
The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

Grading Uncompilable Programs

Rohit Takhar, Varun Aggarwal
{rohit.takhar, varun}@aspiringminds.com

Aspiring Minds

Abstract

Evaluators wish to test candidates on their ability to pro-
pose the correct algorithmic approach to solve programming
problems. Recently, several automated systems for grading
programs have been proposed, but none of them address un-
compilable codes. We present the first approach to grade un-
compilable codes and provide semantic feedback on them us-
ing machine learning. We propose two methods that allow us
to derive informative semantic features from programs. One
of this approach makes the program compilable by correct-
ing errors, while the other relaxes syntax/grammar rules to
help parse uncompilable codes. We compare the relative ef-
ficacy of these approaches towards grading. We finally com-
bine them to build an algorithm which rivals the accuracy of
experts in grading programs. Additionally, we show that the
models learned for compilable codes can be reused for un-
compilable codes. We present case studies, where companies
are able to hire more efficiently by deploying our technology.

1 Introduction
Evaluators often wish to test students and jobseekers on
their ability to propose the correct logic, aka algorithmic ap-
proach, to solve a given programming problem. Evaluators
care most about this skill rather than the ability to follow
and reproduce the syntax of a language. Syntax can be learnt
quickly for a new language. Thus, candidates are often asked
to write the program in a language of their choice or even as
a pseudo-code. Evaluators then examine the code and dis-
cuss to see if the stated algorithm (not the exact program) is
correct and efficient.
Several automated systems for testing coding skills and pro-
viding feedback have been developed in the last decade.
The traditional method for evaluation of the code uses test
cases, which neither provides a good judgment to the eval-
uator nor proper actionable feedback to the candidate. Re-
cently, several new methods of grading and feedback that
use techniques such as machine learning and program anal-
ysis have been developed. In (Srikant and Aggarwal 2014),
the authors present a system which provides a grade on the
logical correctness of a program according to a rubric. It
uses machine learning and control structure and data de-
pendency features. In (Singh, Gulwani, and Solar-Lezama

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2013; Head et al. 2017), the system automatically provides
feedback on student programs by finding fixes. There are
also tools (Le Goues et al. 2012; Long and Rinard 2016;
Mechtaev, Yi, and Roychoudhury 2016) that fix logical bugs
automatically in softwares.
None of these approaches handles codes that do not com-
pile.1 They require a compilable code to be able to grade
them or provide feedback. Generally, codes that do not com-
pile constitute 34% of the total submitted codes in MOOCs
(Bhatia and Singh 2016) and 46% in applicant pool for cod-
ing jobs (our study). Candidates miss out on good grades or
jobs, even when they write uncompilable codes with correct
or near correct logic (see examples in Table 5). They are un-
able to get any feedback on their codes either. Evaluators
miss on identifying or hiring potentially good recruits.
We present the first approach to grade uncompilable codes
and provide semantic feedback on them. By semantic feed-
back, we imply feedback on the logic/algorithm of the code
and not feedback on how to make the code compilable. Our
feedback comprises whether the code has the algorithmic
structures to solve a given programming problem, for in-
stance, does it have the required control structures or data
operations (refer to Table 4 for rubric definition). We in-
tend to discover the intent of the coder — capture what she
wished to imply had the code compiled. We do this by vari-
ous ways — imposing less stringent grammar/rules than the
compiler, skipping non-understandable parts and by fixing
compilation errors. These methods allow us to derive rich
semantic features from uncompilable codes. We then build
machine learning (ML) based grading models using these
features. Also, we investigate the possibility of reusing of
available ML models developed using labelled compilable
codes. We suggest methods to re-use these models with lim-
ited sample of labelled uncompilable codes.
Using our method, we find that 15.5% of uncompilable
codes submitted by students seeking job with a China in-
ternet company had near correct logic, while 21.9% had the
right control structures. In particular, the paper makes the
following contributions:

• We present the first approach to grade and provide seman-

1There are approaches (Gupta et al. 2017; Bhatia and Singh
2016) to correct uncompilable codes to make them compilable, but
they do not provide semantic feedback.

9389

tic feedback on codes that do not compile. This is a first
step to decouple the skill to propose the right algorithm
for a programming problem vs. writing syntactically cor-
rect code.

• We present different novel methods to derive semantic
features from codes that do not compile and compare their
efficacy.

• We present methods to reuse machine learning based
grading models built for compilable codes.

The paper is organized as follows — In Section 2, we discuss
the machine learning approach to grade programs. In Section
3 and Section 4, we present the techniques to extract features
from uncompilable programs and machine learning models.
In Section 5, we discuss the details of our experiments and
results. Section 6 discusses the deployment of our system in
a high stakes assessment. Section 7 concludes the paper and
discusses future work.

2 Grading programs using machine learning
In this section, we discuss the machine learning based ap-
proach proposed in (Srikant and Aggarwal 2014) to grade
programs. It uses a set of features which are derived from
abstract representations of a given program. These features
capture the semantic relationships present in the program.
The counts and relations of the following properties of a
program are extracted — the keywords, the expressions, the
control structures and the expression dependencies. The dif-
ferent features extracted from a program are as following:

• Keywords: Examples include counts of all keywords, to-
kens, operators etc. such as the number of times a ‘*’ op-
erator appears or loop and conditional tokens such as ‘for’
and ‘if’ appear.

• Expressions: Expressions such as y = x%2 are ab-
stracted to a notation such as v : 2 :: op : % :: c :‘2’,
which denotes an expression having two variables, one
modulus operator and the constant ‘2’. The number of oc-
currences of such abstract expressions are counted.

• Expression Dependency: A data dependency is captured
when the variable in one expression is used in another
expression.2 For example, the expression x < y, which
contains a relational operator (<) and two variables, is
dependent on the expression y++, which contains a post
increment operator (++) and one variable. This is denoted
using the notation v : 1 :: op : + + (←)v : 2 :: op :
relation. The occurrences of each dependency match-
ing such abstractions is counted. This is repeated for each
unique pair of dependencies that appears in a response.

• Control Context: Separate counts are maintained for
each of the three properties described above according to
the control-context (loops and conditional statements) in
which they appear. For example, an expression whose ab-
stract notation matches v : 2 :: op : % :: c :‘2’ is counted
separately if it appears within an if statement as opposed

2For a given variable, only expressions in its scope block are
considered.

to a loop like a for or a while as opposed to an if statement
within a for.

These features are transformed into a set of features that
maintain their structural relation with the labels across pro-
gramming tasks (Srikant and Aggarwal 2014). Using these
transformed features a task-independent supervised model
is learned across programming tasks. This model is used to
predict grades for a new code. We require the Abstract Syn-
tax Tree (AST) and the Symbol Table (ST) to generate these
features. The code needs to compile for this. In the next sec-
tion, we describe how we generate features for uncompilable
code.

3 Extracting features from uncompilable
codes

We wish to find the intent of the programmers even though
they haven’t followed the grammar/syntax rules of the pro-
gramming language.3 One may extrapolate, add or mod-
ify code, to make the program syntactically correct and
anticipate the programmer’s intention. Another option is
ignore rules, that the code doesn’t follow, interpret non-
understandable snippets or skip them. We try both these
methods.
Correcting the program: We use two methods to make the
code compilable. The first is a rule based system, where
common errors are fixed by say, inserting a semicolon,
balancing parentheses, declaring undeclared variables, or
adding a return statement. We do multiple passes of these
fixes, one at a time, until the code compiles.
In the second method, we predict the correct line at the posi-
tion of compilation error based on previous keywords. We
learn n-gram models on good codes for a particular pro-
gram to make the prediction.4 Generally, if the predicted line
makes the program compilable, the statement is accepted. In
our approach, we do not accept all such edits. We find the
difference between the generated statement and the origi-
nal one. We only use the generated statement for differences
such as insertion of a data type, a variable name, etc. and
not where new logical units, such as operators, expressions
or control structures are introduced. We wish to grade the
program only based on the logical units written by the pro-
grammer, and not introduce new ones.
We first run the rule-based system to fix the general er-
rors. For codes that are still uncompilable, we run the n-
gram based token prediction approach to remove complex
errors. We run the updated programs again through the rule
based system to correct any declaration/definition errors in-
troduced by the n-gram approach.5 We call this combined
approach as the MC (Make Compilable) method. On aver-
age, it makes 48% codes in our Chinese data set compilable.
Relaxing the compilation rules: We require the AST and

3This is akin to the task of finding user intent in natural lan-
guage understanding systems.

4We also tried an LSTM based RNN model, but it did not pro-
vide any better performance than n-gram on our data set. The ap-
proach is described in detail in (Bhatia and Singh 2016).

5This is due to insertion of variable/class name tokens which
were not initially declared in the program.

9390

Uncompilable

Codes (UC)

Make

Compilable (MC)

Method

Rule

Relaxation (RR)

Method

Combination

of MC and RR

Learn model on

labelled UC codes

Reuse CC model

Apply correction

Final model to

grade UC codes

• Keywords

• Expressions

• Expression Dependency

• Control Context

AST and ST

Derive Features

Figure 1: The flow to grade uncompilable programs with various possible alternatives at each step.

ST to extract our features. A typical compiler consists of
several steps — tokenization, parsing based on a grammar,
type checking, linking and optimization (Appel 1997). We
loosen the rules in the various compilation steps to generate
the AST and ST for an uncompilable program. We intend to:

(a) Capture the bulk of the correct statements

(b) Accept/reinterpret uncompilable statements by rule re-
laxation

(c) Skip those that are not parseable

The tokenization step doesn’t generally lead to an error.
Non-meaningful tokens get identified as potentially vari-
able/function names, to be disambiguated later. For instance,
an undeclared variable, or a variable with an operation not
matching its data type, are accepted at this stage. A spelling
error in a token, say rturn in rturnflag is wrongly iden-
tified as a class identifier, whose definition will be expected
to be linked in later steps.
In the parsing step, errors happen when the code violates the
grammar rules. We skip such statements. For instance, the
statement, int [] arr = new int[]; gets skipped. We build an
Imperfect AST in the parsing steps — it captures the good
part of the code, while uncompiling pieces are skipped. On
average very few tokens are skipped, around 6.2% for our
sample.
The type checking/linking steps generate errors in case op-
erations/declarations of variables do not match; for missing
declarations/definitions of variables, functions and so on.
We ignore wrong declarations and assume missing decla-
rations. This constitutes our relaxation of the rules. In the
previous examples — the operation is accepted even if the
data type doesn’t match, so is usage of undeclared variables
and rturn is considered as a class. We create an Imperfect
ST for the program. We call this the RR (relax rules) method.
Each of these approaches have their relative advantages. The
first is better at inferring the intent of the coder by correcting
the non-understandable statements. However, it fails when it
cannot correct — 52% times for our sample. The second

approach skips or even misconstrues what it cannot under-
stand. However, it parses 95% of the codes.

Table 1: Sample size for different programming tasks

Task Name Sid #UC #CC

countCacheMiss 24 370 106
balancedParentheses 132 355 70

grayCheck 43 367 175
transposeMultMatrix 48 407 182
eliminateVowelString 62 392 182

4 Machine Learning Models
Figure 1 shows the final flow for our algorithm. We start with
a set of labelled uncompilable (UC) codes. We generate fea-
tures from these codes based on one of the following: MC
method, RR method or a combination of both. The combina-
tion method is motivated and described in detail in Section 5.
We then develop a machine learning model using these fea-
tures.6 In the first case, we perform supervised learning us-
ing the UC codes to predict the expert grades (labels). In the
second, we reuse models already trained on labelled com-
pilable codes (CC). We report in the next section, that the
models (trained on CC) do not perform well in themselves.
However, certain corrections to them make them as good as
those trained on the labelled UC code sample.
We developed machine learning models based on the re-
sponses collected on the programming tasks listed in Table
1. We report results for LASSO (α = 1) (Tibshirani 1994)
we varied λ from 0 to 4.7 The model which gave the best

6The modelling techniques are described in detail in the next
section.

7We used linear regression, linear regression with L1 regular-
ization (LASSO), linear regression with L2 regularization (Ridge
regression), decision trees, random forests and SVMs. Similar to

9391

Table 2: Accuracy of models built using the RR and MC approach to grade uncompilable codes.
Metrics: r and MAE.

RR (all) MC RR (MC set)

Sid1 Sample Size Sample Size (MC) r MAE r MAE r MAE

24 370 171 0.71 0.52 0.78 0.44 0.71 0.51
132 355 165 0.70 0.43 0.63 0.45 0.65 0.44
43 367 175 0.72 0.47 0.86 0.25 0.78 0.49
48 407 220 0.66 0.50 0.65 0.54 0.72 0.43
62 392 198 0.59 0.65 0.74 0.55 0.58 0.68

Mean 0.68 0.52 0.73 0.45 0.69 0.51
Median 0.70 0.50 0.74 0.45 0.71 0.49
1 Some data from SIDs in bold was used for training purposes. In this table we only report

results for test data on all SIDs.

cross-validation (three-fold) correlation was selected.
We develop generalized task-independent models (detailed
in (Singh, Srikant, and Aggarwal 2016)). Thus, we trained
on data from three tasks (Sid 43, 48, 62), and tested on data
from all five tasks. For the tasks used in training, we split
the response set into a 70-30 train-test set. For the other
two tasks, all responses were used in the test set. The per-
formance of the model on the unseen problem set helped
demonstrate how well the models generalized to program-
ming tasks whose sample was not used in training.
We report the Pearson correlation coefficient (r) and MAE
(
∑ |ypred−y|

n) as evaluation metrics to judge the perfor-
mance of our models.
Now, we describe our experiments, which compare the effi-
cacy of various approaches based on choices made at differ-
ent steps.

5 Experiments and Results
Our experiments were designed to address the following
questions:

• Which among MC and RR approaches are more accurate
in predicting the grade for uncompilable codes?

• How accurately can we grade uncompilable codes? How
does it compare to the accuracy of expert grades and au-
tomatic grading of compilable codes?

• Can we re-use models trained for compilable codes for
uncompilable codes?

We conducted our experiments on five programming tasks.
The tasks were chosen such that the algorithms to solve these
tasks had varying complexities. A subset of programs writ-
ten by candidates for these tasks were graded by experts.
The set included both compilable and uncompilable codes.
We built separate ML models for the compilable and uncom-
pilable codes to predict expert grades. For the uncompilable

what was seen in (Singh, Srikant, and Aggarwal 2016), linear mod-
els worked the best among all these techniques, indicating linearity
in the inherent structure of this problem space. We report results
only for LASSO in this work which outperformed all other tech-
niques.

codes, we built models using each of the RR and MC ap-
proach and compared their accuracy. We further investigated
if the models for CC could be reused for predicting grades
for UC. We now discuss further details.

Data
The experiments were run on a set of programming tasks
hosted on Automata, our automated programming evaluation
platform (Aspiring Minds 2012). Respondents, who were
college seniors majoring in computer science, took a 90
minute assessment in a proctored environment wherein they
attempted two programming tasks. For our experiments, we
considered five tasks and programs written in Java (see Table
1). The topics covered by these programming tasks spanned
iterative/ recursive algorithms, trees and graphs and other
algorithms like the shortest job first, etc. We used on an av-
erage, 143 compilable and 378 uncompilable responses per
task to build and test our models. In total, 2606 codes were
used in our experiments.
Two professional software engineers with 4-7 years’ expe-
rience each shared the task of grading the responses. The
experts followed the rubric defined in to grade codes on a
scale of 1-5 (described in (Srikant and Aggarwal 2014)).
Before beginning the grading exercise, they underwent a
one-week workshop wherein they learned how to interpret
the rubric and participated in mock grading exercises. The
experts were given special instructions to grade the codes
only based on the intended logic of the coder and not to pe-
nalise based on the quantum or type of compilation errors.
The correlation between the grades of the two experts was
on an average 0.72 across the programming tasks in the data
set.

Results
To answer the first question, we trained models on the un-
compiling codes using each of the RR and MC approach.
The MC approach couldn’t correct all the codes. For an ap-
ple to apple comparison, we also present RR results for the
subset of codes corrected by the MC approach. These re-
sults are provided in Table 2. MC is able to only grade 48%
of codes, but performs better than RR on this set. The mean

9392

Table 3: Accuracy of models built using a sample of compilable and uncompilable codes to grade uncompilable
codes. Metrics: r and MAE.

CC Model CC Model with dist. Fixed CC Model w/o TC and dist. Fixed Uncompilable

Sid1 r MAE r MAE r MAE r MAE

24 0.74 0.75 0.74 0.47 0.74 0.44 0.75 0.48
132 0.75 0.84 0.75 0.41 0.74 0.41 0.68 0.45
43 0.72 0.68 0.72 0.47 0.79 0.46 0.79 0.43
48 0.60 0.77 0.60 0.65 0.64 0.60 0.62 0.56
62 0.56 1 0.56 0.58 0.64 0.52 0.69 0.57

Mean 0.67 0.81 0.67 0.52 0.71 0.49 0.71 0.50
Median 0.72 0.77 0.72 0.47 0.74 0.46 0.69 0.48
1 Some data from SIDs in bold was used for training purposes. In this table we only report results for test data

on all SIDs.

(median) r for MC is 0.73 (0.74), and it is 0.69 (0.71) for
RR (on MC set). Also MC is better for 3 out of 5 tasks,
worse for one and similar for another.
We find that the approach to correct codes is better than re-
laxing grammar. This implies that our code correcting algo-
rithm does extrapolate the user’s intent. However, it is unable
to do so for 52% codes. We combine both the approaches to
take each one’s advantage. Here, we use MC approach for
the correctable codes and RR for the rest. We henceforth
call this the RRMC approach. We use this for all further
analysis.
Our second question is regarding the accuracy of our mod-
els. As reported before, the correlation between expert rat-
ings is 0.72. We find RRMC models have a mean correla-
tion of 0.71 (Refer second last column of Table 3). Only for
one task, the correlation is fairly low at 0.62. This shows that
our approach can at most times provide human-competitive
results.
Second, we also built models using compilable codes to pre-
dict their labels. We find that the accuracy of these models is
much higher (on average, 0.85 as compared to 0.71 for UC).
This is because we have a fairly informative feature, number
of test-cases (TC) passed, for CC. This feature alone pro-
vides a correlation of 0.73 on average with expert ratings.
Without this feature, the average correlation for CC falls to
0.70, comparable to 0.71 of UC. We do not have the benefit
of the test case feature for uncompilable codes.8 Even when
we correct the codes, we do not semantically correct them to
result in an informative TC feature.
Lastly, we wanted to analyse whether we could reuse the
models trained on compilable codes (CC models) for un-
compilable codes. Here, we use RRMC approach to de-
rive features and use the machine learning model learned on
compilable codes. This way we do not require additional la-
belled UC for building a model. The first column in Table 3
shows the results of using the model trained on compilable
codes directly. We find that that though the correlation is a
little poorer (0.67 compared to 0.71), the MAE is signifi-

8The value of the TC feature is 0 for codes that we are unable
to make compilable. We use the number of test cases passed by the
compilable program for codes corrected by the MC approach.

cantly higher (0.81 compared to 0.50).
To improve the model, we used two insights. First, we drop
TC as a feature in training our models on CC. As discussed
above, the feature isn’t predictive of grades for UC in the
same way it is for compilable codes. Second, a compara-
ble correlation and high MAE signals a systematic error. To
test this hypothesis, we simply modify the distribution of the
model output to match with that of the uncompilable code
ratings (on the train set, explained in more detailed later).
The results in Table 3 show that by fixing the distribution,
there is a dramatic improvement in the MAE — it comes
down to 0.52, comparable to 0.50 of model learnt on un-
compilable codes. On removing the test case feature, we get
a further improvement. The mean r becomes 0.71 and MAE
0.49, almost same as models learned on uncompilable codes.
Distribution correction (DC): The grades predicted by CC
models are transformed such that their distribution match the
expert grade distribution of the UC. We do an equipercentile
transformation on the train set of the UC.9 One may note that
this actually requires expert grades on the UC. Our hypoth-
esis was that distribution matching would require a much
smaller sample of labelled codes as compared to building a
fresh model. To confirm this, we do a simulation: we boot-
strap different sample sizes of labelled uncompilable codes
and test the mean r/MAE for the distribution correction ap-
proach (CCDC) vs. building fresh models (UC). The results
are shown in Figure 2.
We find that the MAE for the DC approach as a function of
the sample size reduces much faster as compared to training
fresh models. The DC approach has the right r throughout.
To attain stability within 1% of MAE and r of the asymp-
totic accuracy, we require around 140 samples for the DC
approach and 220 samples for building fresh models. This
mean a reduction of about 33% in labelling effort. This be-
comes significantly large for creating models for multiple
programming languages and for multiple raters. For 10 lan-

9The equipercentile method is commonly used in test equating.
Here, scores with the same percentile on the two distributions are
considered equivalent. Scores from one distribution are mapped to
the equipercentile score on the other distribution. Further details
may be found in (Braun H. I. 1982; Kolen M. J. 1995).

9393

guages and 3 raters, it would lead to rating 2400 additional
codes.

Sample size

0 50 100 150 200 250 300 350 400

A
c
c
u

ra
c
y
 (

r
 a

n
d

 M
A

E
)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

CCDC (r)

CCDC (MAE)

UC (r)

UC (MAE)

Figure 2: Accuracy of models built on a sample of compil-
able codes with distribution correction (CCDC) and uncom-
pilable codes (UC). The x-axis denotes the sample size used
and y-axis denotes accuracy in terms of r and MAE.

6 Development and Deployment
Our current system grades uncompilable programs written
in C, C++ and Java. Our test delivery platform, scoring and
feedback engine were developed in Python. It took us close
to 15 months in designing and deploying the system in pro-
duction for all the three languages. We can easily add new
programming problems for the existing languages in the sys-
tem. To scale the system to a new language, we need to de-
velop the feature extraction component and train new ma-
chine learning models for it. With two developers, it takes
around two months to add a new language to the system.

Case Studies
We deployed the RRMC model in the scoring engine of
Automata, our online programming evaluation platform. A
multinational technology company in China with more than
50, 000 employees used this product for their 2017-2018
campus hiring cycle for entry level software engineers. The
company wished to find candidates who can think of correct
algorithmic approach to solve a given programming prob-
lem. In the Automata report, we provide scores on Program-
ming Ability (PA), Programming Practices (PP), Time Com-
plexity (TC) and a total score. Earlier, uncompilable codes
had a−1 score on Programming Ability. With incorporation
of the new models, now uncompilable codes got a PA score
based on our standard rubric. The total score is a combina-
tion of PA, PP and TC scores. A penalty for non-compilation
was introduced in it. This helped score a compilable code
higher than uncompilable codes, if they had the same score
on all metrics.
All candidates first took the test. The company shortlisted
candidates with a PA score of 3 or above for interviews.
All interviewers were provided with the candidate report,

which provided various test scores, the candidate programs
and whether the programs were compilable or not. The in-
terviewers were instructed to do an independent evaluation
of the coding skills of the candidates. They asked candidates
to work out the algorithmic solution for two programming
problems during the interview. Based on how the candidate
solves these problems, the final hiring decision was made.
The recruiters made the decision by their own evaluation, to-
gether with transparent input on compile/non-compile from
test.
A total of 29, 600 candidates took the test. Out of these 54%
had a compilable code, 24% had a blank code and 22% had
an uncompilable code. The PA score for candidates with
compilable and uncompilable codes is shown in Table 4. The
company used a cut-off of 3 or above on the PA score to in-
terview candidates. We find that a total of 2457 additional
candidates were selected for interview (an addition of 26%
candidates). After the independent evaluation of interview-
ers, 565 selected candidates had uncompiling codes (an ad-
dition of 19% hired candidates). The company was able to
hire much more efficiently. Also, many worthy candidates
who would have got missed out by traditional program grad-
ing systems were hired.
In another study, a large IT services company in India used
the system for hiring software engineers from campus. The
company hires tens of thousands of software engineers ev-
ery year and cite inability to fulfill all open positions as a
major challenge. Using our tool, the company was able to
improve shortlisting and selection rate by 30%-40%. They
used an independent programming interview round to make
hiring decisions. The increase in hiring rate led to big sav-
ings in sourcing cost, business cost of unfilled positions and
greatly reduced time to hire.
We eyeballed some of the uncompilable codes of hired can-
didates in these studies. We show couple of examples in Ta-
ble 5. One observes that the codes’ logic is correct, but they
do not compile due to incorrect declaration or use of data
types. Another error is wrong placement of return with
respect to parentheses. We find that candidates with near-
correct codes (semantically) makes compilation errors due
to lack of knowledge of using the language. They also some-
times are unable to debug simply silly errors. One reason for
this could be that compiler generated error messages aren’t
instructive enough to correct the errors (see ‘Compiler Er-
rors’ in example). For instance, in (Becker et al. 2018), au-
thors report that 64% students find multiple compiler error
messages confusing and hard to debug.

7 Conclusion
In this work, we present the first approach to grade and pro-
vide semantic feedback on uncompilable codes. We use ma-
chine learning to find the correctness of the algorithmic ap-
proach of a program irrespective of its compliance to syntax.
We require the AST and ST of the programs to derive infor-
mative features from them. We propose two methods to do
this. The first method makes the code compilable by doing
corrections. The second relaxes compilation rules to enable
parsing of uncompilable codes. Each of these methods has
its own advantages. The first provides a better judgment of

9394

Table 4: Distribution of PA scores for candidates with compilable and uncompilable programs. The table also includes the
number of candidates selected for interview and the number of candidates who were hired.

Rubric Definition Compilable Uncompilable

1 Code unrelated to given task 3361 1979
2 Appropriate keywords and tokens are present 3264 2125
3 Right control structure exists with missing data dependency 2547 1440
4 Correct with inadvertent errors 2955 1017
5 Completely correct 3828 -

≥ 3 Selected for interview 9330 2457
- Hired 2986 565

Table 5: Examples of candidate submissions with uncompiling codes who got hired.

Program 1 Program 2

Input: String
Expected output: String without vowels

Input: String
Expected output: 1 if balanced brackets,
otherwise 0

1 c l a s s S o l u t i o n
2 {
3 p u b l i c S t r i n g vowel (S t r i n g s t)
4 {
5 c h a r s t r C h a r [] = s t . t o C h a r A r r a y () ;
6 S t r i n g r e v = ”” ;
7 f o r (i n t i =0 ; i<s t . l e n g t h () ; i ++){
8 if(st.charAt(i)==”a” || st.charAt(i)==”A”){
9 r e v = r e v + ”” ;

10 }else if(st.charAt(i)==”e” || st.charAt(i)==”E”){
11 r e v = r e v + ”” ;
12 }else if(st.charAt(i)==”i” || st.charAt(i)==”I”){
13 r e v = r e v + ”” ;
14 }else if(st.charAt(i)==”o” || st.charAt(i)==”O”){
15 r e v = r e v + ”” ;
16 }else if(st.charAt(i)==”u” || st.charAt(i)==”U”){
17 r e v = r e v + ”” ;
18 } e l s e {
19 r e v = r e v + s t . ch a rA t (i) ;
20 }
21 r e t u r n r e v ;
22 }
23 //Missing return statement
24 }
25 }
26

27

28

1 p u b l i c c l a s s P a r e n t h e s e s
2 {
3 p u b l i c i n t b r a c k e t s (S t r i n g s t r)
4 {
5 Stack<char> s=new Stack<char>();
6 f o r (i n t i =0 ; i<s t r . l e n g t h () ; i ++){
7 c h a r s t = s t r . ch a rA t (i) ;
8 i f (s t == ' (' | | s t == ' { ' | | s t == ' [')
9 s . push (s t r . c ha rA t (i)) ;

10 i f (s . empty ()) {
11 s . push (s t r . c ha rA t (i)) ;
12 c o n t i n u e ;
13 } e l s e {
14 char cur = s.top();
15 i f (s t r == ') ' && c u r == ' (') {
16 s . pop () ;
17 } e l s e i f (s t == ' } ' && c u r == ' { ') {
18 s . pop () ;
19 } e l s e i f (s t == '] ' && c u r == ' [') {
20 s . pop () ;
21 }
22 }
23 }
24 i f (! s . empty ())
25 r e t u r n 0 ;
26 r e t u r n 1 ;
27 }
28 }}

Compiler Errors
Lines 8, 10, 12, 14, 16: Incomparable types char
and String
Line 23: Missing return statement

Compiler Errors
Line 5: Unexpected type char
Line 16: Undefined symbol top.

Actual corrections to be made
Lines 8, 10, 12, 14, 16: Replace ” with ’
Line 23: Include return statement in the main
block

Actual corrections to be made
Line 5: Replace char with Character
Line 16: Replace top() with peek()

9395

coder’s intent, while the second is able to parse a much larger
number of programs. We combine both these methods in our
final algorithm.
We grade uncompilable codes according to a rubric based on
features derived from the ST and AST. We perform super-
vised learning on a sample of expert graded codes. We find
that our machine learning models for uncompilable codes ri-
val the internal consistency of experts. We further find that
the models developed for compilable codes can be reused
for uncompilable codes after normalization. This reduces the
need of new labelled data on uncompilable codes.
To the best of our knowledge, this is the first work which at-
tempts to separately treat the skill to propose the right algo-
rithmic approach for a problem vs. being able to write syn-
tactically correct code. This enables companies and evalua-
tors to identify good coders even if their submitted programs
do not compile. We identified 19% such coders in the case
study with a company. The approach also enables coders to
get semantic feedback on uncompiling codes.
In future, the holy grail is how we can further relax the need
for writing a code following syntax and grammar rules —
be able to grade pseudo-code or that written in natural lan-
guage. This constitutes a specialized problem in the domain
of natural language understanding. Our immediate area of
interest is to investigate how to provide more fine-grained
feedback for uncompilable codes.

References
Appel, A. W. 1997. Modern Compiler Implementation in
ML: Basic Techniques. New York, NY, USA: Cambridge
University Press.
Aspiring Minds. 2012. Automata. Accessed: 2018-09-02.
Becker, B. A.; Murray, C.; Tao, T.; Song, C.; McCartney, R.;
and Sanders, K. 2018. Fix the first, ignore the rest: Dealing
with multiple compiler error messages. In Proceedings of
the 49th ACM Technical Symposium on Computer Science
Education, SIGCSE ’18, 634–639. New York, NY, USA:
ACM.
Bhatia, S., and Singh, R. 2016. Automated correction for
syntax errors in programming assignments using recurrent
neural networks.
Braun H. I., H. P. W. 1982. Observed-score testing equating:
A mathematical analysis of some ets equating procedures.
Holland, Paul W.; Rubin, Donald B. (eds.) Test Equating.
New York: Academic Press, 1982, p9-49 267–288.
Gupta, R.; Pal, S.; Kanade, A.; and Shevade, S. K. 2017.
Deepfix: Fixing common C language errors by deep learn-
ing. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA., 1345–1351.
Head, A.; Glassman, E.; Soares, G.; Suzuki, R.; Figueredo,
L.; D’Antoni, L.; and Hartmann, B. 2017. Writing reusable
code feedback at scale with mixed-initiative program syn-
thesis. In Proceedings of the Fourth (2017) ACM Confer-
ence on Learning @ Scale, L@S ’17, 89–98. New York,
NY, USA: ACM.

Kolen M. J., B. R. L. 1995. Test Equating, Scaling, and
Linking. New York: Springer-Verlag.
Le Goues, C.; Nguyen, T.; Forrest, S.; and Weimer, W. 2012.
Genprog: A generic method for automatic software repair.
IEEE Trans. Software Eng. 38(1):54–72.
Long, F., and Rinard, M. 2016. Automatic patch generation
by learning correct code. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’16, 298–312. New York, NY,
USA: ACM.
Mechtaev, S.; Yi, J.; and Roychoudhury, A. 2016. An-
gelix: Scalable multiline program patch synthesis via sym-
bolic analysis. In Proceedings of the 38th International Con-
ference on Software Engineering, ICSE ’16, 691–701. New
York, NY, USA: ACM.
Singh, R.; Gulwani, S.; and Solar-Lezama, A. 2013. Au-
tomated feedback generation for introductory programming
assignments. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, PLDI ’13, 15–26. New York, NY, USA: ACM.
Singh, G.; Srikant, S.; and Aggarwal, V. 2016. Question
independent grading using machine learning: The case of
computer program grading. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, 263–272. New York,
NY, USA: ACM.
Srikant, S., and Aggarwal, V. 2014. A system to grade com-
puter programming skills using machine learning. In Pro-
ceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’14,
1887–1896. New York, NY, USA: ACM.
Tibshirani, R. 1994. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society, Series B
58:267–288.

9396

