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Abstract

This paper proposes a novel algorithm to solve the pose es-
timation problem from 2D/3D line correspondences, known
as the Perspective-n-Line (PnL) problem. It is widely known
that minimizing the geometric distance generally results in
more accurate results than minimizing an algebraic distance.
However, the rational form of the reprojection distance of the
line yields a complicated cost function, which makes solving
the first-order optimality conditions infeasible. Furthermore,
iterative algorithms based on the reprojection distance are
time-consuming for a large-scale problem. In contrast to pre-
vious works which minimize a cost function based on an alge-
braic distance that may not approximate the reprojection dis-
tance of the line, we design two simple algebraic distances to
gradually approximate the reprojection distance. This speeds
up the computation, and maintains the robustness of the ge-
ometric distance. The two algebraic distances result in two
polynomial cost functions, which can be efficiently solved.
We directly solve the first-order optimality conditions of the
first problem with a novel hidden variable method. This al-
gorithm makes use of the specific structure of the resulting
polynomial system, therefore it is more stable than the gen-
eral Gröbner basis polynomial solver. Then, we minimize the
second polynomial cost function by the damped Newton it-
eration, starting from the solution of the first cost function.
Experimental results show that the first step of our algorithm
is already superior to the state-of-the-art algorithms in terms
of accuracy and applicability, and faster than the algorithms
based on Gröbner basis polynomial solver. The second step
yields comparable results to the results from minimizing the
reprojection distance, but is much more efficient. For speed,
our algorithm is applicable to real-time applications.

Introduction
The Perspective-n-Line (PnL) problem is to calculate the
rotation and the translation of a camera from N 2D/3D
line correspondences. It has broad applications in robotics
and 3D vision, such as Structure from Motion (SfM) (Mi-
cusik and Wildenauer 2017), and Simultaneous Localization
and Mapping (SLAM) (Zhang and Koch 2014), and Aug-
mented Reality (AR) (Zhou, Duh, and Billinghurst 2008).
Because of its importance, plenty of algorithms have been
proposed to address this problem in the literature. However,
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recent work (Přibyl, Zemčı́k, and Čadı́k 2017) has shown
that none of the existing methods universally outperforms
the others. Algorithms based on Direct Linear Transforma-
tion (DLT) (Přibyl, Zemčı́k, and Čadı́k 2017) are fast, but
are not stable or even not feasible when the number of
linesN is small. Nonlinearly formulated algorithms may be-
come very computationally demanding when N gets large,
such as(Mirzaei and Roumeliotis 2011b; Xu et al. 2017;
Ansar and Daniilidis 2003). In addition, many PnL algo-
rithms are not applicable to the planar configuration (i.e.
all the 3D lines are located on a plane). This paper aims to
achieve globally optimal solution for any number and con-
figuration of lines with real-time speed.

Minimizing a geometric distance is known to lead to more
accurate results than an algebraic distance (Hartley and Zis-
serman 2003). However, the reprojection distance of the PnL
problem, i.e. the distance between the projection of a 3D line
and the end points of the corresponding 2D line in the im-
age, results in a non-convex rational cost function. Thus, it
is intractable to directly solve its first-order optimality con-
ditions. Additionally, the iterative algorithm requires high
quality initialization to converge to the globally minimal so-
lution, and will become time-consuming when the number
of lines grows large. Therefore, different algebraic distances
are proposed in the literature to simplify the computation.
For example, Xu et al. (Xu et al. 2017) used the residual of
the equation from a minimal solution as the cost function.
But those algebraic distances may not approximate the re-
projection distance. This may lead to a suboptimal solution.
The central idea of this paper is to approximate the repro-
jection distance with simpler functions. We design two alge-
braic distances to achieve this goal.

The first algebraic distance derives from the distance be-
tween a 2D line and the projection of two points on the
corresponding 3D line. We construct a fourth-order polyno-
mial cost function for the rotation. Gröbner basis method
(Byröd, Josephson, and Åström 2009) is generally used in
the previous works (Mirzaei and Roumeliotis 2011a; 2011b;
Zheng et al. 2013; Vakhitov, Funke, and Moreno-Noguer
2016) to solve the first-order optimality conditions of a
polynomial cost function, but this method may have nu-
meric problems which are difficult to address. We solve the
first-order optimality conditions by a novel hidden variable
method (Cox, Little, and O’shea 2006; Gelfand, Kapranov,
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and Zelevinsky 2008). This method improves the stability
of the polynomial solver by taking advantage of the special
structure of the resulting polynomial system. It does not in-
clude numerically unstable functions, such as the matrix in-
verse involved in the Gröbner basis method.

The second algebraic distance formulation involves fix-
ing the denominator of the reprojection distance, which re-
sults in a polynomial cost function.The reprojection distance
is approximated around the point where the denominator is
fixed. We apply the damped Newton iteration to minimize
the second problem, as it is efficient to calculate the Hessian
matrix and gradient of a polynomial function.

The simulation and experimental results show that the
first step of our algorithm already outperforms the state-of-
the-art methods in terms of accuracy and applicability, and
is faster than the algorithms based on Gröbner basis poly-
nomial solver (Mirzaei and Roumeliotis 2011b; Vakhitov,
Funke, and Moreno-Noguer 2016). The result from the sec-
ond cost function is comparable to the result from the iter-
ative algorithm using the reprojection cost function, but is
much faster. Lastly, our algorithm is fast enough for real-
time applications.

Related Work
The PnL problem has been widely studied in the literature.
At least three 2D/3D line correspondences are required to
compute the pose. The minimal problem of PnL is called
the P3L problem. Some algorithms have been proposed to
address the P3L problem (Dhome et al. 1989; Chen 1990;
Xu et al. 2017). They showed that there may exist at most
8 solutions to the P3L problem. Recently, Xu et al. (Xu et
al. 2017) systematically analyzed the relationship between
the number of solutions and the configuration of the three
lines. The P3L algorithm is generally used in the RANSAC
framework (Fischler and Bolles 1987) to eliminate outliers.

As mentioned above, the geometric distance of the PnL
problem is complicated. Iterative algorithms give a straight
forward way to address the minimization problem. In an
early work (Liu, Huang, and Faugeras 1990), rotation and
translation were calculated separately. They calculated the
rotation by iteratively linearizing the equation. In (Kumar
and Hanson 1994), the rotation and translation were jointly
optimized. David et al. (David et al. 2003) simultaneously
estimated the pose and the correspondence between 2D and
3D lines in an iterative manner. Recent work (Zhang et al.
2016) presented a noise model to describe the probabilistic
relationship between the 3D line and its image. Using this
model, they derived a maximum likelihood estimation of the
camera pose. Iterative methods may converge to a local min-
imum. In addition, iterative algorithms are time-consuming
for a large-scale problem.

To reduce the computational complexity, some works
seek to linearize the reprojection distance or an algebraic
distance. The DLT method (Hartley and Zisserman 2003)
gives a fast way to solve the PnL problem. It needs at least
6 lines. Recently, Přibyl et al. (Bronislav Přibyl 2015) ex-
ploit the relationship between the projection of the Plücker
coordinates and the 2D line to construct linear equations.
This algorithm needs at least 9 lines. In their later work

(Přibyl, Zemčı́k, and Čadı́k 2017), they combined the tradi-
tional DLT method (Hartley and Zisserman 2003) and their
Plücker coordinates based DLT method (Bronislav Přibyl
2015) to further improve the accuracy, and reduced the min-
imum number of line correspondences to 5. Ansar and Dani-
ilidis (Ansar and Daniilidis 2003) proposed an algorithm to
linearize a quadratic equation system to a linear system. The
O
(
n2
)

computational complexity of this algorithm makes
it impracticable for a large-scale problem. As these meth-
ods ignore the nonlinear part of the constraints, they are not
accurate or even feasible when N is small.

To solve the problem of linearization, nonlinear alge-
braic distances are designed to replace the reprojection dis-
tance in some recent works. Xu et al. (Xu et al. 2017)
used the minimal solution to construct a 16th order polyno-
mial cost function. This algorithm is accurate and efficient
when N is small, but becomes less accurate and computa-
tionally demanding as N grows large as demonstrated in
(Přibyl, Zemčı́k, and Čadı́k 2017). Mizaei et al. (Mirzaei
and Roumeliotis 2011a; 2011b) decoupled the estimation
of rotation and translation. They directly solve the first-
order optimality conditions of the rotation matrix to obtain
all stationary points. Some works extended the Perspective-
n-Point (PnP) algorithms to the PnL problem. Vakhitov et
al. (Vakhitov, Funke, and Moreno-Noguer 2016) and Xu
et al. (Xu et al. 2017) adapted the EPnP algorithm (Lep-
etit, Moreno-Noguer, and Fua 2008) to the PnL problem.
Vakhitov et al. (Vakhitov, Funke, and Moreno-Noguer 2016)
showed that OPnP algorithm (Zheng et al. 2013) can be
used to solve the PnL problem. As these algebraic distances
do not approximate the geometric distance, this may result
in suboptimal results. This paper aims to approximate the re-
projection function to efficiently obtain the globally optimal
solution.

Problem Formulation
Throughout this paper we use italic, boldfaced lowercase
and boldfaced uppercase letters to represent scalars, vec-
tors and matrices, respectively. To simplify the notation, we
use the normalized pixel coordinates (Hartley and Zisserman
2003), i.e. multiplying the homogeneous pixel coordinates
by the inverse of the camera intrinsic parameter matrix K
before solving the PnL problem.

The PnL problem is to estimate the pose of a camera,
including rotation R and translation t relative to a world
frame, by N (N ≥ 3) 2D/3D lines correspondences. The
minimal case is N = 3, called the P3L problem, which has
at most 8 solutions (Xu et al. 2017). For N ≥ 4, there gen-
erally only exists one solution.

We use the Cayley–Gibbs–Rodriguez (CGR)
parametrization (Mirzaei and Roumeliotis 2011b) to
represent R as

R =
R̄

1 + sT s
, R̄ =

((
1− sT s

)
I3 + 2[s]× + 2ssT

)
, (1)

where s = [s1; s2; s3] is a 3-dimensional vector and [s]× =[
0 −s3 s2
s3 0 −s1
−s2 s1 0

]
. As other minimal rotation param-
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eterizations, the CGR parameterization also has a singu-
lar case, that is when the rotation angle equals to π. This
can be easily solved by rotating the measurements to an
intermediate frame, then rotating the solutions back to the
original frame, as mentioned by (Mirzaei and Roumelio-
tis 2011a). In practice, the RANSAC algorithm is generally
used before the least-squares algorithm. The solution from
the RANSAC algorithm can be used to rotate the measure to
a non-singular case. The advantage of the CGR parameteri-
zation is that it does not require additional constraints, such
as the unity norm condition of the quaternion parameteriza-
tion. This leads to a simple formulation.

We adopt the Plücker coordinates (Přibyl, Zemčı́k, and
Čadı́k 2017; Hartley and Zisserman 2003) to represent the
3D line. For the ith 3D line Li, we denote its Plücker coor-
dinates as a six-dimensional vector Li = [di; mi]. di and
mi are the direction vector and moment vector of Li, re-
spectively, and they satisfy di ·mi = 0, where · represents
the dot product. Let c = −RT t. Denote the projection of
Li to the image plane as li, as demonstrated in Figure 1. The
relationship between Li and li is:

li ∼
[
R,−R[c]×

]
Li, (2)

where ∼ represents the two homogeneous entities are equal
up to scale. Let li =

[
l1i , l

2
i , l

3
i

]
. Assume the ideal 2D line

li corresponding to Li is detected by a line detection al-
gorithm, such as (Von Gioi et al. 2010), as l̂i. Because of
noise, for example motion blur and rounding error, the ideal
projection li and the observation l̂i are different. Suppose
p̂ij = [x̂ij ; ŷij ; 1], j = 1, 2 are the homogeneous coordi-
nates of the two endpoints of l̂i. p̂ij does not generally lie
on li. The signed reprojection distance for the ith 2D/3D line
correspondence is:

erepij =
p̂ij · li√

(l1i )
2

+ (l2i )
2

(3)

The cost function based on the reprojection distance is:

Crep =
1

2

∑
i

∑
j

(
erepij

)2
(4)

According to the CGR parameterization of R in (1), the de-
nominator and the numerator of

(
eerpij

)2
are both 6th de-

gree polynomial functions involving s and c, respectively.
As the denominator of erepij is different for each 2D/3D line
correspondence, the degrees of the polynomials in the de-
nominator and the numerator of the summation Crep will
quickly increase as the number of measurements increases.
This makes calculating the first-order optimality conditions
of (4) intractable. This paper seeks to solve this problem.

Optimal Solution from Algebraic Distance
The central idea of this paper is to approximate the reprojec-
tion distance erepij by simpler functions, whose gradient and
Hessian matrix can be easily computed. We use two alge-
braic distances to achieve this.

Figure 1: Schematic of the reprojection distance.

First Algebraic Distance
Assume Pij , j = 1, 2 are two 3D points on Li. Denote the
homogeneous coordinates of the projection of Pij in the
image plane as pij . Using the normalized pixel, we have
pij ∼ RPj

i + t. Theoretically, pij should be on the 2D line
l̂i, thus we have

l̂i · (RPij + t) = 0. (5)

In contrast to (3), we can decouple R and t from (5). As t is
unconstrained and linear in (5), we first consider the solution
of t. Given R, we derive a linear equation of t from (5) as:

l̂i · t = −̂li ·RPij . (6)

This is a linear unconstrained least-squares problem. Solv-
ing for t, we obtain a closed-form solution of t as

t = −
(
LTL

)−1
LTb (R), (7)

where L =
[̂
l1, l̂1, · · · , l̂N , l̂N

]T
, b (R) =[̂

lT1 RP11, l̂
T
1 RP12, · · · , lTNRPN1, l

T
NRPN2

]T
. Sub-

stituting the CGR parametrization of R in (1) into (7), we
have

t = −
(
LTL

)−1
LTb

(
R̄
)

1 + sT s
(8)

Then substituting (1) and (8) into (5), we obtain

l̂i · R̄Pij + l̂i ·
(
LTL

)−1
LTb

(
R̄
)

1 + sT s
= 0. (9)

Cancelling the denominator 1+sT s from (9), we get a poly-
nomial constraint involving only s:

ea lg 1
ij = l̂i · R̄Pij + l̂i ·

(
LTL

)−1
LTb

(
R̄
)

= 0. (10)

Considering the noise, we form the following least-squares
problems for (10),

ŝ = arg min
s
Calg1, Calg1 =

1

2

∑
i

∑
j

(
ealg1ij

)2
(11)
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As ealg1ij is a second-order polynomial function of s,Calg1 is
a fourth-order polynomial function. To find the optimal so-
lution of Calg1, we consider the first-order optimality condi-
tions of it,

f1 =
∂Calg1

∂s1
= 0, f2 =

∂Calg1

∂s2
= 0, f3 =

∂Calg1

∂s3
= 0

(12)
This is a ternary polynomial system of degree 3. We do

not adopt the generally used Gröbner basis method (Zheng
et al. 2013; Mirzaei and Roumeliotis 2011a; 2011b) to solve
(12), since it may be plagued by numeric problems. Due to
the special structure of (12), this equation system can be ef-
fectively solved by the hidden variable method according
to the theory in Cox, Little, and O’Shea (2006); Gelfand,
Kapranov, and Zelevinsky (2008). This method does not in-
volve numerically unstable functions, such as the matrix in-
verse used in the Gröbner basis method. Therefore, it could
be more stable.

Without loss of generality, we treat s1 and s2 as un-
knowns, and s3 as a constant. Thus we have

fi =ais
3
1 + bis

2
1s2 + cis1s

2
2 + dis

3
2 + pi1(s3)s21+

pi2(s3)s1s2 + pi3(s3)s22 + pi4(s3)s1+ (13)
pi5(s3)s2 + pi6(s3) = 0, i = 1, 2, 3,

where pin(s3)(n = 1, · · · , 6) are polynomial functions of
s3. Then we convert fi to a homogeneous equation by intro-
ducing an auxiliary variable s0 to make all the monomials in
fi have degree three. This results in the following homoge-
neous equation system:

Fi =ais
3
1 + bis

2
1s2 + cis1s

2
2 + dis

3
2 + pi1(s3)s0s

2
1+

pi2(s3)s0s1s2 + pi3(s3)s0s
2
2 + pi4(s3)s20s1+ (14)

pi5(s3)s20s2 + pi6(s3)s30 = 0, i = 1, 2, 3.

We can find that Fi = fi when s0 = 1. That is to say, given
s3, if [s1, s2] is a solution of (13), [1, s1, s2] will be a solution
of (14), and vice versa.

Assume that a, b and c are non-negative integers and sat-
isfy a + b + c = 2, such as a = 2, b = 0, c = 0. There
are clearly 6 choices for a, b and c. Each of them will result
in a 4th-order polynomial equation. For each choice, we can
write F1, F2 and F3 as

F1 = sa+1
0 P1 + sb+1

1 Q1 + sc+1
2 R1,

F2 = sa+1
0 P2 + sb+1

1 Q2 + sc+1
2 R2,

F3 = sa+1
0 P3 + sb+1

1 Q3 + sc+1
2 R3.

(15)

Let us take a = 2, b = 0, c = 0 as an example. According to
(15), we have

Fi = s30Pi + s1Qi + s2Ri, i = 1, 2, 3 (16)

where Pi = pi6(s3), Qi = ais
2
1 + bis1s2 + cis

2
2 +

pi1(s3)s0s1 + pi2(s3)s0s2 + pi4(s3)s20, Ri = dis0s
2
2 +

pi3(s3)s0s2 + pi5(s3)s20.
The representation of Pi, Qi and Ri is not uniform, but

the solution of the polynomial system is independent of
the choice of them as proved in (Gelfand, Kapranov, and

Zelevinsky 2008). The above equations can be treated as a
linear homogeneous system for sa+1

0 , sb+1
1 and sc+1

2 . If the
polynomial system F1 = 0, F2 = 0, F3 = 0 has a non-
trivial solution, the determinant of the coefficient matrix in
(15) should be zero. Then, we get

Fabc = det

(
P1 Q1 R1

P2 Q2 R2

P3 Q3 R3

)
= 0, (17)

where det (·) represents the determinant of a matrix. We can
obtain 6 Fabc in (17) for the 6 possible combinations of a+
b+ c = 2. On the other hand, the solutions of F1 = 0, F2 =
0, F3 = 0 are also the solutions of the following equations

uFi = 0, u = s0, s1, s2, i = 1, 2, 3. (18)

We can have 9 uFi in (18). Fabc and uFi are all fourth-order
polynomials in s0, s1 and s2. Combining these equations,
we have a linear homogeneous system of 15 equations and
15 monomials

M (s3) S = 0 (19)
where M (s3) is a 15× 15 matrix with polynomials in s3 as
elements, and S = [s40, s

3
0s1, s

3
0s2, s

2
0s

2
1, s

2
0s1s2, s

2
0s

2
2, s0s

3
1,

s0s
2
1s2, s0s1s

2
2, s0s

3
2, s

4
1, s

3
1s2, s

2
1s

2
2, s1s

3
2, s

4
2]T .

The linear homogeneous system M (s3) S = 0 has a non-
trivial solution if and only if det (M (s3)) = 0. This can be
formulated as a polynomial eigenvalue problem and can be
efficiently addressed (Fitzgibbon 2001). After computing
s3, we solve the linear homogeneous equation (19) for S.
The solutions of s1 and s2 can be found from the second
and third terms in S, i.e. s30s1 and s30s2, by setting s0 = 1 as
mentioned above. Then we can get R from (1) and t from
(8). As there are multiple solutions of (12), we choose the
one with the smallest cost in (4) as the optimal solution.

Second Algebraic Distance
The global minimizer of the algebraic distance (11) is prob-
ably not the optimal solution of (4). The global minimizer
of the reprojection distance generally provides better results
(Hartley and Zisserman 2003). After obtaining the initial es-
timation of R and t, iterative optimization algorithms on the
reprojection error can be used to refine the solution. How-
ever, this is time-consuming for a large-scale problem. To
solve this problem, we introduce a second algebraic distance
that approximates the reprojection distance (3), but its Hes-
sian matrix and gradient are easy to calculate.

One problem of erepij in (3) is that its denominator in-
volves R and t, and varies for different 2D/3D line corre-
spondences. Thus, it is difficult to calculate the cost function
in (4). However, if we fix the denominator of (3) at a certain
R0 and t0, we can get an approximation of (3) around R0

and t0. We define our second algebraic distance as:

ealg2ij =
p̂ij · li√

(l1i (R0, t0))
2

+ (l2i (R0, t0))
2
. (20)

This yields the least-squares problem as:

ŝ, t̂ = arg min
s,t

Calg2, Calg2 =
1

2

∑
i

∑
j

(
ealg2ij

)2
(21)
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Figure 2: Compare the reprojection distance based cost function Crep with our second algebraic distance based cost function
Calg2 using 10 lines with zero-mean 2 pixels standard deviation Gaussian Noise. The denominator of erepij is fixed at the solution
of the first algebraic distance. We can find that Crep and Calg2 are very similar. Each figure is obtained by varying one variable
and fixing the remaining variables.

When R0 and t0 are close to the optimal solution, ealg2ij

will approximate erepij around the optimal solution. Thus
Calg2 will accordingly approximateCrep around the optimal
solution. Figure 2 compares Calg2 with Crep for 10 lines. It
is obvious that Calg2 can well approximate Crep using the
solution from the first step. As the denominator of (20) is
a scalar now, ealg2ij is a polynomial function. We can easily
calculate the summation Calg2.

We do not directly solve the first-order optimality con-
dition of Calg2. Instead, we use the damped Newton iter-
ation to minimize this function, as the Hessian matrix and
the gradient can be efficiently calculated for the polynomial
function. The iterative algorithm is initialized with the so-
lution from the first step. For the kth iteration, we compute
the Hessian matrix H and the gradient vector ∇Calg2 of
Calg2. Then we update the solution with [sk+1; tk+1] =

[sk; tk] − (H + λI6)
−1∇Calg2. λ is adjusted according to

the LM algorithm (Moré 1978) to ensure the cost function is
reduced at every step.

We can repeat this process again when the minimization
of Calg2 converges. But we did not observe significant im-
provement for additional iterations in our experiments. This
is because the result from the first step is close to the optimal
solution. In this case, Calg2 can well approximate Crep, as
illustrated in Figure 2. As a result, the global minimum of
Calg2 approximates the global minimum of Crep.

We summarize the main part of our algorithm as follows:
Input: N(N ≥ 3) 2D/3D line correspondences
Output: camera pose R and t relative to the world frame

1. Construct the cost function Calg1 in (11).
2. Solve the first-order optimality conditions of Calg1

with the hidden variable method introduced above to
get the CGR parameters s. Then solve for t by (8).

3. Choose s0 and t0 with the minimal cost of (4) as the
solution.

4. Construct Calg2 using s0 and t0, and minimize Calg2

by the damped Newton iteration.

Experiments
In this section, we compare our algorithm, referred to as
OAPnL, with previous works including OPnPL (Vakhi-

tov, Funke, and Moreno-Noguer 2016), DLTCom-
bined Lines (Bronislav Přibyl 2015), DLT Plucker Lines
(Přibyl, Zemčı́k, and Čadı́k 2017), LPnL DLT (Xu et al.
2017), LPnL Bar LS (Xu et al. 2017), LPnL Bar ENull
(Xu et al. 2017), ASPnL (Xu et al. 2017), Ansar (Ansar
and Daniilidis 2003), Mirzaei (Mirzaei and Roumeliotis
2011b). We evaluate the results from the two steps of our
algorithm denoted as OAPnL I and OAPnL II, respec-
tively. We also minimize the reprojection cost (4) by the
LM method (Moré 1978), initialized by the solution of
OAPnL I. We denote it as OAPnL I+GeoLM. We do not
consider the 2D/3D endpoint mismatching problem as most
related works, since it can be solved by shifting the endpoint
and computing a new PnL problem (Vakhitov, Funke, and
Moreno-Noguer 2016). Thus we focus on the accuracy of
the PnL algorithm itself. The algorithms are evaluated by
accuracy and computational time.

Experiments with Synthetic Data
The virtual camera has resolution 640 × 480 pixels and fo-
cal length 800. The camera is randomly placed within a
[−10m, 10m]

3 cube. We uniformly sample the Euler an-
gles α, β, γ of the rotation matrix ( α, γ ∈ [0◦, 360◦] and
β ∈ [0◦, 180◦]). N 2D/3D line correspondences are ran-
domly yielded for each trial using the method in (Xu et al.
2017). Specifically, we first generate the end points of the 2D
lines, then the corresponding 3D lines are reconstructed by
back-projecting the end points of the 2D lines. The depths
of the 3D points are within [4m, 10m]. In addition to the
configuration that the 2D line segments are uniformly dis-
tributed in the whole image (denoted as centered case), we
also considered two challenging configurations mentioned
is the literature, i.e. uncentered case (Xu et al. 2017) and
planar case (Vakhitov, Funke, and Moreno-Noguer 2016).
In the uncentered case, the 2D line segments are within the
region [0, 160] × [0, 120] pixels. In the planar case, all the
3D lines are on a plane. We randomly generate a plane in
front of the camera, then calculate the intersection lines be-
tween the back-projections of the 2D lines and the plane.

The result of each experiment is obtained from 500 inde-
pendent trials. Denote the estimated rotation and translation
as R̂ and t̂, and the ground truth as Rgt and tgt. We evaluate
the rotation error by the angle of the axis-angle representa-
tion of R−1

gt R as Přibyl, Zemčı́k, and Čadı́k (2017), and the
translation error by

∥∥tgt − t̂
∥∥
2

/
‖tgt‖2.
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Figure 3: Experimental results for the centered non-planar configurations.

Figure 4: Experimental results for the uncentered non-planar configurations.

Nonplanar case We first consider the non-planar case.
We evaluate the robustness of different algorithms by two

experiments. Denote the standard deviation of a zero mean
Gaussian noise as δ. The first experiment varies the num-
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Figure 5: Experimental results for the centered planar configuration

ber of 2D/3D line correspondences N from 4 to 20 with a
fixed standard deviation δ = 2 pixels. The second exper-
iment keeps N = 10, while δ is increased from 0.5 to 4
pixels. The means and medians of the rotation and trans-
lation errors are shown in Figure 3 and 4. The uncentered
case is more challenging than the centered case. The estima-
tion error of each algorithm is larger in the uncentered case.
Our algorithm is superior to the previous works. The results
from OAPnL I are already more accurate than the previous
works, and are close to the results from OAPnL I+GeoLM.
OAPnL II gives better result than OAPnL I, and is compa-
rable with OAPnL I+GeoLM.

Planar case Most of the algorithms fail to deal with
the planar case, including some nonlinear formulation algo-
rithms, such as ASPnL (Xu et al. 2017) and Mirzaei (Mirzaei
and Roumeliotis 2011b). This phenomenon is also observed
in (Přibyl, Zemčı́k, and Čadı́k 2017) and (Vakhitov, Funke,
and Moreno-Noguer 2016). As in the non-planar case, we
evaluate the robustness of different algorithms by two ex-
periments, i.e. varying N ∈ [4, 20] while fixing δ = 2
pixels, and increasing δ from 0.5 to 4 pixels with step 0.5
while keepingN = 10. For the line distribution, we consider
the centered case. We compared our algorithm with OPnPL
and EPnPL Planar. EPnPL Planar is an extension of the
planar EPnP algorithm (Lepetit, Moreno-Noguer, and Fua
2008) to the PnL problem introduced in Vakhitov, Funke,
and Moreno-Noguer (2016). Figure 5 shows the results of
different algorithms. It is clear that our algorithm outper-
forms other algorithms. In most cases, OAPnL II gives
comparable result to OAPnL I+GeoLM. When the noise
is large as shown in Figure 5 (b), OAPnL I+GeoLM gives

slightly better result than OAPnL II. This is because the so-
lution of OAPnL I may diverge away from the optimal so-
lution when the noise increases. This enlarges the difference
between ealg2ij and erepij around the optimal solution.

Experiments with Real Data
We also compare our algorithm with previous works using
real images. Ten datasets (including VGG dataset and MPI
dataset (Jain et al. 2010) ) with ground truth camera poses
and 2D/3D line correspondences are used to evaluate the al-
gorithms. The details of the datasets are listed in Table 1.

In this experiment, we use the absolute translation error∥∥tgt − t̂
∥∥
2

as (Přibyl, Zemčı́k, and Čadı́k 2017). The rota-
tion error is the same as the experiment with synthetic data.
We compute the mean rotation and translation errors of our
algorithm and OPnPL. The estimation errors of other al-
gorithms are from Přibyl, Zemčı́k, and Čadı́k (2017). The
experimental results are shown in Table 1. Our algorithm
OAPnL I and OAPnL II outperform other algorithms.
OAPnL II gives similar results as OAPnL I+GeoLM.

Computational Time
We evaluate the computational time of different algorithms
on a laptop with a i7 2.9 GHZ cpu. The number of lines
N varies from 5 to 1000. We conducted 500 independent
trials for each N . We do not plot the computational time
of Ansar’s algorithm, as it is too slow. Figure 6 (a) gives
the average computational time of all the algorithms in mil-
liseconds (ms) w.r.t. N . Our algorithm is slower than most
of the algorithms based on linearization, but is faster than
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Table 1: Experimental results and dataset characteristics. ∆θ(◦) is the angle of the angle-axis representation of R−1
gt R̂. ∆t(m)

is the absolute translation error
∥∥tgt − t̂

∥∥
2
. The best results are labeled by bold font.

Dataset BB STR TFH MH COR MC1 MC2 MC3 ULB WDC

#images 66 20 72 10 11 3 3 3 3 5
#lines 870 1841 828 30 69 295 302 177 253 380

Mirzaei ∆θ 88.18 0.90 32.24 0.46 0.22 4.83 15.47 5.00 2.51 36.52
∆t 168.47 1.92 11.04 0.04 0.10 1.53 7.37 1.82 1.27 6.44

OPnPL ∆θ 0.19 0.09 0.42 0.28 0.07 0.03 0.03 0.06 0.06 0.13
∆t 0.81 0.07 0.31 0.02 0.02 0.01 0.01 0.02 0.02 0.06

DLT Combd Lines ∆θ 0.40 0.22 0.39 0.41 0.11 0.11 0.15 0.16 0.20 0.23
∆t 1.88 0.38 0.32 0.04 0.04 0.04 0.07 0.05 0.08 0.12

DLT Plücker Lines ∆θ 1.04 0.93 1.11 17.58 0.38 0.28 0.22 0.48 0.77 0.34
∆t 1.88 0.38 0.32 0.04 0.04 0.04 0.07 0.05 0.08 0.12

LPnL Bar ENull ∆θ 0.30 0.11 0.57 0.32 0.10 0.04 0.03 0.07 0.39 0.08
∆t 1.13 0.16 0.45 0.02 0.04 0.01 0.02 0.02 0.18 0.05

LPnL Bar LS ∆θ 1.98 0.15 1.10 0.45 0.13 0.03 0.03 0.09 0.49 0.18
∆t 7.23 0.27 1.05 0.04 0.05 0.01 0.02 0.03 0.22 0.11

ASPnL ∆θ 37.82 22.08 7.76 0.25 0.10 0.15 0.20 2.08 4.89 0.51
∆t 76.61 30.47 6.11 0.02 0.03 0.04 0.08 0.74 2.22 0.23

OAPnL I ∆θ 0.18 0.08 0.60 0.24 0.05 0.03 0.02 0.07 0.12 0.09
∆t 0.78 0.06 0.48 0.02 0.02 0.01 0.01 0.02 0.05 0.04

OAPnL II ∆θ 0.18 0.08 0.10 0.22 0.03 0.01 0.01 0.02 0.03 0.04
∆t 0.78 0.03 0.07 0.01 0.01 0.003 0.01 0.01 0.01 0.02

OAPnL I+LM ∆θ 0.18 0.08 0.09 0.22 0.03 0.01 0.01 0.02 0.03 0.04
∆t 0.78 0.03 0.06 0.01 0.01 0.003 0.01 0.01 0.01 0.02

Figure 6: (a) Computation time of all the algorithms. (b)
Computational time of algorithms based on nonlinear for-
mulation. (c) Computation time of our algorithm and algo-
rithms based on linear formulation

LPnL DLT when N is large. However, our algorithm is su-
perior to them in terms of accuracy and applicability. Fig-
ure 6 (b) illustrates the computational time of the algorithms
based on nonlinear formulation. OAPnL I is faster than all
of them except ASPnL when N is small, as ASPnL only
needs to solve a 15th order polynomial equation. But the
running time of ASPnL quickly increases, thus it is not suit-
able for real-time applications when N is large. OAPnL II
is much more efficient than OAPnL I+GeoLM. OAPnL I
and OAPnL II can process 1000 lines around 5ms and
11ms, respectively. Thus, our algorithm is applicable to real-
time applications.

Conclusions and Future Work

In this paper we propose a novel algorithm to address the
PnL problem. We design two algebraic distances to approx-
imate the reprojection distance. The PnL problem is solved
by consecutively minimizing two polynomial cost functions
derived from the two algebraic distances. We introduce a
novel hidden variable method to solve the first-order opti-
mality conditions of the first problem. This method utilizes
the special structure of the resulting polynomial system. This
makes it more stable than the general Gröbner basis based
methods adopted in the previous works. This method can
be extended to other problems which are formulated as a
similar polynomial system. We adopt the damped Newton
iteration to minimize the second minimization problem, as
the Hessian matrix and the gradient can be efficiently cal-
culated for the polynomial cost function. We evaluated our
algorithm by experiments on synthetic and real data. The
results show that the first algebraic distance alone outper-
forms the state-of-the-art methods in terms of accuracy and
applicability. The second step is comparable to the iterative
method based on the reprojection distance, but much faster.
Our proposed algorithm is scalable and applicable to real-
time applications.

A more efficient method to solve (19) is to compute
det (M (s3)) by the quotient-free Gaussian Elimination
(Hartley and Li 2012). We plan to implement this algorithm
to further improve the speed of our algorithm.
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