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Abstract

High-level semantic knowledge in addition to low-level vi-
sual cues is essentially crucial for co-saliency detection. This
paper proposes a novel end-to-end deep learning approach for
robust co-saliency detection by simultaneously learning high-
level group-wise semantic representation as well as deep vi-
sual features of a given image group. The inter-image inter-
action at semantic-level as well as the complementarity be-
tween group semantics and visual features are exploited to
boost the inferring of co-salient regions. Specifically, the pro-
posed approach consists of a co-category learning branch and
a co-saliency detection branch. While the former is proposed
to learn group-wise semantic vector using co-category asso-
ciation of an image group as supervision, the latter is to infer
precise co-salient maps based on the ensemble of group se-
mantic knowledge and deep visual cues. The group semantic
vector is broadcasted to each spatial location of multi-scale
visual feature maps and is used as a top-down semantic guid-
ance for boosting the bottom-up inferring of co-saliency. The
co-category learning and co-saliency detection branches are
jointly optimized in a multi-task learning manner, further im-
proving the robustness of the approach. Moreover, we con-
struct a new large-scale co-saliency dataset COCO-SEG to
facilitate research of co-saliency detection. Extensive experi-
mental results on COCO-SEG and a widely used benchmark
Cosal2015 have demonstrated the superiority of the proposed
approach as compared to the state-of-the-art methods.

1 Introduction
Discovering common and salient objects from a group of

relevant images, termed as Co-saliency Detection, is benefi-
cial for big image data management and various vision tasks,
such as object co-segmentation (Quan et al. 2016; Dong et
al. 2015; Zhang et al. 2016b), object co-localization(Tang
et al. 2014), visual tracking (Li et al. 2018) and image re-
trieval (Fu, Cao, and Tu 2013; Zhang et al. 2013; Hong et
al. 2017) etc.visual tracking (Li et al. 2018) and image re-
trieval (Fu, Cao, and Tu 2013; Zhang et al. 2013; Hong et
al. 2017) etc. Co-saliency detection has attracted increasing
interests from both academia and industry in recent years
(Jeong, Hwang, and Cho 2017; Zhang, Meng, and Han 2017;
Yao et al. 2017).
∗Corresponding author.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Effective visual representation characterizing salient and
common objects is crucial for co-saliency detection. Con-
ventional approaches utilize handcrafted features, such as
color, texture and SIFT descriptors etc., and achieve encour-
aging performance (Fu, Cao, and Tu 2013; Liu et al. 2014;
Li et al. 2015; Li, Meng, and Ngan 2013). However, hand-
crafted features based approaches usually suffer from multi-
ple challenges including appearance variance of co-object
across images, similar appearance between co-object and
non-common object, and background clutter etc.Encouraged
by the success of deep learning in many vision tasks
(Krizhevsky, Sutskever, and Hinton 2012; Long, Shelhamer,
and Darrell 2015; Zhang, Yu, and He 2018; Liu et al. 2016;
Jiao et al. 2018; Xu et al. 2018), recent researches improve
co-saliency detection by using deep neural network to learn
visual representation in a data driven manner (Han et al.
2017; Zhang et al. 2016b; Zhang, Meng, and Han 2017;
Zhang et al. 2016a; Jeong, Hwang, and Cho 2017). The
deep visual features are fed into a subsequent co-saliency
detection module. As the feature learning and co-saliency
detection are separated as two independent processes, the
learned features are not tailored for inferring co-salient re-
gions, resulting in suboptimal performance. Recently, (Wei
et al. 2017) proposed an end-to-end deep learning method
for co-saliency detection, which integrates the process of
feature learning and saliency mask prediction. A group-wise
visual representation is designed to capture the interaction
among visual features of individual images. As the group-
wise visual feature is based on the concatenation of individ-
ual image features, it varies with the order of images within
a group, limiting the robustness of the model.

Despite the remarkable progress made by recent works,
they mainly focus on sophisticated inference of co-salient
regions from visual cues, however neglect to explore high-
level semantic supervision as well as inter-image interaction
at semantic level, which are crucial for co-saliency detec-
tion. In this work, we propose a novel deep learning based
approach for robust co-saliency detection. The proposed ap-
proach learns high-level group-wise semantic representation
using inter-image common category association as supervi-
sion. The group-wise semantic representation characterizes
the interaction among images at semantic level and is used as
high-level semantic guidance for co-saliency inference. The
group-wise semantic feature and co-salience map are jointly
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Figure 1: Overview of proposed robust co-saliency detection approach. A group of images {I1, I2, ..., IN} first go through the
backbone networks to obtain the multi-scale feature maps {Pn3 , Pn4 , Pn5 }, n ∈ [1, 2, ..., N ]. The feature maps {Pn5 }Nn=1 from
every images are aggregated to learn the group-wise semantic representation with the supervision of inter-image co-category
association by the Co-category Learning branch. The group-wise semantic vector s is broadcasted to multi-scale visual features
and is exploited as a top-down semantic guidance for boosting the inferring of co-salient regions by the Co-Saliency Detection
branch.

optimized in an end-to-end learning manner. In particular,
the proposed approach consists of two types of branches in-
cluding co-category learning branch and co-saliency detec-
tion branch as shown in Figure 1. The co-category learning
branch is proposed to learn group-wise semantic represen-
tation by using a Hierarchical Low-Rank Bilinear Pooling
(H-LRBP) function with the supervision of co-category as-
sociation, which endows the group-wise feature rich seman-
tic clues related to the common categories of images. The
co-saliency detection branch is designed to infer precise co-
saliency maps by the joint exploration of both multi-scale
deep visual features and high-level group-wise semantics.
The group-wise semantic vector is broadcasted to each spa-
tial location of multi-scale visual feature maps and is used
as a top-down semantic guidance for boosting the bottom-up
inferring of co-saliency. The multi-scale visual features aug-
mented by group semantics are then assembled, providing
a richer information flow path for the network. The comple-
mentarity and interaction of group semantics and multi-scale
visual features are sufficiently exploited to facilitate the ro-
bust co-saliency reasoning. On the other hand, supervised
co-saliency detection with deep learning is limited by the
absence of large-scale co-saliency dataset. The largest exist-
ing dataset for co-saliency detection, Cosal2015 (Zhang et
al. 2016b), consists of only 2,015 images with 50 groups.
In order to facilitate the research of co-saliency detection,
we construct a new large-scale dataset, i.e., COCO-SEG, se-
lecting from the MS COCO2017 dataset (Lin et al. 2014).

More details about the proposed dataset will be discussed
in Section 3.1. Extensive experiments have been conducted
on the COCO-SEG dataset and a widely used co-saliency
dataset Cosal2015 . Experimental results have demonstrated
that the proposed method outperforms the state-of-the-art
approaches.

2 Proposed Approach
2.1 Problem Formulation

Co-saliency detection aims at discovering the common
and salient objects in a group of N relevant images I =
{In}Nn=1 . The co-saliency maps M = {Mn}Nn=1 are pro-
duced by a co-saliency detection model:

M = F (I; Θ), (1)

where F (·) is the model function that takes an image group
as input and outputs a group of co-saliency maps simultane-
ously. Θ represents model parameters which are optimized
by a end-to-end learning scheme in this work. Inspired by
the mechanism of human visual co-saliency, high-level se-
mantic guidance as well as inter-image interaction at se-
mantic level are important for co-saliency detection. Hence,
we propose to learn a group-wise semantic representation
s ∈ RD from the group of images:

s = fg(I; Θg), (2)

where Θg represents model parameters. s is optimized using
the common category association of images as supervision.
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It is used as a high-level semantic guidance for inferring co-
salient regions in each image:

Mn = fsaliency(In, s; Θm), (3)

where Θm is the parameters of co-saliency prediction func-
tion. This work proposes a novel deep neural network archi-
tecture consisting of co-category learning branch and a co-
saliency detection branch to jointly optimize the group-wise
semantic feature learning and co-saliency map prediction in
an end-to-end manner, as shown in Figure 1.

2.2 Co-category Learning
Co-category learning branch is proposed to learn group-

wise semantic representation from a group of relevant im-
ages using inter-image co-category association as supervi-
sion. Inspired by the impressive achievements of bilinear
pooling in fine-grained image classification task, it is be-
lieved that bilinear pooling can maintain selectivity in holis-
tic features. Low-Rank Bilinear Pooling (LRBP) has been
proposed in (Kong and Fowlkes 2017) to deal with the di-
mension explosion problem caused by full bilinear pooling.
It is robust to feature redundancy and noise as well as saves
the number of parameters and the cost of computing. Here,
we design a hierarchical stack of pooling functions, termed
as Hierarchical Low-Rank Bilinear Pooling (H-LRBP). H-
LRBP first aggregates local features within a image feature
map to a image representation and further encodes all im-
age representations within a group into a holistic semantic
representation. Such hierarchical pooling strategy decom-
poses the complicated mapping from individual image fea-
ture maps to group semantics and thus reduces the difficulty
on learning group semantics.

H-LRBP: Denoting Xn ∈ RK×D as an image fea-
ture map which contains K local feature vectors, we de-
fined the normalized bilinear pooling as 1

KX
>
n Xn =

1
K

∑K
i=1X

i
n
>
Xi
n. The C-way SVMs inference equation us-

ing the matrix representation of the bilinear feature is given
as:

f c(xn) =
1

K
tr(W c>X>n Xn) + bc, (4)

in which,W c ∈ RD×D and bc is the parameters of c-th SVM
and f c(·) is the corresponding predict function. Following
(Kong and Fowlkes 2017), we impose a hard low-rank con-
straint on Wc by the parameterization with U c+ ∈ RD×r/2

and U c− ∈ RD×r/2, namely rank(W c) = r. Then, the SVM
inference equation can be rewritten as:

fc(Xn) =
1

K
[tr(Uc

+U
c>
+ X>n Xn)− tr(Uc

−U
c>
− X>n Xn)] + bc

=
1

K
[‖Uc>

+ X>n ‖2F − ‖Uc>
− X>n ‖2F ] + bc.

(5)
Instead of the classification results, the pooled features are

necessary for the subsequent processes in this work. There-
fore, the prediction results of the C-way classifiers are used
as C-dimensional features. A Hierarchical Low-Rank Bilin-
ear Pooling (H-LRBP) strategy is proposed to aggregate the

(a) H-LRBP (b) FC + Average Pooling

Figure 2: Two pooling strategies: (a) is the proposed H-
LRBP and (b) is a baseline pooling compared in experi-
ments.

local visual features into group-wise representation s by us-
ing two consecutive LRBP layers in Eq.(5) as follows:

s = f({f(Xn)}Nn=1), (6)

where f(·) is the LRBP function. The pooling process is
shown in Figure 2a. The group-wise semantic vector s is
learned with the supervision of co-category association as
elaborated in Section 2.4. The co-category learning only
needs the co-category association among the images but
does not require the awareness of what each category is.
The co-category supervision endows s rich semantic clues
related to the common categories of images and is valuable
for facilitating the inferring of co-salient regions. Moreover,
H-LRBP is not sensitive to the number and order of images
within a group, making itself robust and flexible.

2.3 Co-saliency Detection with Group Semantic
Group-wise semantics represent high-level semantic cues

and inter-image semantic interaction. We exploit the group-
wise semantics as a top-down semantic guidance for boost-
ing the bottom-up inferring of co-saliency. In particular, the
group semantic vector is broadcasted to each spatial loca-
tion of visual feature maps to augment visual features. The
complementarity and interaction between high-level group
semantics and low-level visual features are exploited to
improve co-saliency detection. Regarding visual features,
coarse-resolution features from high layers of neural net-
work emphasize the abstraction of visual content and con-
tains the context with large receptive field to the summary
of object, while fine-resolution features from low layers em-
phasize the appearance details and are more conducive to
the location of objects. In order to make full use of the com-
plementary between multi-scale features, we fuse the visual
features from multiple layers to provide a comprehensive
representation for co-saliency mask prediction.

Taking VGG19 (Simonyan and Zisserman 2014) as the
backbone ConvNet, we exploit the outputs of pool3, pool4
and pool5 layers as multi-scale feature maps, denoted as
{Pn3 , Pn4 , Pn5 }Nn=1 respectively. We concatenate the group-
wise semantic vectors with each local feature vector, and
a 1 × 1 convolutional layer is used to reduce the dimen-
sionality. The resultant feature maps with group-wise se-
mantic, called {Gn3 , Gn4 , Gn5}Nn=1 , are jointly used for co-
saliency detection as shown in Figure 1. Starting from Gn5 ,
the coarser-resolution feature map is upsampled by a factor
of 2 using a deconvolutional layer. The upsampled map is
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then merged with the finer-resolution one by element-wise
addition. This process iterates until the finest map Ĝn is ob-
tained. To alleviate the aliasing effect of upsampling, we add
a 3×3 convolutional layer after each merging operation. The
final co-saliency maps M can be obtained with the fused
features {Ĝn} by applying a 3 × 3 convolutional layer and
a deconvolutional layer followed with a sigmoid activation
function.

2.4 Loss Function
A classification loss is designed to learn group-wise se-

mantic representation by the supervision of co-category su-
pervision as follows:

ŷ = sigmoid(W>s + b), (7)

Lcls = − 1

L

L∑
l=1

yllogŷl − (1− yl)log(1− ŷl), (8)

where W ∈ RD×L and b ∈ RL are parameters of L-class
classifier. yl and ŷl are ground-truth and prediction value
for the l-th co-category. Lcls is the classification loss func-
tion. We use sigmoid function as the activation function in-
stead of softmax because there might exist more than one
co-category appearing in an image group.

Denoting the ground-truth co-saliency masks of training
image group as{M̂n}Nn=1, the loss function of co-saliency
detection is formulated as the average of pixel-wise cross
entropy losses:

Lsal = − 1

NP

NP∑
i=1

M̂ilogMi− (1− M̂i)log(1−Mi) (9)

where P is the pixel number of each training image. M̂i and
Mi are the i-th pixel values in ground truth and predicted co-
saliency maps, respectively. Note that the co-category learn-
ing branch and the co-saliency detection branch are trained
jointly, the overall loss function is given as

L = Lsal + λ · Lcls, (10)

where λ is the tradeoff parameter.

3 Experiments
3.1 Datasets

The research and application of supervised co-saliency
detection are limited by the lack of large-scale training data.
The largest dataset for co-saliency detection at present, i.e.,
Cosal2015 (Zhang et al. 2016b), consists of only 2,015 im-
ages in 50 groups. In order to evaluate the proposed ap-
proach as well as facilitate future research, we construct a
new dataset, termed as COCO-SEG, at a large scale.

COCO-SEG is selected from the COCO2017 dataset (Lin
et al. 2014) by applying the following selection strategies:

• All the images containing object of a certain category are
grouped together, leading to 80 image groups. A group
may contain more than one co-category.

• For a certain group, each image should belong to at least
one co-category of the group with the region area over
4,000 pixels. This is to filter out images that contain only
inconspicuous foreground.

• The groups containing less than 100 images in training set
are removed to ensure that each group has enough training
samples, leading to 78 groups finally.

The resultant COCO-SEG dataset contains 200K images
belonging to 78 groups for training and 8K images of 78
groups for testing.

3.2 Implementation Details
We select the widely used VGG 19-layer net (Simonyan

and Zisserman 2014) as the backbone network for the sake
of fair comparison, and initialize it with the parameters pre-
trained for image classification task on ImageNet (Deng et
al. 2009). The deconvolutional layers are initialized with
simple bilinear interpolation parameters. We following the
setting in (Wei et al. 2017), a sub-group consist of 5 im-
ages are randomly selected from a certain group, and a mini-
batch consisting of 56 sub-groups are fed into the model
at the same time during training. All images and ground-
truth maps are resized to 224 × 224. The proposed mod-
els are optimized by the Adam Algorithm (Kingma and Ba
2014), in which the exponential decay rates for the first and
second monent estimates are set to 0.9 and 0.999 respec-
tively. The learning rate starts from 1e-5, and reduces by
half every 10,000 steps until the model converges at about
50,000 steps. All the models are trained on the training set
of COCO-SEG and evaluated on the COCO-SEG validation
set and Cosal2015. During evaluation,we feed all images in
a group into the model to generate all predicted masks si-
multaneously.

3.3 Evaluation Metrics
To evaluate the performance of the proposed method, six

widely-used metrics are adopted: (1) Precision-Recall (PR)
curve, which shows the tradeoff between precision and recall
for different threshold (ranging from 0 to 255). (2) Receiver
Operating Characteristic (ROC) curve, which is created by
plotting the true positive rate (TPR) against the false positive
rate (FPR) at various threshold settings. (3) Area Under the
Curve (AUC), which is the area under ROC curve. (4) Mean
Absolute Error (MAE), which characterize the average 1-
norm distance between ground truth maps and predictions.
(5) F-measure (Fβ), which is computed by:

Fβ =
(1 + β2)Precision×Recall
β2Precision+Recall

, (11)

where the precision and recall are obtained by using a
self-adaptive threshold T = µ + ε ( µ and ε are the
mean value and standard deviation of co-saliency map). β2

is typically set to 0.3 as suggested in (Han et al. 2017;
Yang et al. 2013). (6) Structure Measure (Sα) (Fan et al.

8920



(a) PR curves on COCO-SEG (b) ROC curves on COCO-SEG (c) Other metrics on COCO-SEG

(d) PR curves on Cosal2015 (e) ROC curves on Cosal2015 (f) Other metrics on Cosal2015

Figure 3: Performance comparison between the proposed method and the state-of-the-art methods on COCO-SEG and
Cosal2015 datasets

(a) COCO-SEG (b) Cosal2015

Figure 4: Visual comparison between the proposed method and the other representative methods on COCO-SEG dataset and
Cosal2015 dataset

2017), which is a reliable metric to evaluate the spatial
structure similarities of foreground maps. We set the hyper-
parameter α = 0.5 following (Fan et al. 2017).

3.4 Comparison to the State-of-the-Arts
In order to evaluate the effectiveness of the proposed
method, we compare it against five state-of-the-art algo-

rithms: GW(Wei et al. 2017), LDW(Zhang et al. 2016b),
UMLB(Han et al. 2017), CSHS(Liu et al. 2014) and
CBCS(Fu, Cao, and Tu 2013). GW is an end-to-end deep
learning method for co-saliency detection. LDW and UMLB
are two methods using the deep learning features. CSHS
and CBCS are two conventional approaches based on hand-
crafted features that are widely compared in literatures. For
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Table 1: Efficacy of co-category learning and H-LRBP.

Metrics Pooling λ = 0 λ = 0.1 λ = 1

Sα
AP 0.7070 0.7331 0.7473

H-LRBP 0.7413 0.7492 0.7578

Fβ
AP 0.6430 0.6801 0.6994

H-LRBP 0.6848 0.7029 0.7051

AUC AP 0.9157 0.9252 0.9317
H-LRBP 0.9377 0.9348 0.9398

MAE AP 0.1217 0.1016 0.0945
H-LRBP 0.1048 0.0939 0.0927

the sake of fair comparison, VGG-19 is used as backbone
networks for GW, LDW and UMLB. Figure 3a - 3c illus-
trate the experimental results in terms of various metrics on
COCO-SEG dataset. Our approach outperforms the state-of-
the-art methods significantly in terms of all the metrics. For
example, our method improves upon the second best algo-
rithm GW by about 18%, 26%, 7% and 35% in terms of
Structure Measure, F-measure, AUC and MAE respectively.

The proposed method is also evaluated on a widely used
benchmark co-saliency dataset Cosal2015. As illustrated in
Figure 3d - 3f, the proposed method achieves better per-
formance than existing ones in terms of all the metrics.
For example, the proposed method improves upon the sec-
ond best method GW by about 5%, 6% and 13% in terms
of Structure Measure, F-measure and MAE respectively.
As aforementioned, all the models are trained on COCO-
SEG and applied on Cosal2015. The experimental results
have shown that the proposed method can obtain consis-
tent performance improvements when dealing with new cat-
egories of foregrounds that do not appear during training.
Thus, the proposed method possess better generalization
ability and flexibility in practical use. We also fine-tune
the model without the optimization of co-category learning
branch in Cosal2015 by selecting 50%-50% training-test im-
ages as (Han et al. 2017). The fine-tuned model is denoted
as “OURS-FT”, which exhibits impressive performance as
shown in Figure 3d - 3f.

Figure 4 shows some sample co-saliency maps produced
by the proposed approach and the state-of-the-art methods
on COCO-SEG and Cosal2015 datasets. From the results on
COCO-SEG dataset, it can be observed that two traditional
methods CSHS and CBCS can hardly find common fore-
ground areas in complex cases of high inter-class similarity
and intra-class variations. While the end-to-end deep learn-
ing method GW performs significantly better than the tradi-
tional methods, our method produces the best saliency maps
both in terms of the accuracy of contours and discrimination
of different objects. From the saliency maps on Cosal2015
dataset, it can be seen that our method is more robust to the
inter-class similarity and intra-class variations and is more
meticulous in shaping the appearance details. Moreover, co-
saliency maps produced by our method are more assertive
than those of the others, which helps to easily select a bi-
narization threshold to segment out the foregrounds given a
co-saliency map.

Table 2: Efficacy of multi-scale features: With λ = 0,
the models using multi-scale features are compared with the
models using single-scale features.

Metrics AP AP H-LRBP H-LRBP
single-scale multi-scale single-scale multi-scale

Sα 0.6854 0.7070 0.6951 0.7413
Fβ 0.6127 0.6430 0.6248 0.6848

AUC 0.9010 0.9157 0.9104 0.9377
MAE 0.1245 0.1217 0.1208 0.1048

Table 3: Comparison between group-wise representation:
With λ = 0 and single-scale features, the models using AP
and H-LRBP are compared against the existing GW method.

Metrics GW AP H-LRBP
Sα 0.6424 0.6854 0.6951
Fβ 0.5455 0.6127 0.6248

AUC 0.8665 0.9010 0.9104
MAE 0.1494 0.1245 0.1208

3.5 Ablation Studies
In this section, we conduct evaluation to investigate the ef-
fectiveness of various components of the proposed model.
The models using visual feature from multiple layers and
single layer are denoted as “multi-scale” and “single-scale”,
respectively. For pooling strategy, “AP” refers to the “FC
+ Average Pooling” strategy as show in Figure 2b, which
uses fully connected layer to integrate local features into
image representations and then pools all image features
within a group into group-wise representation by average-
pooling. All the ablation studies are conducted on the pro-
posed COCO-SEG dataset.

Efficacy of co-category learning and H-LRBP Table 1
provides the performance of the proposed method with vari-
ous values of λ and the two pooling strategies. λ is the trade-
off parameter adjusting the relative strength of exploiting
co-category association supervision in learning group-wise
representation. From the results, we can obtain the following
observations: (1) the models with λ as 0.1 and 1 outperforms
the mode with λ as 0. This indicates that the exploration
of co-category supervision is able to learning more effec-
tive group-wise representation with semantic cues, which in
turn boost the co-saliency detection. The model with λ as 1
obtains the best performance; (2) “H-LRBP” achieves con-
sistent performance improvements over “AP” in various set-
tings.

Efficacy of multi-scale visual features In order to bet-
ter investigate the effectiveness of multi-scale visual fea-
tures, we compare the models using single-scale and the
multi-scale features in the setting of non-supervision of co-
category association, i.e., λ = 0. The single-scale feature is
processed by applying a convolutional layer followed with
a deconvolutional layer on {Gn5}Nn=1. As illustrated in Table
2, the performance of multi-scale visual features is much
better than that of single-scale features with either “AP” or
“H-LRBP” strategy. The results have demonstrated that fus-
ing visual features at multi-scales produces a comprehensive
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representation characterizing both visual abstraction and de-
tails of foregrounds and is useful for co-saliency prediction.

Comparison between group-wise features We compare
the proposed model without co-category supervision and
multi-scale features to the existing method GW (Wei et al.
2017) which learns a group-wise visual representation for
co-saliency detection. As shown in Table 3, both the model
with “AP” and “H-LRBP” strategies outperform GW signif-
icantly. This indicates that the proposed method is able to
learn more effective group-wise representation even with-
out the supervision of co-category association. Moreover, as
the group-wise feature in GW is based on the concatenation
of individual image features, it varies with the order of im-
ages within a group. Our method uses H-LRBP for feature
agreation. It is not affected by the number and order of im-
ages within a group and thus possess better robustness and
flexibility.

4 Conclusion
This paper proposed a new deep learning based approach

for robust co-saliency detection, consisting of a co-category
learning branch and a co-saliency detection branch. The pro-
posed approach explores the high-level semantic supervision
as well as inter-image interaction at semantic level, which
are important for co-saliency detection. A group-wise se-
mantic representation characterizing inter-image semantic
interaction is learned by the proposed co-category learning
branch using the co-category association as supervision. The
co-saliency detection branch infers precise co-saliency maps
by using the group semantic as a top-down semantic guid-
ance as well as visual features at multiple scales. The group-
wise semantic feature and co-salience map are jointly opti-
mized in an end-to-end multi-task learning manner. More-
over, we constructed a new large-scale co-saliency dataset
COCO-SEG, which is the largest dataset for co-saliency
detection at present. Extensive evaluation on both COCO-
SEG and the benchmark Cosal2015 have demonstrated that
the proposed approach outperforms multiple state-of-the-art
methods in terms of various performance matrics.
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