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Abstract

This paper studies the dynamic generator model for spatial-
temporal processes such as dynamic textures and action se-
quences in video data. In this model, each time frame of the
video sequence is generated by a generator model, which is
a non-linear transformation of a latent state vector, where the
non-linear transformation is parametrized by a top-down neu-
ral network. The sequence of latent state vectors follows a
non-linear auto-regressive model, where the state vector of
the next frame is a non-linear transformation of the state vec-
tor of the current frame as well as an independent noise vec-
tor that provides randomness in the transition. The non-linear
transformation of this transition model can be parametrized
by a feedforward neural network. We show that this model
can be learned by an alternating back-propagation through
time algorithm that iteratively samples the noise vectors and
updates the parameters in the transition model and the gen-
erator model. We show that our training method can learn
realistic models for dynamic textures and action patterns.

1 Introduction
1.1 The model
Most physical phenomena in our visual environments are
spatial-temporal processes. In this paper, we study a gener-
ative model for spatial-temporal processes such as dynamic
textures and action sequences in video data. The model is
a non-linear generalization of the linear state space model
proposed by (Doretto et al. 2003) for dynamic textures. The
model of (Doretto et al. 2003) is a hidden Markov model,
which consists of a transition model that governs the transi-
tion probability distribution in the state space, and an emis-
sion model that generates the observed signal by a map-
ping from the state space to the signal space. In the model
of (Doretto et al. 2003), the transition model is an auto-
regressive model in the d-dimensional state space, and the
emission model is a linear mapping from the d-dimensional
state vector to the D-dimensional image. In (Doretto et al.
2003), the emission model is learned by treating all the
frames of the input video sequence as independent obser-
vations, and the linear mapping is learned by principal com-
ponent analysis via singular value decomposition. This re-
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duces the D-dimensional image to a d-dimensional state
vector. The transition model is then learned on the sequence
of d-dimensional state vectors by a first order linear auto-
regressive model.

Given the high approximation capacity of the modern
deep neural networks, it is natural to replace the linear struc-
tures in the transition and emission models of (Doretto et
al. 2003) by the neural networks. This leads to the follow-
ing dynamic generator model that has the following two
components. (1) The emission model, which is a generator
network that maps the d-dimensional state vector to the D-
dimensional image via a top-down deconvolution network.
(2) The transition model, where the state vector of the next
frame is obtained by a non-linear transformation of the state
vector of the current frame as well as an independent Gaus-
sian white noise vector that provides randomness in the tran-
sition. The non-linear transformation can be parametrized by
a feedforward neural network or multi-layer perceptron. In
this model, the latent random vectors that generate the ob-
served data are the independent Gaussian noise vectors, also
called innovation vectors in (Doretto et al. 2003). The state
vectors and the images can be deterministically computed
from these noise vectors.

1.2 The learning algorithm
Such dynamic models have been studied in the computer vi-
sion literature recently, notably (Tulyakov et al. 2017). How-
ever, the models are usually trained by the generative adver-
sarial networks (GAN) (Goodfellow et al. 2014) with an ex-
tra discriminator network that seeks to distinguish between
the observed data and the synthesized data generated by the
dynamic model. Such a model may also be learned by vari-
ational auto-encoder (VAE) (Kingma and Welling 2014) to-
gether with an inference model that infers the sequence of
noise vectors from the sequence of observed frames. Such
an inference model may require a sophisticated design.

In this paper, we show that it is possible to learn the model
on its own using an alternating back-propagation through
time (ABPTT) algorithm, without recruiting a separate dis-
criminator model or an inference model. The ABPTT algo-
rithm iterates the following two steps. (1) Inferential back-
propagation through time, which samples the sequence of
noise vectors given the observed video sequence using the
Langevin dynamics, where the gradient of the log posterior
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distribution of the noise vectors can be calculated by back-
propagation through time. (2) Learning back-propagation
through time, which updates the parameters of the transition
model and the emission model by gradient ascent, where
the gradient of the log-likelihood with respect to the model
parameters can again be calculated by back-propagation
through time.

The alternating back-propagation (ABP) algorithm was
originally proposed for the static generator network (Han
et al. 2017). In this paper, we show that it can be general-
ized to the dynamic generator model. In our experiments,
we show that we can learn the dynamic generator models
using the ABPTT algorithm for dynamic textures and action
sequences.

Two advantages of the ABPTT algorithm for the dynamic
generator models are convenience and efficiency. The al-
gorithm can be easily implemented without designing an
extra network. Because it only involves back-propagations
through time with respect to a single model, the computa-
tion is very efficient.

1.3 Related work
The proposed learning method is related to the following
themes of research.

Dynamic textures. The original dynamic texture model
(Doretto et al. 2003) is linear in both the transition model
and the emission model. Our work is concerned with a dy-
namic model with non-linear transition and emission mod-
els. See also (Tesfaldet, Brubaker, and Derpanis 2018) and
references therein for some recent work on dynamic tex-
tures.

Chaos modeling. The non-linear dynamic generator
model has been used to approximate chaos in a recent pa-
per (Pathak et al. 2017). In the chaos model, the innovation
vectors are given as inputs, and the model is deterministic.
In contrast, in the model studied in this paper, the innova-
tion vectors are independent Gaussian noise vectors, and the
model is stochastic.

GAN and VAE. The dynamic generator model can also be
learned by GAN or VAE. See (Tulyakov et al. 2017) (Saito,
Matsumoto, and Saito 2017) and (Vondrick, Pirsiavash, and
Torralba 2016) for recent video generative models based on
GAN. However, GAN does not infer the latent noise vectors.
In VAE (Kingma and Welling 2014), one needs to design an
inference model for the sequence of noise vectors, which is
a non-trivial task due to the complex dependency structure.
Our method does not require an extra model such as a dis-
criminator in GAN or an inference model in VAE.

Models based on spatial-temporal filters or kernels. The
patterns in the video data can also be modeled by spatial-
temporal filters by treating the data as 3D (2 spatial dimen-
sions and 1 temporal dimension), such as a 3D energy-based
model (Xie, Zhu, and Wu 2017) where the energy function
is parametrized by a 3D bottom-up ConvNet, or a 3D gen-
erator model (Han et al. 2019) where a top-down 3D Con-
vNet maps a latent random vector to the observed video data.
Such models do not have a dynamic structure defined by a
transition model, and they are not convenient for predicting
future frames.

1.4 Contribution
The main contribution of this paper lies in the combination
of the dynamic generator model and the alternating back-
propagation through time algorithm. Both the model and al-
gorithm are simple and natural, and their combination can
be very useful for modeling and analyzing spatial-temporal
processes. The model is one-piece in the sense that (1) the
transition model and emission model are integrated into a
single latent variable model. (2) The learning of the dy-
namic model is end-to-end, which is different from (Han et
al. 2017)’s treatment. (3) The learning of our model does not
need to recruit a discriminative network (like GAN) or an in-
ference network (like VAE), which makes our method sim-
ple and efficient in terms of computational cost and model
parameter size.

2 Model and learning algorithm
2.1 Dynamic generator model
Let X = (xt, t = 1, ..., T ) be the observed video sequence,
where xt is a frame at time t. The dynamic generator model
consists of the following two components:

st = Fα(st−1, ξt), (1)
xt = Gβ(st) + εt, (2)

where t = 1, ..., T . (1) is the transition model, and (2) is the
emission model. st is the d-dimensional hidden state vector.
ξt ∼ N(0, I) is the noise vector of a certain dimensional-
ity. The Gaussian noise vectors (ξt, t = 1, ..., T ) are inde-
pendent of each other. The sequence of (st, t = 1, ..., T )
follows a non-linear auto-regressive model, where the noise
vector ξt encodes the randomness in the transition from st−1

to st in the d-dimensional state space. Fα is a feedforward
neural network or multi-layer perceptron, where α denotes
the weight and bias parameters of the network. We can adopt
a residual form (He et al. 2016) for Fα to model the change
of the state vector. xt is the D-dimensional image, which is
generated by the d-dimensional hidden state vector st.Gβ is
a top-down convolutional network (sometimes also called
deconvolution network), where β denotes the weight and
bias parameters of this top-down network. εt ∼ N(0, σ2ID)
is the residual error. We let θ = (α, β) denote all the model
parameters.

Let ξ = (ξt, t = 1, ..., T ). ξ consists of the latent random
vectors that need to be inferred from X . Although xt is gen-
erated by the state vector st, S = (st, t = 1, ..., T ) are gen-
erated by ξ. In fact, we can write X = Hθ(ξ) + ε, where Hθ

composes Fα and Gβ over time, and ε = (εt, t = 1, ..., T )
denotes the observation errors.

2.2 Learning and inference algorithm
Let p(ξ) be the prior distribution of ξ. Let pθ(X|ξ) ∼
N(Hθ(ξ), σ

2I) be the conditional distribution of X given
ξ, where I is the identity matrix whose dimension
matches that of X . The marginal distribution is pθ(X) =∫
p(ξ)pθ(X|ξ)dξ with the latent variable ξ integrated

out. We estimate the model parameter θ by the max-
imum likelihood method that maximizes the observed-
data log-likelihood log pθ(X), which is analytically in-
tractable. In contrast, the complete-data log-likelihood
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log pθ(ξ,X), where pθ(ξ,X) = p(ξ)pθ(X|ξ), is analyti-
cally tractable. The following identity links the gradient of
the observed-data log-likelihood log pθ(X) to the gradient
of the complete-data log-likelihood log pθ(ξ,X):

∂

∂θ
log pθ(X) =

1

pθ(X)

∂

∂θ
pθ(X)

=
1

pθ(X)

∫ [
∂

∂θ
log pθ(ξ,X)

]
pθ(ξ,X)dξ

= Epθ(ξ|X)

[
∂

∂θ
log pθ(ξ,X)

]
, (3)

where pθ(ξ|X) = pθ(ξ,X)/pθ(X) is the posterior distribu-
tion of the latent ξ given the observed X . The above expec-
tation can be approximated by Monte Carlo average. Specif-
ically, we sample from the posterior distribution pθ(ξ|X) us-
ing the Langevin dynamics:

ξ(τ+1) = ξ(τ) +
δ2

2

∂

∂ξ
log pθ(ξ

(τ)|X) + δzτ , (4)

where τ indexes the time step of the Langevin dynamics (not
to be confused with the time step of the dynamics model,
t), zτ ∼ N(0, I) where I is the identity matrix whose di-
mension matches that of ξ, and ξ(τ) = (ξ

(τ)
t , t = 1, ..., T )

denotes all the sampled latent noise vectors at time step τ .
δ is the step size of the Langevin dynamics. We can cor-
rect for the finite step size by adding a Metropolis-Hastings
acceptance-rejection step. After sampling ξ ∼ pθ(ξ|X) us-
ing the Langevin dynamics, we can update θ by stochastic
gradient ascent

∆θ ∝ ∂

∂θ
log pθ(ξ,X), (5)

where the stochasticity of the gradient ascent comes from
the fact that we use Monte Carlo to approximate the expecta-
tion in (3). The learning algorithm iterates the following two
steps. (1) Inference step: Given the current θ, sample ξ from
pθ(ξ|X) according to (4). (2) Learning step: Given ξ, update
θ according to (5). We can use a warm start scheme for sam-
pling in step (1). Specifically, when running the Langevin
dynamics, we start from the current ξ, and run a finite num-
ber of steps. Then we update θ in step (2) using the sampled
ξ. Such a stochastic gradient ascent algorithm has been ana-
lyzed by (Younes 1999).

Since ∂
∂ξ log pθ(ξ|X) = ∂

∂ξ log pθ(ξ,X), both steps (1)
and (2) involve derivatives of

log pθ(ξ,X) = −
1

2

[
‖ξ‖2 +

1

σ2
‖X −Hθ(ξ)‖2

]
+ const,

where the constant term does not depend on ξ or θ. Step
(1) needs to compute the derivative of log pθ(ξ,X) with
respect to ξ. Step (2) needs to compute the derivative of
log pθ(ξ,X) with respect to θ. Both can be computed by
back-propagation through time. Therefore the algorithm is
an alternating back-propagation through time algorithm.
Step (1) can be called inferential back-propagation through
time. Step (2) can be called learning back-propagation
through time.

To be more specific, the complete-data log-likelihood
log pθ(ξ,X) can be written as (up to an additive constant,
assuming σ2 = 1)

L(θ, ξ) = −1

2

T∑
t=1

[
‖xt −Gβ(st)‖2 + ‖ξt‖2

]
. (6)

The derivative with respect to β is

∂L

∂β
=

T∑
t=1

(xt −Gβ(st))
∂Gβ(st)

∂β
. (7)

The derivative with respect to α is

∂L

∂α
=

T∑
t=1

(xt −Gβ(st))
∂Gβ(st)

∂st

∂st
∂α

, (8)

where ∂st
∂α can be computed recursively. To infer ξ, for any

fixed time point t0,

∂L

∂ξt0
=

T∑
t=t0+1

(xt −Gβ(st))
∂Gβ(st)

∂st

∂st
∂ξt0

− ξt0 , (9)

where ∂st
∂ξt0

can again be computed recursively.
A minor issue is the initialization of the transition model.

We may assume that s0 ∼ N(0, I). In the inference step, we
can sample s0 together with ξ using the Langevin dynamics.

It is worth mentioning the difference between our algo-
rithm and the variational inference. While variational infer-
ence is convenient for learning a regular generator network,
for the dynamic generator model studied in this paper, it is
not a simple task to design an inference model that infers
the sequence of latent vectors ξ = (ξt, t = 1, ..., T ) from
the sequence of X = (xt, t = 1, ..., T ). In contrast, our
learning method does not require such an inference model
and can be easily implemented. The inference step in our
model can be done via directly sampling from the posterior
distribution pθ(ξ|X), which is powered by back-propagation
through time. Additionally, our model directly targets maxi-
mum likelihood, while model learning via variational infer-
ence is to maximize a lower bound.

2.3 Learning from multiple sequences
We can learn the model from multiple sequences of differ-
ent appearances but of similar motion patterns. Let X(i) =

(x
(i)
t , t = 1, ..., T ) be the i-th training sequence, i = 1, ..., n.

We can use an appearance (or content) vector a(i) for each
sequence to account for the variation in appearance. The
model is of the following form

s
(i)
t = Fα(s

(i)
t−1, ξ

(i)
t ), (10)

x
(i)
t = Gβ(s

(i)
t , a(i)) + ε

(i)
t , (11)

where a(i) ∼ N(0, I), and a(i) is fixed over time for each se-
quence i. To learn from such training data, we only need to
add the Langevin sampling of a(i). If the motion sequences
are of different motion patterns, we can also introduce an-
other vector m(i) ∼ N(0, I) to account for the variations
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of motion patterns, so that the transition model becomes
s
(i)
t = Fα(s

(i)
t−1, ξ

(i)
t ,m(i)) with m(i) fixed for the sequence

i.
Recently (Tulyakov et al. 2017) studies a similar model

where the transition model is modeled by a recurrent neu-
ral network (RNN) with another layer of hidden vectors.
(Tulyakov et al. 2017) learns the model using GAN. In
comparison, we use a simpler Markov transition model and
we learn the model by alternating back-propagation through
time. Even though the latent state vectors follow a Marko-
vian model, the observed sequence is non-Markovian.

Algorithm 1 Learning and inference by alternating back-
propagation through time (ABPTT)

Input: (1) training sequences {X(i) = (x
(i)
t , t =

1, ..., T ), i = 1, ..., n}
(2) number of Langevin steps l
(3) number of learning iterations N .

Output: (1) learned parameters θ = (α, β)

(2) inferred noise vectors ξ(i) = (ξ
(i)
t , t = 1, ..., T ).

1: Initialize θ = (α, β). Initialize ξ(i) and a(i). Initialize
k = 0.

2: repeat
3: Inferential back-propagation through time: For

i = 1, ..., n, sample ξ(i) and a(i) by running l steps
of Langevin dynamics according to (4), starting from
their current values.

4: Learning back-propagation through time: Update
α and β by gradient ascent according to (8) and (7).

5: Let k ← k + 1
6: until k = N

Algorithm 1 summarizes the learning and inference algo-
rithm for multiple sequences with appearance vectors. If we
learn from a single sequence such as dynamic texture, we
can remove the appearance vector a(i), or simply fix it to a
zero vector.

3 Related models
In this section, we shall review related models of spatial-
temporal processes in order to put our work into the big pic-
ture.

3.1 Two related spatial-temporal models
Let X = (xt, t = 1, ..., T ) be the observed sequence. We
have studied the following energy-based model (Xie, Zhu,
and Wu 2017):

p(X; θ) =
1

Z(θ)
exp [fθ(X)] , (12)

where fθ(X) is a function of the whole sequence X , which
can be defined by a bottom-up network that consists of mul-
tiple layers of spatial-temporal filters that capture the spatial-
temporal patterns in X at multiple layers. θ collects all the
weight and bias parameters of the bottom-up network. The

model can be learned by maximum likelihood, and the learn-
ing algorithm follows an “analysis by synthesis” scheme.
The algorithm iterates (1) Synthesis: generating synthesized
sequences from the current model by Langevin dynamics.
(2) Analysis: updating θ based on the difference between
the observed sequences and synthesized sequences. The two
steps play an adversarial game with fθ serving as a critic.
The synthesis step seeks to modify the synthesized examples
to increase fθ scores of the synthesized examples, while the
analysis step seeks to modify θ to increase the fθ scores of
the observed examples relative to the synthesized examples.

We have also studied the following generator model (Han
et al. 2019)

s ∼ N(0, Id), X = gθ(s) + ε, (13)
where the latent state vector s is defined for the whole se-
quence, and is assumed to follow a prior distribution which
is d-dimensional Gaussian white noise. The whole sequence
is then generated by a function gθ(s) that can be defined by a
top-down network that consists of multiple layers of spatial-
temporal kernels. θ collects all the weight and bias parame-
ters of the top-down network. ε is the Gaussian noise image
sequence. This generator model can be learned by maximum
likelihood, and the learning algorithm follows the alternating
back-propagation method of (Han et al. 2017).

In (Xie et al. 2018), we show that we can learn the above
two models simultaneously using a cooperative learning
scheme. We can also cooperatively train the energy-based
model (12) and the dynamic generator model (1) and (2)
studied in this paper simultaneously, where the dynamic
generator model serves as an approximate sampler of the
energy-based model.

Unlike the dynamic generator model (1) and (2) studied
in this paper, the above two models (12) and (13) are not of
a dynamic or causal nature in that they do not directly evolve
or unfold over time.

3.2 Action, control, policy, and cost
If we observe the sequence of actions a = (at, t = 1, ..., T )
applied to the system, we can extend the forward dynamic
model (1) to

st = Fα(st−1, at, ξt). (14)
The model can still be learned by alternating back-
propagation through time. With a properly defined cost func-
tion, we can optimize the sequence a = (at, t = 1, ..., T )
for control. We may also learn a policy π(at | st−1) directly
from demonstrations by expert controllers. We may call the
resulting model that consists of both dynamics and control
policy as the controlled dynamic generator model.

We can also learn the cost function from expert demon-
strations by inverse reinforcement learning (Ziebart et al.
2008) (Abbeel and Ng 2004), where we can general-
ize the above energy-based model (12) to pθ(X,a) =

1
Z(θ) exp[fθ(X,a)], where −fθ(X,a) can be interpreted as
the total cost. We can learn both the cost function and the
policy cooperatively as in (Xie et al. 2018), where we fit the
energy-based model to the demonstration data while using
the controlled dynamic generator model as an approximate
sampler of the energy-based model.
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3.3 Velocity field, optical flow, and physics
In our work, the training data are image frames of video se-
quences. If we are given the velocity fields over time, we
can also learn the dynamic generator model from such data,
such as turbulence. Even with raw image sequences, it may
still be desirable to learn a model that generates the velocity
fields or optical flows over time, which in turn generate the
image frames over time. This will lead to a more physically
meaningful model of motion, which can be considered the
mental physics. In our recent work on deformable genera-
tor network (Xing et al. 2018), we model the deformations
explicitly. We can combine the deformable generator model
and the dynamic generator model. We may also consider re-
stricting the transition model to be linear to make the state
vector close to real physical variables.

4 Experiments
4.1 Experiment 1: Learn to generate dynamic

textures
We first learn the model for dynamic textures, which are se-
quences of images of moving scenes that exhibit stationar-
ity in time. We learn a separate model from each example.
The video clips for training are collected from DynTex++
dataset of (Ghanem and Ahuja 2010) and the Internet. Each
observed video clip is prepared to be of the size 64 pixels
× 64 pixels × 60 frames. We implement our model and
learning algorithm in Python with Tensorflow (Abadi and
et al. 2015). The transition model is a feedforward neu-
ral network with three layers. The network takes a 100-
dimensional state vector st−1 and a 100-dimensional noise
vector ξt as input and produces a 100-dimensional vector
rt, so that st = tanh(st−1 + rt). The numbers of nodes
in the three layers of the feedforward neural network are
{20, 20, 100}. The emission model is a top-down deconvo-
lution neural network or generator model that maps the 100-
dimensional state vector (i.e., 1 × 1 × 100) to the image
frame of size 64 × 64 × 3 by 6 layers of deconvolutions
with kernel size of 4 and up-sampling factor of 2 from top to
bottom. The numbers of channels at different layers of the
generator are {512, 512, 256, 128, 64, 3}. Batch normaliza-
tion (Ioffe and Szegedy 2015) and ReLU layers are added
between deconvolution layers, and tanh activation function
is used at the bottom layer to make the output signals fall
within [−1, 1]. We use the Adam (Kingma and Ba 2015) for
optimization with β1 = 0.5 and the learning rate is 0.002.
We set the Langevin step size to be δ = 0.03 for all latent
variables, and the standard deviation of residual error σ = 1.
We run l = 15 steps of Langevin dynamics for inference of
the latent noise vectors within each learning iteration.

Once the model is learned, we can synthesize dynamic
textures from the learned model by firstly randomly initial-
izing the initial hidden state s0, and then following Equation
(1) and (2) to generate a sequence of images with a sequence
of innovation vectors {ξt} sampled from Gaussian distribu-
tion. In practice, we use ”burn-in” to throw away some it-
erations at the beginning of the dynamic process to ensure
the transition model enters the high probability region (i.e.,

the state sequence {st} converges to stationarity), no matter
where s0 starts from.

To speed up the training process and relieve the bur-
den of computer memory, we can use truncated back-
propagation through time in training our model. That is,
we divide the whole training sequence into different non-
overlapped chunks, and run forward and backward passes
through chunks of the sequence instead of the whole se-
quence. We carry hidden states {st} forward in time forever,
but only back-propagate for the length (the number of image
frames) of chunk. In this experiment, the length of chunk is
set to be 30 image frames.

An “infinite length” dynamic texture can be synthesized
from a typically “short” input sequence by just drawing
“infinite” IID samples from Gaussian distribution. Figure 1
shows five results. For each example, the first row displays
6 frames of the observed 60-frame sequence, while the sec-
ond and third rows display 6 frames of two synthesized se-
quences of 120 frames in length, which are generated by the
learned model.

Similar to (Tesfaldet, Brubaker, and Derpanis 2018), we
perform a human perceptual study to evaluate the perceived
realism of the synthesized examples. We randomly select 20
different human users. Each user is sequentially presented
a pair of synthesized and real dynamic textures in a ran-
dom order, and asked to select which one is fake after view-
ing them for a specified exposure time. The “fooling” rate,
which is the user error rate in discriminating real versus syn-
thesized dynamic textures, is calculated to measure the re-
alism of the synthesized results. Higher “fooling” rate in-
dicates more realistic and convincing synthesized dynamic
textures. “Perfect” synthesized results corresponds to a fool-
ing rate of 50% (i.e., random guess), meaning that the users
are unable to distinguish between the synthesized and real
examples. The number of pairwise comparisons presented
to each user is 36 (12 categories × 3 examples). The expo-
sure time is chosen from discrete durations between 0.3 and
3.6 seconds.

We compare our model with three baseline methods,
such as LDS (linear dynamic system) (Doretto et al. 2003),
TwoStream (Tesfaldet, Brubaker, and Derpanis 2018) and
MoCoGAN (Tulyakov et al. 2017), for dynamic texture syn-
thesis in terms of “fooling” rate on 12 dynamic texture
videos (e.g., waterfall, burning fire, waving flag, etc).

LDS represents dynamic textures by a linear autoregres-
sive model; TwoStream method synthesizes dynamic tex-
tures by matching the feature statistics extracted from two
pre-trained convolutional networks between synthesized and
observed examples; and MoCoGAN is a motion and content
decomposed generative adversarial network for video gen-
eration.

Figure 2 summarizes the comparative result by showing
the “fooling” rate as a function of exposure time across
methods. We can find that as the given exposure time be-
comes longer, it becomes easier for the users to observe the
difference between the real and synthesized dynamic tex-
tures. More specifically, the “fooling” rate decreases as ex-
posure time increases, and then remains at the same level
for longer exposures. Overall, our method can generate more
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Figure 1: Generating dynamic textures. For each category,
the first row displays 6 frames of the observed sequence, and
the second and third rows show the corresponding frames of
two synthesized sequences generated by the learned model.
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Figure 2: Limited time pairwise comparison results. Each
curve shows the “fooling” rates (realism) over different ex-
posure times.

realistic dynamic textures than other baseline methods. The
result also shows that the linear model (i.e., LDS) outper-
forms the more sophisticated baselines (i.e., TwoStream and
MoCoGAN). The reason is because when learning from a
single example, the MoCoGAN may not fit the training data
very well due to the unstable and complicated adversarial
training scheme as well as a large number of parameters to
be learned, and the TwoStream method has a limitation that
it cannot handle dynamic textures that have structured back-
ground (e.g., burning fire heating a pot).

4.2 Experiment 2: Learn to generate action
patterns with appearance consistency

We learn the model from multiple examples with different
appearances by using a 100-dimensional appearance vector.
We infer the appearance vector and the initial state via a 15-
step Langevin dynamics within each iteration of the learn-
ing process. We learn the model using the Weizmann ac-
tion dataset (Gorelick et al. 2007), which contains 81 videos
of 9 people performing 9 actions, including jacking, jump-
ing, walking, etc, as well as an animal action dataset that
includes 20 videos of 10 animals performing running and
walking collected from the Internet. Each video is scaled to
64 × 64 pixels ×30 frames. We adopt the same structure of
the model as the one in Section 4.1, except that the emis-
sion model takes the concatenation of the appearance vector
and the hidden state as input. For each experiment, a single
model is trained on the whole dataset without annotations.
The dimensions of the hidden state s and the Gaussian noise
ξ are set to be 100 and 50 respectively for the Weizmann
action dataset, and 3 and 100 for the animal action dataset.

Figure 3 shows some synthesized results for each experi-
ment. To synthesize video, we randomly pick an appearance
vector inferred from the observed video and generate new
motion pattern for that specified appearance vector by the
learned model with a noise sequence of {ξt, t = 1, .., T}
and an initial state s0 sampled from Gaussian white noise.
We show two different synthesized motions for each appear-
ance vector. With a fixed appearance, the learned model can
generate diverse motions with consistent appearance.

Figure 4 shows two examples of video interpolation by
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Figure 3: Generated action patterns. For each inferred ap-
pearance vector, two synthesized videos are displayed.

interpolating between appearance vectors of videos at the
two ends. We conduct these experiments on some videos
selected from categories “blooming” and “melting” in the
dataset of (Zhou and Berg 2016). For each example, the
videos at the two ends are generated with the appearance
vectors inferred from two observed videos. Each video in the
middle is obtained by first interpolating the appearance vec-
tors of the two end videos, and then generating the videos
using the dynamic generator. All the generated videos use
the same set of noise sequence {ξt} and s0 randomly sam-
pled from Gaussian white noise. We observe smooth transi-
tions in contents and motions of all the generated videos and
that the intermediate videos are also physically plausible.

We compare with MoCoGAN and TGAN (Saito, Mat-
sumoto, and Saito 2017) by training on 9 selected cate-
gories (e.g., PlayingCello, PlayingDaf, PlayingDhol, Play-
ingFlute, PlayingGuitar, PlayingPiano, PlayingSitar, Play-
ingTabla, and PlayingViolin) of videos in the UCF101
(Soomro, Zamir, and Shah 2012) database and following
(Saito, Matsumoto, and Saito 2017) to compute the incep-
tion score. Table 1 shows comparison results. Our model

(a) blooming

(b) melting

Figure 4: Video interpolation by interpolating between ap-
pearance latent vectors of videos at the two ends. For each
example, each column is one synthesized video. We show 3
frames for each video in each column.

outperforms the MoCoGAN and TGAN in terms of incep-
tion score.

Table 1: Inception score for models trained on 9 classes of
videos in UCF101 database.

Reference ours MoCoGAN TGAN
11.05±0.16 8.21±0.09 4.40±0.04 5.48±0.06

4.3 Experiment 3: Learn from incomplete data
Our model can learn from videos with occluded pixels and
frames. We adapt our algorithm to this task with mini-
mal modification involving the computation of

∑T
t=1 ‖xt −

Gβ(st)‖2. In the setting of learning from fully observed
videos, it is computed by summing over all the pixels of the
video frames, while in the setting of learning from partially
visible videos, we compute it by summing over only the vis-
ible pixels of the video frames. Then we can continue to use
the alternating back-propagation through time (ABPTT) al-
gorithm to infer {ξt, t = 1, ..., T} and s0, and then learn β
and α. With inferred {ξt} and s0, and learned β and α, the
video with occluded pixels or frames can be automatically
recovered by Gβ(st), where the hidden state can be recur-
sively computed by st = Fα(st−1, ξt).

Eventually, our model can achieve the following tasks: (1)
recover the occluded pixels of training videos. (2) synthe-
size new videos by the learned model. (3) recover the oc-
cluded pixels of testing videos using the learned model. Dif-
ferent from those inpainting methods where the prior model
has already been given or learned from fully observed train-
ing data, our recovery experiment is about an unsupervised
learning task, where the ground truths of the occluded pix-
els are unknown in training the model for recovery. It is also
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(c) windmill

(d) flag

Figure 5: Learning from occluded videos. (a,b) For each ex-
periment, the first row displays a segment of the occluded
sequence with black masks. The second row shows the cor-
responding segment of the recovered sequence. (c,d) The 3
frames with red bounding box are recovered by the learning
algorithm, and they are occluded in the training stage. Each
video has 70 frames and 50% frames are randomly occluded.

worth mentioning that learning from incomplete data can be
difficult for GANs (e.g., MoCoGAN), because of their lack
of an adaptive inference process in the training stage. Here
“adaptive” means the inference can be performed on input
images with different sets of occluded pixels.

We test our recovery algorithm on 6 video sequences
collected from DynTex++ dataset. Each input video is of
the size 150 pixels × 150 pixels × 70 frames. The emis-
sion model is a top-down deconvolutional neural network
that maps a 100-dimensional state vector st to the image
frame of size 150× 150× 70 by 7 layers of deconvolutions
with numbers of channels {512, 512, 256, 128, 64, 64, 3},
kernel sizes {4, 4, 4, 4, 4, 4, 7}, and up-sampling factors
{2, 2, 2, 2, 3, 3, 1} at different layers from top to bottom. We
use the same transition model and the same parameter set-
ting as in Section 4.1, except that the standard deviation of
residual error is σ = 0.5. We run 7,000 iterations to recover
each video. The length of chunk is 70.

We have two types of occlusions: (1) single region mask
occlusion, where a 60 × 60 mask is randomly placed on
each 150× 150 image frame of each video. (2) missing im-
age frames, where 50% of the image frames are randomly
blocked in each video. For each type of occlusion experi-
ment, we measure the recovery errors by the average per
pixel difference between the recovered video sequences and
the original ones (The range of pixel intensities is [0, 255]),
and compare with STGCN (Xie, Zhu, and Wu 2017), which
is a spatial-temporal deep convolutional energy-based model
that can recover missing pixels of videos by synthesis dur-
ing the learning process. We also report results obtained by
generic spatial-temporal Markov random field models with
potentials that are `1 or `2 difference between pixels of near-
est neighbors that are defined in both spatial and temporal
domains, and the recovery is accomplished by synthesizing
missing pixels via Gibbs sampling. Table 2 shows the com-
parison results. Some qualitative results for recovery by our
models are displayed in Figure 5.

Table 2: Recovery errors in occlusion experiments

(a) single region masks
ours STGCN MRF-`1 MRF-`2

flag 7.8782 8.1636 10.6586 12.5300
fountain 5.6988 6.0323 11.8299 12.1696

ocean 3.3966 3.4842 8.7498 9.8078
playing 4.9251 6.1575 15.6296 15.7085

sea world 5.6596 5.8850 12.0297 12.2868
windmill 6.6827 7.8858 11.7355 13.2036

Avg. 5.7068 6.2681 11.7722 12.6177

(b) 50% missing frames
ours STGCN MRF-`1 MRF-`2

flag 5.0874 5.5992 10.7171 12.6317
fountain 5.5669 8.0531 19.4331 13.2251

ocean 3.3666 4.0428 9.0838 9.8913
playing 5.2563 7.6103 22.2827 17.5692

sea world 4.0682 5.4348 13.5101 12.9305
windmill 6.9267 7.5346 13.3364 12.9911

Avg. 5.0454 6.3791 14.7272 13.2065

4.4 Experiment 4: Learn to remove content
The dynamic generarator model can be used to remove un-
desirable content in the video for background inpainting.
The basic idea is as follows. We first manually mask the un-
desirable moving object in each frame of the video, and then
learn the model from the masked video with the recovery al-
gorithm that we used in Section 4.3. Since there are neither
clues in the masked video nor prior knowledge to infer the
occluded object, it turns out to be that the recovery algorithm
will inpaint the empty region with the background.

Figure 6 shows two examples of removals of (a) a walking
person and (b) a moving boat respectively. The videos are
collected from (Braham and Van Droogenbroeck 2016). For
each example, the first row displays 5 frames of the original
video. The second row shows the corresponding frames with
masks occluding the target to be removed. The third row
presents the inpainting results by our algorithm. The video
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(a) removing a walking person in front of fountain

(b) removing a moving boat in the lake

Figure 6: Learn to remove content for background inpaint-
ing. For each experiment, the first row displays 5 image
frames of the original video. The second row displays the
corresponding image frames with black mask occluding the
target to be removed. The third row shows the inpainting re-
sults by our method. (a) walking person. (b) moving boat.

size is 128×128×104 in example (a) and 128×128×150 in
example (b). We adopt the same transition model as the one
in Section 4.3, and an emission model that has 7 layers of
deconvolutions with kernel size of 4, up-sampling factor of
2, and numbers of channels {512, 512, 512, 256, 128, 64, 3}
at different layers from top to bottom. The emission model
maps the 100-dimensional state vector to the image frame of
size 128× 128 pixels.

The experiment is different from the background inpaint-
ing by (Xie, Zhu, and Wu 2017), where the empty regions
of the video are inpainted by directly sampling from a prob-
ability distribution of pixels in empty region conditioned on
visible pixels. As to our model, we inpaint the empty regions
of the video by inferring all the latent variables by Langevin
dynamics.

4.5 Experiment 5: Learn to animate static image
A conditional version of the dynamic generator model can
be used for video prediction given a static image. Specif-
ically, we learn a mapping from a static image frame to
the subsequent frames. We incorporate an extra encoder Eγ ,
where γ denotes the weight and bias parameters of the en-

coder, to map the first image frame x(i)0 into its appearance
or content vector a(i) and state vector s(i)0 . The dynamic gen-
erator takes the state vector s(i)0 as the initial state and uses
the appearance vector a(i) to generate the subsequent video
frames {x(i)t , t = 1, ..., T} for the i-th video. The condi-
tional model is of the following form

[s
(i)
0 , a(i)] = Eγ(x

(i)
0 ), (15)

s
(i)
t = Fα(s

(i)
t−1, ξ

(i)
t ), (16)

x
(i)
t = Gβ(s

(i)
t , a(i)) + ε

(i)
t . (17)

We learn both the encoder and the dynamic generator (i.e.,
transition model and emission model) together by alternat-
ing back-propagation through time. The appearance vector
and the initial state are no longer hidden variables that need
to be inferred in training. Once the model is learned, given
a testing static image, the learned encoder Eγ extracts from
it the appearance vector and the initial state vector, which
generate a sequence of images by the dynamic generator.

We test our model on burning fire dataset (Xie, Zhu, and
Wu 2017), and MUG Facial Expression dataset (N. Aifanti
and Delopoulos 2010). The encoder has 3 convolutional lay-
ers with numbers of channels {64, 128, 256}, filter sizes
{5, 3, 3} and sub-sampling factors {2, 2, 1} at different lay-
ers, and one fully connected layer with the output size equal
to the dimension of the appearance vector (100) plus the di-
mension of the hidden state (80). The dimension of ξ is 20.
The other configurations are similar to what we used in Sec-
tion 4.2. We qualitatively display some results in Figure 7,
where each row is one example of image-to-video predic-
tion. For each example, the left image is the static image
frame for testing, and the rest are 6 frames of the predicted
video sequence. The results show that the predicted frames
by our method have fairly plausible motions.

5 Conclusion
This paper studies a dynamic generator model for spatial-
temporal processes. The model is a non-linear generalization
of the linear state space model where the non-linear trans-
formations in the transition and emission models are param-
eterized by neural networks. The model can be conveniently
and efficiently learned by an alternating back-propagation
through time (ABPTT) algorithm that alternatively samples
from the posterior distribution of the latent noise vectors and
then updates the model parameters. The model can be gen-
eralized by including random vectors to account for various
sources of variations, and the learning algorithm can still ap-
ply to the generalized models.

Project page
The code and more results can be found at http://www.stat.ucla.
edu/∼jxie/DynamicGenerator/DynamicGenerator.html
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(b) facial expression
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