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Abstract

This paper studies an intelligent technique for the health-
monitoring and prognostics of common rotary machine com-
ponents, with regards to bearings in particular. During a
run-to-failure experiment, rich unsupervised features from
vibration sensory data are extracted by a trained sparse auto-
encoder. Then, the correlation of the initial samples (presum-
ably healthy), along with the successive samples, are calcu-
lated and passed through a moving-average filter. The normal-
ized output which is referred to as the auto-encoder correlation
based (AEC) rate, determines an informative attribute of the
system, depicting its health status. AEC automatically identi-
fies the degradation starting point in the machine component.
We show that AEC rate well-generalizes in several run-to-
failure tests. We demonstrate the superiority of the AEC over
many other state-of-the-art approaches for the health monitor-
ing of machine bearings.

1 Introduction
Machine health management plays a key role in almost all in-
dustries. A key subsidiary of health management is condition
based monitoring (CBM) where one prognoses abnormal sta-
tus of a machine based on extracted features from a group of
implemented sensors and parameters. The CBM procedure,
therefore, includes two steps; 1) Feature extraction during a
run-to-failure experiment and 2) Data processing for predict-
ing the degradation starting point and monitoring the defect
propagation during the test.

Numerous methods have been proposed for the prognostic
of key machine components. In many cases, handcrafted time-
and frequency-domain features are derived from the sensors
mounted on the machine are used directly or post-processed
by numerous methods in order to predict the condition of the
machine component (Lee et al. 2014). Recently, on the other
hand, artificial intelligence (AI) solutions have been vastly
utilized in fault classification and condition monitoring (Jia
et al. 2016; Sun et al. 2016; Thirukovalluru et al. 2016). AI
techniques significantly enhance the quality of the feature
extraction and data processing. However, they have not yet
realized a fully-automated method without the use of prior
knowledge for health monitoring tests.
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The main attributes of an ideal health-condition monitoring
and prognostic method are described as follows: The method
is able to autonomously collect useful unsupervised features
from the available sensory data, regardless of its size. Such
data-driven procedures should enable users to monitor both
online, and offline tests, while providing an intelligent trend
on the machine’s health, as well as identify its degradation
starting point. It is highly desirable that the method automati-
cally combine the steps of the CBM process and be entirely
human-labor independent. Moreover, the ideal approach is
universal and can be feasibly applied to the prognoses of
various key machine components such as bearings, gears and
spindles.

In the present study, we propose a novel prognostic method
for machine bearings, as a critical machine component which
reasonably satisfies the main characteristics of an ideal CBM
method. The technique is called autoencoder correlation-
based (AEC) prognostic algorithm. We train a sparse autoen-
coder for extracting unsupervised features from collected
sensory data in several test-to-failure experiments and corre-
spondingly, compute the Pearson correlation of the extracted
features of the initial samples, with the upcoming samples.
The output is then passed through a moving average (MA)
filter. AEC algorithm then normalizes the output of the filter
and accurately illustrates the health condition of the system.
We evaluate the performance of our algorithm over several
run-to-failure tests of machine bearings and prove its supe-
riority in finding the degradation starting point compared to
the existing methods.

2 Related Works
Comprehensive reviews on useful prognostic methods for
industrial machines including bearings have been proposed
(Jardine, Lin, and Banjevic 2006; Lee et al. 2014). Tradi-
tionally, time domain statistical features such as root mean
squared (RMS), Kurtosis, and Spectral Kurtosis have been
utilized for monitoring the status of key machine compo-
nents (Qiu et al. 2006). Although such features can capture
regularities in the data, in low signal to noise ratios (SNR) en-
vironments with high dimensional prediction properties, they
face difficulties concerning predicting the status of the system
under test. Unsupervised feature extraction techniques such
as principle component analysis (PCA)-based methods (He,
Kong, and Yan 2007), followed by a post-processing stage,
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such as hidden Markov model (HMM) for the health degra-
dation monitoring, provided a reasonable prediction on the
status of the system (Yu 2012). Moreover, the combination
of the frequency-domain feature extraction methods such as
wavelet packet decomposition with HMM are also employed
in the calculation of the remaining useful life (RUL) of the
key machine components (Tobon-Mejia et al. 2012). Tobon
et al. proposed a useful trend on the RUL and successfully
tested it on few bearing run-to-failure experiments. The ap-
proach is however subjected to modifications to be used in
other test-beds (Tobon-Mejia et al. 2012).

Kalman filter (KF) has also been used in condition moni-
toring (Wang et al. 2016). Reuben et al. proposed a method
based on switching KF which can be simultaneously em-
ployed in the diagnosis and prognosis of the data (Reuben
and Mba 2014). Wang et al. deployed an enhanced KF with
expectation-maximization (EM) algorithm for providing ac-
curate estimations on the health condition of the machines
(Wang et al. 2016).

Data-driven approaches using AI techniques have brought
significant advancements to the diagnostic and health con-
dition monitoring of key machine components. Various neu-
ral network architectures, specifically autoencoders, success-
fully classify faults into varying subgroups, through the use
of pre-processed statistical time or frequency domain fea-
tures, and features in general extracted using prior knowl-
edge (Jia et al. 2016; Sun et al. 2016; Thirukovalluru et
al. 2016). Although the proposed methods are not fully au-
tomated, they are less human-labor dependent. Although
data-driven technologies show their success through their
accurate diagnoses and fault classifications (Jia et al. 2018;
Zhao et al. 2018), such methods have not been yet utilized
in prognoses. Here, for the first time, we train a sparse au-
toencoder directly over the vibration data and compute the
correlation of the extracted features and therefore, provide
a comprehensive prognostic and health monitoring method
which its performance is superior compared to many of the
remarked approaches.

3 Autoencoder Correlation based (AEC)
Prognostic Method

In this section, we describe the working mechanism of the
automated AEC fault prognostic method, in the run-to-failure
settings of machine bearings. Figure 1 symbolically illus-
trates the structure of the AEC. An autoencoder (AE) network
is directly trained over the vibration data-samples. The au-
toencoder generates rich nonlinear features from the sensory
data for each raw input sample. Afterward, the correlation co-
efficient matrix of the past samples up to the current sample is
computed. The correlation rate of the features corresponding
to the samples generated at the beginning of the run-to-failure
process, with the other available samples, is then normalized
and correspondingly filtered through a moving average (MA)
filter. The normalization step also linearly broadens the AEC
rate spectrum to provide a better distinction for the faulty
samples. This feature provides an output rate which predicts
the status of the system at each sampling step. We thoroughly
sketch our design procedures below.
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Figure 1: The architecture of the AEC.

Sparse Autoencoder Revisit
An autoencoder (Ranzato, Boureau, and LeCun 2008), tries
to learn an abstract of the identity function, to estimate the
same input patterns at its output. One can place constraints
on the network by limiting the size of the hidden layer and
presumably discover attractive features from the data.

Let us define x ∈ RDx , a Dx-dimension input to the au-
toencoder; the encoder initially maps x to a lower dimension
vector z ∈ RD, and correspondingly generates an estimation
of x, x̂ ∈ RD:

z = f(Wx+ b1); x̂ = f(WT z + b2), (1)

where f , in our design, is a saturating linear transfer function
denoted in Equation 2 , W ∈ RDx×D stands for the weight
matrix, and vectors b1 ∈ RD, b2 ∈ RDx represent the bias
values.

f(z) =


0, if z ≤ 0

z, if 0 < z < 1

1, if z ≥ 1

(2)

We define the following cost function to be optimized
subsequently:

C =
1

N

N∑
n=1

I∑
i=1

(xin − x̂in)2︸ ︷︷ ︸
mean squared error

+

λRL2︸ ︷︷ ︸
L2 regularization

+ σRsparse︸ ︷︷ ︸
sparsity regularization

.

(3)

The first term in C is the mean squared error. The second
term denotes an L2 regularization. The third term in the
cost function equation determines a sparsity regularization,
which is formulated by KL divergence, with an effectiveness
coefficient, σ.

We then train the network by applying a scaled conju-
gate gradient (SCG) algorithm. Note that we chose a vanilla
sparse-autoencoder topology since its performance over sev-
eral test environments has been shown to be adequate to out-
put useful features from raw vibration sensory data. Depend-
ing on the properties of the test environment, one can deploy
many other architectures such as variational AE (Kingma and
Welling 2013).
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Correlation Analysis, Normalization and Filtering
For each training sample, D nonlinear features are con-
structed by the autoencoder. We calculate the linear depen-
dencies of the abstract representation of each sample by com-
puting the Pearson correlation coefficient (Fisher 1925). The
correlation coefficient matrix for the available samples dur-
ing the run-to-failure test is then calculated. The first column
of the CC matrix depicts the correlation of the first sample
data which is recorded at the beginning of the run-to-failure
process, with the other available samples. We normalize this
vector between zero and one, and define it as the criteria for
predicting the degradation starting point and consequently
determining the health status of the system.

We finally, smoothen the shape of the output by passing
it through a moving average filter. The filter is designed as
follows:

m̂ =
1

wsize
(y(n)+y(n−1)+· · ·+y(n−(wsize−1))). (4)

For the sample data y, the filter slides a sample-window of
length wsize, over the data, and calculates the average of the
covered data in each window.

4 Experiments with AEC
In this section, we evaluate the performance of our fault
prognostic method by employing it in several run-to-failure
experiments on bearings. We initially introduce the dataset
contents together with the objective of the tests and illustrate
the performance of the AEC method in various run-to-failure
scenarios. We finally benchmark our results with the state-of-
the-art methods in fault prognostic of the bearing machines.

IMS Bearing Dataset from PCoE NASA Datasets
We use the bearing dataset provided by the Center for In-
telligent Maintenance Systems (IMS), University of Cincin-
nati (Lee et al. 2007), collected from the Prognostics Data
Repository of NASA (PCoE Accessed 2017). In the setup,
a shaft is coupled to an AC motor and is rotating at a speed
of 2000 RPM while a 6000 lbs load is installed on it.
Four force-lubricated bearings are mounted on the shaft. Ac-
celerometers with high sensitivity are placed for each bearing
for recording the vibrations. Three test-to-failure experiments
are performed independently. In such tests, failures usually
happened at the end of the test (Qiu et al. 2006).

In the first experiment, two accelerometers are utilized for
each bearing while in the second and third experiments one
accelerometer is used. Datasets contain one-second record-
ings from the accelerometers with a sampling frequency of
20KHz, every 10min, during the run-to-failure tests (Qiu
et al. 2006). Table 1 represents the properties of the collected
data in each experiment. For our simulations, we only train
the AE network on the faulty bearings; therefore, we have
four different experiment settings as 1) Dataset 1 bearing 3
(S1B3), 2)Dataset 1 Bearing 4 (S1B4), 3) Dataset 2 bearing
1 (S2B1) and 4) Dataset 3 Bearing 3 (S3B3).

Table 1: IMS Bearing tests specification
Tests # of Samples sample size Faulty Bearing test-to-failure time
S1 2156 4× 20480 B3 and B4 35 days
S2 984 4× 20480 B1 8 days
S3 4448 4× 20480 B3 31 days

Results
AEC method is implemented in MATLAB. The motivation
was to make AEC compatible with the common industrial
production systems and especially online test-to-failure en-
vironmental tools, which are forming a direct interface with
MATLAB. The training process is performed on a Microsoft
Azure NC-Series virtual machine powered by one NVIDIA
Tesla K80 GPU. We demonstrate our method’s performance
in two general frameworks. In the first setup, we train the
autoencoder with all the available data, for each experiment,
in order to monitor the status of the system. In the second
framework, we train the autoencoder with 70% of the data
and keep 30% of it for testing in order to investigate the
prediction performance of the proposed method. The train-
ing time varies between 55 to 80 minutes for each test-bed,
depending on the number of the available input samples.

Since we only consider the vibration samples of one bear-
ing in each simulation, the input samples’ dimension, under
20 kHz sampling frequency, is a 20480-length vector. We
choose 1000 hidden units for the AE which enables us to
extract 1000 features from each large input vector. The size
of the latent space is selected, empirically.

We then calculate the correlation coefficient matrix of the
input samples (depending on the framework in which we are
working on, for the first case we feed in all the available data
while for the second framework we dedicate 70% of the data
for training and the network has to output a prediction on
the status of the system based on the previously observed
samples) and normalize the correlation rate of the initial
sample ( which is considered to represent the health-status of
the system) with the succeeding samples. We then filter out
the output and provide a representation of the status of the
system.

Framework1 - Health-Condition Monitoring Figure 2
illustrates the output of the AEC for the four test environ-
ments of the three run-to-failure experiments, where we mon-
itor the recorded data. A high AEC rate (Red), corresponds
to a healthy behavior of the system while a downward trend
depicts the starting point of an abnormal state. High AEC
indicates more correlated samples with the initial health-level
of the system. AEC clearly displays the beginning of a faulty
trend together with its propagation effect. AEC can even de-
velop a reasonably accurate prognosis for the noisy dataset,
S3B3, whereas many other approaches cannot.

Figure 2A to 2D, graphically indicates the status of the four
experiments S1B3, S1B4, and S2B1 and S3B3, respectively.
The Color bar represents the AEC rate from 0 (blue) to 1
(red). We can distinctly observe where a significant change in
the AEC rate has occurred, and stop the process accordingly.
We call a sample abnormal when its AEC rate is measured
90% below the recorded sample at t − 100. The AEC del-

9474



Table 2: Detection performance. HMM-DPCA: Hidden
Markov model with dynamic PCA, HMM-PCA: Hidden
Markov model with PCA (Yu 2012). MAS-Kortusis: Moving
average spectral kurtosis (Kim et al. 2016). VRCA: Variable-
replacing-based contribution analysis (Yu 2012). – means
that the dataset has not been analyzed

Algorithm S1B3 S1B4 S2B1 S3B3
Degradation starting data-point | Relative detection accuracy

AEC 2027 | 94.5% 1641 | 99.0% 547 | 98.1% 2367 | 99.0%
HMM-DPCA 2120 | 90.3% 1760 | 94.5% 539 | 98.8% –
HMM-PCA – 1780 | 93.5% 538 | 99.0% –

RMS 2094 | 91.5% 1730 | 95.9% 539 | 98.8% No detection
MAS-Kurtosis 1910 | 99.0% 1650 | 98.5% 710 | 82.5% No detection

VRCA – 1727 | 96.0% – No detection

icately indicates the start of a faulty status and represents
its gradual propagation. Table 2 summarizes the detection
performance of our AEC method. It also provides the per-
formance of some of the existing monitoring approaches,
for the IMS dataset. Detection performance is defined as the
sample-time (sample number) at which the algorithm notices
initiation of the degradation. Therefore, early fault detection
results in better performance. The relative detection accuracy
is computed as the difference of the detected degradation
starting point (DSP) of a method for a particular dataset, to
the best DSP amongst all the other compared methods. The
corresponding relative accuracy of the DSP detection is pro-
vided in Table 2. We can observe that only AEC provides a
reasonable DSP for all four experiments. AEC did not pro-
vide the best performance in all the monitoring experiments.
An earlier detection on the initiation of a fault in the system,
for the S1B3 experiment, is produced by the moving average
spectral kurtosis (MAS-Kurtosis) method (Kim et al. 2016).
Such high performance is achieved because in some special
conditions, frequency domain features provide a rich repre-
sentation on the abnormal fluctuations in the system, though
not generalizable to all scenarios, as it is shown in Table 2.

AEC’s performance for the S1B4 experiment is superior
over the other methods. Degradation of the system starts rel-
atively early in this dataset, and the vibration data on the
bearing realizes a nonlinear plateau of fluctuations as it is
depicted in Figure 2D. Depending on the sensitivity of the
methods, the sample point at which the fault starts to prop-
agate is detected. MAS-Kurtosis technique also provides a
high-performance prediction on this dataset.
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Figure 2: Visualization of the status of four different bearings
in four run-to-failure experiments. A) S1B3. B) AEC for
S1B4 C) AEC for S2B1. D) AEC for S3B3.

Table 3: Prediction accuracy of the AEC method in different
bearing run-to-failure tests

Experiment Fault starting point Prediction Accuracy
S1B3-sensor1 2120 95.68%
S1B3-sensor2 2122 95.59%
S1B4-sensor1 1681 98.14%
S1B4-sensor2 1673 98.51%

S2B1 610 93.60%
S3B3 2435 98.47%

In the experiments of S2B1, the performance of a hidden
Markov model equipped with a principle component analy-
sis (HMM-PCA) (Yu 2012), slightly outperforms the other
methods. The reason is the existence of linear dependencies
in the recorded vibration data and the status of the system.
This matter can potentially lead a more non-linear approxi-
mation method to an over-fitting region. However, since the
performance of other methods is also reasonably high, the
over-fitting factor in this test-case is not considerable.

S3B3’s test-to-failure process is considered a challenge to
monitor, as very few approaches can accurately monitor its
state, while none could provide the degradation starting point,
whereas AEC provides reasonable detection on it.

Framework2 - Online Prognostic In the second frame-
work, we train the autoencoder over the first 70% of the
available sensory data in order to evaluate the prediction per-
formance of the model in an online monitoring setting. Here,
we study six cases including S1B3-sensor1, S1B3-sensor2,
S1B4-sensor1, S1B4-sensor2, S2B1 and S3B3 where the pre-
dicted AEC rate in each experiment, is represented in Figure
3A to 3F, respectively. A sample is defined as the initiation
of an abnormal state (equivalent to DSP), where its AEC rate
reaches 90% of the rate of the 100 steps earlier sample. The
prediction process starts from the samples collected from day
five on since before that, the status of the system has been
considered to be normal (Qiu et al. 2006). By using this anal-
ogy, the degradation starting point is calculated with a high
level of accuracy, and the propagation of fault is captured
during the simulated run-to-failure test. Table 3 summarizes
the predicted degradation starting point together with the
prediction accuracy in each experiment. The prediction error
is computed as the ratio of the difference between the pre-
dicted sample and the monitored DSP, to the total number of
samples in each experiment.

The AEC produces a reasonable degree of prediction, as
shown in Figures 3A to 3F. The surprising results here is
that even the prediction accuracy of the AEC in a prognostic
setup, for some datasets, outperforms the detection perfor-
mance of the other methods in the monitoring framework.
For instance, in S1B4, the 1681th sample is predicted as the
DSP, which is an earlier detection than the DSP provided
by the HMM-DPCA, HMM-PCA and the VRCA methods.
Note that providing a metric for computing the prediction
accuracy is only possible in an online prognostic and monitor-
ing setting. Other methods discussed in this report have not
offered an online measurement of the DSP in their context.
Therefore, our method stands alone in the online monitoring
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Figure 3: Online monitoring of the status of the system in
different experiments: A) S1B3 first sensor B) S1B3 second
sensor C) S1B4 first sensor D) S1B4 second sensor. E) S2B1
F) S3B3. The color-bar represents the AEC rate.

phase, and we are not able to benchmark our approach with
the other technologies.

We observed highly correlated activity and a reasonable
degree of consistency when comparing the performance of
AEC in the monitoring framework (shown in Figure 2) as
well as in the prognostic framework (illustrated in Figure 3).

Qualitative Comparison of AEC with the Other Prognos-
tic Methods for the Machine Bearing In this section, we
compare AEC with many existing methods for status moni-
toring and prognostic technologies, over several performance
criteria. Such qualifications are determined as follows: Gen-
eralizability: The ability of the process to detect and predict
faulty trends in a system for various machine bearing test-
beds. Status Monitoring: The ability of the method to provide
a useful health-status trend during the run-to-failure experi-
ment of bearings. Automated: A fully autonomous fault prog-
nostic method. Unsupervised: Capability of the technique to
extract information from raw sensory data without any prior
knowledge and supervision. Detection Sensitivity: Ability of
the method to provide a reasonably quick predictive alert on
the degradation starting point in the test. Fault-type Detection
(Diagnostics): Ability of the technique to detect a particular
type of defect in the system and classify them into different
fault classes.

Table 4 comprehensively illustrates a qualitative compar-
ison among various fault prognostic methods utilized for
bearings, based on the mentioned attributes. The assessment
on the performance of each method is carefully performed
based on the provided results and the detailed specifications
of the methods in their corresponding report. Under such
evaluations, results suggest the superiority of the AEC algo-
rithm over many existing methods in the Prognosis of the
machine bearings, where it can precisely capture the initial
degradation point and provide a useful trend for the spread of
a defect, automatically. AEC, however, lacks the diagnostic
feature, to specify the type of fault that occurs in the system.
A classifier has to be incorporated and trained over supervised
data to capture the diagnostic attribute as well.

Table 4: Qualitative comparison of the performance of the
existing approaches on the bearing prognostic. HMM-DPCA:
Hidden Markov model with dynamic PCA, HMM-PCA: Hid-
den Markov model with PCA (Yu 2012). MAS-Kortusis:
Moving average spectral kurtosis (Kim et al. 2016). VRCA:
Variable-replacing-based contribution analysis (Yu 2012).
EET: Energy Entropy trend (Kim et al. 2016). WPSE-EMD:
Wavelet packet sample Entropy (Wang et al. 2011) - Empir-
ical mode decomposition (Lei et al. 2007). Spectral-ANN:
Third-order spectral + artificial neural networks (Yang et
al. 2002). Fuzzy-BP: Fuzzy logic with back-propagation
(Satish and Sarma 2005). SVM: Support Vector Machine
(Yang, Zhang, and Zhu 2007). GA-SVR: Genetics algorithm-
Support vector regression (Feng et al. 2009). GLR-ARMA:
Generalized likelihood ratio - Autoregressive moving aver-
age (Galati, Forrester, and Dey 2008). ++: Highly satisfies. +:
Satisfies. -: The attribute is not covered -+: The attribute is
fairly covered.
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AEC + + + + ++ -
HMM-DPCA -+ + - + + -
HMM-PCA - + - + + -
RMS - + - - -+ -
Kurtosis - + - - -+ -
MAS-Kurtosis - + - - -+ -
Spectral-ANN -+ - - - + +
VRCA -+ + - - ++ -
EET + + - + - -
WPSE+EMD - + - - + -
Fuzzy-BP -+ - + - + +
SVM - - - - + ++
GA-SVR - + - - + -
GLR-ARMA - + - - + -+

5 Conclusions

We introduced a machine learning suite for fault progno-
sis in machine bearings. We showed that AEC successfully
monitors the status of the bearings in various experiments
which confirms its generalization ability. AEC also accurately
predicts the degradation starting point while providing an in-
formative trend on the defect’s propagation. Furthermore, the
AEC algorithm generated rich unsupervised features from
raw vibration input data, automatically. In the future, we in-
tend to apply AEC to the prognostic of the other key machine
components such as gears, cutting tools and spindles.
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