowest distance
si,j is determined as the identity of the i-th query sample.
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Algorithm 1 Re-fine learning

Parameter: N: Number of total block , M: Number of lower block
Parameter: θ(0)1 , .., θ

(0)
N : weights of pre-trained network

Input: θ1, .., θN , θFC , X,Y (dataset)
1: θ(1)i = θ

(0)
i , ∀ i = 1, .., N . Initialize weights to pre-trained one

2: θ(1)FC ← random initialization
3: θ̂(1)1 , .., θ̂

(1)
N , θ̂

(1)
FC ← FINE-TUNE(X,Y, θ

(1)
1 , .., θ

(1)
N , θ

(1)
FC) . First fine-tune on ReID dataset X,Y

4: for p = 2 to M do

5: θ
(p)
i =

{
θ̂i

(p−1)
i < p

θ
(0)
i i ≥ p

. Remain certain layers and roll back others

6: θ
(p)
FC = θ̂

(p−1)
FC . Do not roll back FC layers

7: θ̂
(p)
1 , .., θ̂

(p)
N , θ̂

(p)
FC ← FINE-TUNE(X,Y, θ

(p)
1 , .., θ

(p)
N , θ

(p)
FC) . Refine-tune on ReID dataset X,Y

8: end for

Analysis of fine-tuning method
This section determines which layer converges insufficiently
by conventional fine-tuning. Figure 3 shows the conver-
gence, supporting the key ideas of the proposed fine-tuning
strategy. ‘baseline’ denotes the conventional fine-tuning,
while ‘Block i’ indicates the refine-tuning wherein every
block except ‘Block i’ is rolled back after the ‘baseline’
fine-tuning. Table 1 shows the generalization performance
of each scheme. A meaningful discovery is that a rolling-
back scheme with remaining low-level blocks (Block1,
Block2, Block3) shows slower convergence than applying
the rolling-back scheme to the remaining high-level blocks
(Block3, Block4). However, as shown in Table 1, the scheme
that maintains the low-level blocks gives better generaliza-
tion performance than the scheme preserving the high-level
blocks. This indicates that the ’baseline’ fine-tuning causes
the low-level layers to be converged at a premature. This
gives us an insight that rolling back of the high-level layers
except the low-level layers might give the low-level layers an
opportunity to learn further. As additional consideration,
all the weights cannot be given in pre-trained states. This is
because the output layer of a deep network for a new task is
usually different from the backbone network. Hence, the FC
layers must be initialized in a random manner. Rolling back
the FC layers to random states does not provide any bene-
fit. Thus, in our rolling-back scheme, FC layers are excluded
from rolling back, although it is a high-level layer, to keep a
consistent learning of the low-level layers.

Refine-tuning with rolling back
The aforementioned analysis shows that a premature con-
vergence degrades performance and rolling back high-level
layers can be a beneficial strategy to mitigate the prema-
ture convergence problem in the low-level layers. For further
tuning of the low-level layers, we designed a rolling-back
refine-tuning scheme that trains the low-level layers incre-
mentally from the front layer along with rolling back the re-
maining high-level layers. The detailed rolling back scheme
is described in the following.

1. In the first fine-tuning period (p = 1), the weights,

θ1, .., θN , are initialized with the pre-trained weights,
θ
(0)
i .

θ
(1)
i = θ

(0)
i , ∀i = 1, ..., N. (6)

The weights (θFC) in FC layer are initialized with the
random scratch (He et al. 2015). Then the first period of
fine-tuning is performed on the target dataset by Eq. (1),
Eq. (2). The updated weight of the i-th block is denoted

by θ̂i
(1)

, which is obtained by minimizing the loss from
Eq. (2).

2. From the refine-tuning period with rolling back (p ≥ 2),
we roll-back the high-level layers as in the following pro-
cedure. First, Block1 (θ1) is maintained in the state of
previous period and all the remaining blocks (θ2, ..., θN )
are rolled back to their pre-trained states θ(0)i . In other
words, Block1 continues the learning, and the other
blocks restart the learning from the beginning with the
pre-trained initial weights. In the the incremental man-
ner, the next low-level block is added one-by-one to the
set of blocks continuing the learning, while the remain-
ing ones are rolled back. The rolling-back refine-tuning is
repeated until all layers are included in the set of blocks
continuing the learning. In summary, in the p-th refine-
tuning period, the weights of the network are rolled back
as

θ
(p)
i =

{
θ̂i

(p−1)
i < p

θ
(0)
i i ≥ p,

(7)

where θ̂i
(p−1)

, i = 1, ..., N are the updated weights in
the (p − 1)-th refine-tuning period. During the refine-
tuning process, the (θFC) is not rolled back as mentioned
above.

θ
(p)
FC = θ̂

(p−1)
FC . (8)

The detailed procedure of the refine-tuning scheme with
rolling-back is summarized in Algorithm 1.
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Table 2: Results of our rolling-back scheme on different ReID dataset

ResNet-50
continuously Market-1501 DukeMTMC CUHK03-L CUHK03-D

Period tuned blocks mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

1 none 73.16 89.43 63.26 80.83 45.17 50.07 44.05 48.00
2 B1+ FC 75.65 90.95 66.09 81.96 47.69 51.21 45.76 50.50
3 B1+B2+FC 76.54 91.12 66.57 82.41 49.98 54.36 46.20 51.36
4 B1+B2+B3+FC 77.01 91.24 66.39 82.32 50.72 55.64 47.43 52.93

Table 3: Results of our rolling-back scheme for different network types.

ResNet-34 ResNet-101
continuously Market-1501 DukeMTMC Market-1501 DukeMTMC

Period tuned blocks mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

1 none 70.65 86.93 60.06 78.69 75.91 90.80 66.00 82.27
2 B1+ FC 73.63 89.13 63.45 81.10 77.21 90.77 69.27 83.62
3 B1+B2+FC 74.85 90.02 65.16 82.18 78.17 91.27 70.24 85.19
4 B1+B2+B3+FC 74.97 90.05 65.44 83.08 79.95 92.49 69.88 84.43

Experiment
Dataset
Market-1501 Market-1501 (Zheng et al. 2015) is widely
used dataset in person ReID. Market-1501 contains 32,668
images of 1,501 identities. All the bounding box images are
results of detection by the DPM detector (Felzenszwalb et
al. 2010). The dataset is divided into a training set of 751
identities and a test set of 750 identities.

DukeMTMC-ReID(DukeMTMC) Based on the multi-
target and multi-camera tracking dataset, DukeMTMC
(Zheng, Zheng, and Yang 2017) has been specially designed
for person ReID. DukeMTMC contains 36,411 images of
1,402 identities which are divided into a training set and a
testing set of 702 and 702 identities, respectively.

CUHK03-np CUHK03-np (Zhong et al. 2017a) is a mod-
ified version of the original CUHK03 dataset. The hand-
labeled (CUHK03-L) and DPM-detected (Felzenszwalb
et al. 2010) bounding boxes (CUHK03-D) are offered.
CUHK03-np contains 14,096 images of 1,467 identities.
The new version is split into two balanced sets containing
767 and 700 identities for training and testing, respectively.

Implementation detail
Our method was implemented using PyTorch (Paszke et al.
2017) library. All inputs are resized to 288×144 and the
batch size was set to 32. No other augmentation is used ex-
cept horizontal flip in our training process. The initial learn-
ing rate was set to 0.01 and 0.1 for the feature extractor and
the classifier, respectively. The learning rates were multi-
plied by 0.1 at every 20 epoch and we trained for 40 epochs
as one refine-tuning period. In our experiment, the proposed
refine-tuning strategy has been rolled back three times and
four epochs have been trained for four refine-tuning peri-
ods, and so a total of 160 epochs are have been repeated for

all fine-tuning. The learning rates of rolling back blocks are
restored to 0.01 at the beginning of every period. In con-
trast, the blocks that do not roll back begin with the low
learning rate of 0.001 since a high learning rate of the suf-
ficiently trained blocks might yield sudden exploding. The
optimizer used in this study was stochastic gradient descent
(SGD) with nesterov momentum (Nesterov 1983). For the
optimizer, the momentum rate and the weight decay were
set to 0.9 and 5 × 10−4, respectively. In every rolling back,
the momentum of gradient was reset to 0. In the test pro-
cess, the additional feature vector was used to add the fea-
ture vector of the horizontal flipped input pairwise. We re-
port rank-1 accuracy of Cumulative Matching Characteris-
tics (CMC) curve and the mean Average Precision (mAP)
for performance evaluation.

Ablation tests
The network trained with the proposed strategy was verified
via ablation tests on Market-1501, DukeMTMC, CUHK03-
L and CUHK03-D. The proposed refine-tuning strategy is
applied to a network over four periods. As the refine-tuning
periods progress, the continuously tuned blocks are cumula-
tive (e.g., B1+B2+FC in the third period). The other blocks
are rolled back to their original pre-trained states. As shown
in Table 2, the performance increases as the refine-tuning
periods progress with the exception of DukeMTMC in the
fourth period. However, even in this case, the gap was neg-
ligible. The improvement is most prominent in the sec-
ond refine-tuning period during which the first rolling back
is performed. To verify the generality of our refine-tuning
scheme, we conducted additional experiments with other
networks including ResNet-34 and ResNet-101 (He et al.
2016) under the same settings. Table 3 shows the perfor-
mance of each network in Market-1501 and DukeMTMC.
The proposed refine-tuning scheme also showed a consis-
tent improvement in ResNet-34 and ResNet-101. The abla-

8863



(a)

(b)

30

40

50

60

70

80

0.0003

0.003

0.03

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

loss(base)
loss(OUR)
mAP(base)
mAP(OUR)

epochs

m
A

P

tra
in

 lo
ss

rollback high-level layers

mAP : 77.01

mAP : 71.96

rollback high-level layers

30

40

50

60

70

0.0003

0.003

0.03

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

loss(base)
loss(OUR)
mAP(base)
mAP(OUR)

epochs

m
A

P

tra
in

 lo
ss

rollback high-level layers

mAP : 66.39

mAP : 59.64

rollback high-level layers

(base_cy)

(base_cy)

(base_cy)

(base_cy)

Figure 4: The train loss and mAP graph for comparison of our rolling-back scheme and the conventional fine-tuning at once.
(a) is the results on Market-1501 and (b) is the results on DukeMTMC.
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Figure 5: The results of comparison with FC warm-up train-
ing method

tion test results demonstrate that the proposed refine tuning
scheme has a significant advantage as a general method to
enhance the generalization performance in the ReID prob-
lem in which only a limited amount of data is available.

Effect of rolling back as a perturbation
To evaluate the effect of our rolling-back scheme, it is com-
pared with ’base cy’ method that does roll back none of the
block but merely adjusts the learning rate with the same tim-
ing as ours for a perturbation driving to other local basins.
The ’base cy’ is similar to other studies (Loshchilov and
Hutter 2016; Smith 2017) that perturb only the learning
rate. Figure 4 shows the change in training loss and mAP
of the whole processes of the proposed refine-tuning and the
base cy fine-tuning. After the first rolling-back at 40 epochs,
the training loss from the rolling-back scheme converges to a

Figure 6: The attention maps formed by the last feature layer
trained by our rolling-back scheme and the baseline

value that is better than the value of the base cy in the 70-80
epochs. After the second and third rolling-backs, the train-
ing loss of the base cy converges to a lower value than that
of the proposed method, but the base cy shows a worse gen-
eralization performance (mAP) than the proposed method.

Comparison to FC warm-up training
In this section, we discuss the difference between our
method and FC warm-up training (He et al. 2016). As men-
tioned previously, the new FC layers start randomly from
scratch. FC warm-up is a way to freeze the pre-trained
weights in all hidden layers except for the FC layers and
train the FC layers before starting the main fine-tuning. In
the comparison experiment, the baseline was warmed up for
20 epochs. In our proposed method, period 1 (see Table 2)
is similar to FC warm-up where FC layers start from ran-
dom scratch. However, the proposed method does not freeze
the pre-trained weights in period 1. The training loss and
mAP for FC warm-up and our methods are depicted in Fig-
ure 5. FC warm-up and our methods start fine/refine-tuning
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Table 4: Comparison with State-of-the-art methods on Market-1501, DukeMTMC and CUHK03-L/D

Market-1501 DukeMTMC CUHK03-L CUHK03-D
Method Backbone mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 Add-on

PT-GAN (2018) ResNet-50 58.0 79.8 48.1 68.6 30.5 33.8 28.2 30.1 pose+GAN
SVDNet (2017) ResNet-50 62.1 82.3 56.8 76.7 37.8 40.9 37.3 41.5 -

PDC (2017) Inception 63.4 84.1 - - - - - - pose
AACN (2018) GoogleNet 66.9 85.9 59.3 76.8 - - - - pose

HAP2S P (2018) ResNet-50 69.4 84.6 60.6 75.9 - - - - -
PSE (2018) ResNet 69.0 87.7 62.0 79.8 - - - - pose

CamStyle (2018) ResNet-50 71.6 89.2 57.6 78.3 - - - - GAN
PN-GAN (2018) ResNet-50 72.6 89.4 53.2 73.6 - - - - pose+GAN
MGCAM (2018) MSCAN 74.3 83.8 - - 50.2 50.1 46.7 46.9 mask

MLFN (2018) Original 74.3 90.0 62.8 81.0 49.2 54.7 47.8 52.8 -
HA-CNN (2018) Inception 75.7 91.2 63.8 80.5 41.0 44.4 38.6 41.7 -

DuATM (2018) DenseNet-121 76.6 91.4 64.6 81.8 - - - - -

Ours ResNet-34 75.0 90.1 65.4 83.1 48.6 53.0 45.6 51.3 -
Ours ResNet-50 77.0 91.2 66.6 82.4 50.7 55.6 47.4 52.9 -
Ours ResNet-101 79.9 92.5 70.2 85.2 55.7 59.8 50.5 55.6 -

Table 5: Comparison with State-of-the-art methods using
same backbone network ResNet-50

Market-1501 DukeMTMC
Method mAP rank-1 mAP rank-1 Add-on

PT-GAN 58.0 79.8 48.1 68.6 GAN
SVDNet 62.1 82.3 56.8 76.7 -

HAP2S P 69.4 84.6 60.6 75.9 -
CamStyle 71.6 89.2 57.6 78.3 GAN
PN-GAN 72.6 89.4 53.2 73.6 GAN

Ours 77.0 91.2 66.6 82.4 -

after training the FC layers. The FC warm-up converges to
a lower training loss than the proposed method, but the pro-
posed method shows better performance in terms of gener-
alization.

Attention performance of our refine-tuning method
To learn discriminative features for the ReID task, it is im-
portant to distinguish the foreground from the background.
Figure 6 shows that our method can generate a more distin-
guishable feature map in the last convolutional layer than the
baseline of the conventional fine-tuning method.

Comparisons with state-of-the-art methods
We also compared the proposed method with state-of-the-art
methods. Table 5 shows the comparison results when using
ResNet-50. The proposed rolling-back refine-tuning scheme
shows the best performance even though our method does
not use any add-on scheme. Furthermore, compared to other
methods without add-on scheme (SVDNet, HAP2S P), our
method outperforms them by more than 7% mAP improve-
ment for Market-1501. Table 4 summarizes the results com-
pared with the state-of-the-art methods on Market-1501,

Table 6: Results our rolling-back scheme on fine-grained
dataset

CUB-2011 FGVC Aircraft Food-101

baseline 74.59 83.89 80.21
Ours 79.12 86.80 81.89

Table 7: Result our rolling-back scheme for Inception V3 on
Market-1501

mAP rank-1

baseline 70.97 87.86
Ours 73.04 89.40

DukeMCMT, and CUHK03-L/D. According to the results,
the rolling-back refine-tuning scheme makes a meaningful
contribution to the enhancement of any backbone networks
so that it outperforms state-of-the-art algorithms utilizing
add-on schemes.

Generality of rolling back scheme
We conducted additional experiments to show the general-
ity of our method. Our method is effective for the problems
that require detailed features for discrimination. To verify
this, several experiments have been conducted for the fine-
grained classification datasets such as CUB-200-2011 (Wah
et al. 2011), FGVC-Aircraft (Maji et al. 2013), and food-
101 (Bossard, Guillaumin, and Van Gool ). As represented
in Table 6, our method improves the performance against the
baseline for all the datasets.

Additionally, to show that our method can be used in
general networks, we conducted an experiment based on
Inception V3 network (Szegedy et al. 2016) on Market-
1501 dataset. We defined the convolutional layers {Conv ,
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Mixed 5, Mixed 6, Mixed 7} in Inception V3 as
{B1,B2,B3,B4}. B1, B2 were selected for the low-level lay-
ers in the experiment. As shown in Table 7, our method im-
proves more than mAP: 2% from the baseline using Incep-
tion V3 network.

Conclusion
In this paper, we proposed a refine tuning method with a
rolling-back scheme which further enhances the backbone
network. The key idea of the rolling-back scheme is to re-
store the weights in a part of the backbone network to the
pre-trained weights when the fine-tuning converges at a pre-
mature state. To escape from the premature state, we adopt
an incremental refine tuning strategy by applying the fine
tuning repeatedly, along with the rolling-back. According
to the experimental results, the rolling-back scheme makes
a meaningful contribution to enhancement of the backbone
network where it derives the convergence to a local basin of
a good generalization performance. As a result, our method
without any add-on scheme could outperform the state-of-
the-arts with help of add-on scheme.
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