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Abstract

The Internet has rich and rapidly increasing sources of
high quality educational content. Inferring prerequisite rela-
tions between educational concepts is required for modern
large-scale online educational technology applications such
as personalized recommendations and automatic curriculum
creation. We present PREREQ, a new supervised learning
method for inferring concept prerequisite relations. PRE-
REQ is designed using latent representations of concepts ob-
tained from the Pairwise Latent Dirichlet Allocation model,
and a neural network based on the Siamese network archi-
tecture. PREREQ can learn unknown concept prerequisites
from course prerequisites and labeled concept prerequisite
data. It outperforms state-of-the-art approaches on bench-
mark datasets and can effectively learn from very less train-
ing data. PREREQ can also use unlabeled video playlists, a
steadily growing source of training data, to learn concept pre-
requisites, thus obviating the need for manual annotation of
course prerequisites.

Introduction
A concept C1 is generally called a prerequisite to another
concept C2 if the knowledge of C1 is necessary to under-
stand C2. Such dependencies are natural in cognitive pro-
cesses when we learn, organize, and apply knowledge (Lau-
rence and Margolis 1999). Prerequisite relations at a differ-
ent level – between courses – are commonly found in uni-
versity curricula. Course-level prerequisites have been man-
ually created by experts over decades and often form a guide
to prerequisites between the more granular concepts within
the courses. For instance, the course Linear Algebra is usu-
ally a prerequisite to the course Machine Learning. Several
concepts in a course on Linear Algebra are prerequisites to
concepts in a course on Machine Learning, e.g. Eigen Anal-
ysis is a prerequisite to Principal Components Analysis.

While textual information about courses has been increas-
ing steadily on the Internet over the years, recently there
has been a tremendous growth in online educational data
through Massive Open Online Courses (MOOCs) as well
as freely accessible videos and blogs from experts. This,
in turn, has spurred the development of new applications
for personalized online education such as automatic reading
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Figure 1: PREREQ learns unknown prerequisite edges in the
concept space, using (1) known concept prerequisite edges
and (2) either course prerequisites or video playlists.

list generation (Jardine 2014), automatic curriculum plan-
ning (Liu et al. 2016), and automated evaluation of curricula
(Rouly, Rangwala, and Johri 2015). Concept prerequisite re-
lations play a fundamental role in all these applications.

The value of concept prerequisite maps has been recog-
nized and studied in educational psychology (Novak 1990)
and these relations were manually obtained by domain ex-
perts. Such a manual process is not scalable in modern on-
line applications that aim to (a) serve students from varying
educational backgrounds and (b) generalize to any domain.
Hence there is a need to develop methods that can automat-
ically infer pair-wise concept prerequisite relations.

Inference of prerequisite relations has been studied in
other contexts, e.g. from Wikipedia (Talukdar and Cohen
2012), in databases (Yosef et al. 2011) and from text books
(Liang et al. 2018). These tools can be leveraged but can-
not be directly used to detect prerequisite relations from
online resources like MOOCs, due to the complexity and
scale of courses and educational concepts involved (Pan et
al. 2017). There has been growing interest in designing algo-
rithms specifically to infer educational concept prerequisites
(Liu et al. 2016; Liang et al. 2017; Pan et al. 2017).
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In this paper, we develop PREREQ, a new supervised
learning approach to inferring concept prerequisites. Simi-
lar to the problem setting assumed in previous studies, we
assume that prerequisites between courses are known and
different courses share an underlying concept space. In ad-
dition, we assume that some concept prerequisites are also
available to train a supervised model. Manual annotation
of course prerequisites, although available, may be hard to
scale. We show that PREREQ can also effectively learn from
unlabeled video playlists, available through MOOCs.

Figure 1 shows a schematic of the underlying concept
space shared across different courses from different uni-
versities and over different video playlists. We use known
course prerequisites or temporal ordering of videos along
with labeled training data of concept prerequisites to predict
unknown concept prerequisites. Our method uses latent rep-
resentations of concepts obtained through a Pairwise- Link
Latent Dirichlet Allocation (LDA) model (Nallapati et al.
2008), a model for citations in document corpora. These rep-
resentations are then used to train a neural network based on
the Siamese architecture (Bromley et al. 1994) to obtain a
binary classifier that can predict, for a given ordered pair of
concepts, whether or not a prerequisite relation exists be-
tween them.

To summarize, our contributions are:

• We develop PREREQ, a method to predict unknown con-
cept prerequisites from (1) labeled concept prerequisites
and (2) course prerequisite data or video playlists. PRE-
REQ uses the pairwise-link LDA model to obtain vector
representations of concepts and a Siamese network to pre-
dict unknown concept prerequisites.

• Our extensive experiments demonstrate the superiority
of PREREQ over state-of-the-art methods for inferring
prerequisite relations between educational concepts. We
also empirically demonstrate that PREREQ can effec-
tively learn from very less training data.

Problem Statement
Let C be the concept space, the set of all concepts of in-
terest, that is assumed to be fixed and known in advance. A
concept may be a single word (e.g. “vector”) or a phrase (e.g.
“machine learning”). Let GC(C,EC) be a directed acyclic
graph, called concept graph, whose nodes represent con-
cepts and edges represent prerequisite dependency, i.e., EC
contains the directed edge (ci, cj) if and only if concept ci
is a prerequisite of concept cj .

We infer the edges of the concept graph from known
prerequisite relations between documents, where documents
are text sources containing the concepts of interest. Ex-
amples of such documents include course web pages with
known course prerequisites. We assume as input a set of
text documents D and a document graph, a directed acyclic
graph GD(D, ED), whose nodes represent documents and
edges represent document prerequisite dependency, i.e., ED
contains the directed edge (di, dj) if and only if document
di is a prerequisite of document dj . Each document is rep-
resented by the concepts contained in it, i.e. di = {C ∩Wi}

where Wi is the set of n-grams in document di, for n ∈
{1, 2, 3}.

For a given set of concepts C, we want to infer concept
prerequisites EC from the known document graph GD and
the set of text documents D. In the supervised setting, some
concept prerequisites, denoted by the training set, ECT ,
are known, and the remaining, ECU , are unknown, where
ECT ∪ECU = EC and ECT ∩ECU = φ. The problem can
be stated as, for a given set of concepts C, documents D,
document graph GD(D, ED) and known concept prerequi-
sites ECT , predict the unknown concept prerequisites ECU .

Our Approach
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Figure 2: PREREQ Algorithm: latent representations of
concepts are obtained using the Pairwise-link LDA model;
known concept prerequisite relations are used to train a
Siamese network to identify prerequisites.

Latent topic models for text with citation links between
documents have been studied extensively and we study the
applicability of one such well-known model, the pairwise-
link LDA model (Nallapati et al. 2008), to address the prob-
lem of concept prerequisite inference. Our experiments re-
veal that the latent representations obtained from this model
in itself does not have sufficient discriminatory signal. In
particular they are a good measure of concept relatedness
but not of prerequisite directionality. However, learning un-
supervised latent representations through a generative prob-
abilistic model helps in disentangling causal factors by dis-
covering underlying causes such as organization of explana-
tory factors, natural clustering, sparsity and simplicity (Ben-
gio, Courville, and Vincent 2013). So, we use these latent
topic representations of concepts to train a neural network
based on the Siamese architecture (Bromley et al. 1994) that
can identify prerequisite relations.

A schematic view of our method, called PREREQ, is
shown in Figure 2. The input documents D and the docu-
ment graph GD(D, ED) are used to learn the pairwise-link
LDA model. Latent representations of the concepts are ob-
tained from this model and used along with known prereq-
uisites ECT to train a Siamese Network. The following sec-
tions describe the details of PREREQ.
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Concept Representations from Pairwise-link LDA
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Figure 3: Graphical representation of the Pairwise Link-
LDA model. Topicality of the document is explicitly made
dependent on prerequisite documents using the variable
edd′ ∈ ED, the observed prerequisite relation between the
documents.

The Pairwise-Link-LDA model (Nallapati et al.
2008)combines the ideas of Latent Dirichlet Alloca-
tion (LDA) (Blei, Ng, and Jordan 2003) and Mixed
Membership Block Stochastic Models (Airoldi et al. 2008)
for jointly modeling text and links between documents in
the topic modeling framework. Document graph GD and
the set of text documentsD are input to this model. A mixed
membership model is a natural choice for modeling the
documents, each of which includes many key concepts from
different underlying topics. Figure 3 shows the graphical
representation of the generative model. Explicit modeling
of the directional links (i.e., prerequisite edges) between an
ordered pair of documents (ED) captures the topicality of
documents and the word distribution over topics better, in
terms of capturing the prerequisite relationship between the
words itself.

Generative Process and Inference. Figure 3 shows that
each document generation process is same as in LDA. Each
text unit (wdn), in our case an n-gram, is generated from
a topic (zdn) sampled from the document-topic distribution
(θd). The topic-word distribution β describes the topic distri-
bution of each word. For each pair of documents (d, d′), the
observed Bernoulli random variable ed,d′ denotes the pres-
ence or absence of a prerequisite link from d to d′ (i.e. an
edge in ED). For each document d ∈ D, zdn is the index of
the topic that generates the nth unit wdn in document d. For
each pair of documents (d, d′), the latent topic sampled from
d for the prerequisite is zdd′ and similarly, the latent topic
sampled from d′ is zd′d. The topic zdd′ is sampled from the
same document-word distribution (θd) that is used to gen-
erate the document, thus modeling the dependence of the
prerequisites on the underlying topics.

It is important to note that the asymmetric prerequisite re-
lation between pairs of documents is modeled by a Bernoulli
random variable whose parameter is dependent on the under-
lying topics in the document pair. The Bernoulli parameter
ηzdd′ ,zd′d enables asymmetric directionality in the prerequi-
site link. For example, let d be a prerequisite of d′ and zdd′

and zd′d be the latent topics sampled from d and d′ respec-
tively for this interaction. Then the parameter used to gen-
erate the Bernoulli random variable ed,d′ will be ηzdd′ ,zd′d
which is different from ηzd′d,zdd′ thus modeling the direc-
tionality in the relationship.

We refer the reader to (Nallapati et al. 2008) for more de-
tails of the model and a mean–field variational approxima-
tion to infer the model parameters. Using this approach, we
train the model with our input document corpus and their
corresponding prerequisite links, with a fixed value of the
hyperparameter α. We learn βK×|V |, the word distribution
over topics and ηK×K , the asymmetric relationship between
each pair of topics, where V is our vocabulary of n-grams
and K is the chosen number of topics.

The inferred η matrix shows the asymmetric pairwise re-
lation between underlying topics in the document corpus. A
natural approach to learning prerequisite relations is to use
the inferred topic distribution for each concept word (from
β, after suitable normalization) and topic prerequisite rela-
tion η to learn concept prerequisiteness. However, our ex-
periments show that this approach does not work well.

Predicting Relations using Siamese Network
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Figure 4: Siamese Architecture. Each branch consists of 2
fully connected (FC) layers with ReLU nonlinearities be-
tween them with tied weights. We train this network with
the concept vectors learned from Pairwise link-LDA model
(with K topics and vocabulary V ), using cross-entropy loss,
with positive and negative concept pairs, y ∈ {0, 1} is the
label of the corresponding pair.

A Siamese network generally comprises of two identical
sub-networks that are joined by one cost module (Bromley et
al. 1994). The architecture is shown in Figure 4. Each input
to our Siamese Network is a pair of vectors (x1, x2) and a bi-
nary label∈ {0, 1}. The weights of the sub-networks are tied
and each subnetwork is denoted as Gw(.). The pair (x1, x2)
is passed through the sub-networks (Gw) of two fully con-
nected (FC) neural network layers and a rectified linear unit
(ReLU), yielding two corresponding outputs (v1, v2). The
loss function is optimized with respect to the parameter vec-
tors controlling both the subnets through stochastic gradient
decent method using the Adam optimizer.
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PREREQ: Concept Prerequisite Prediction
We use exponentiated and normalized columns of β as vec-
tor representations of the concepts. Hence, each concept is
represented as a [1×K] dimensional vector where K is the
number of latent topics. Labeled pairs of such vectors from
our training set ECT are used as input to train the Siamese
network. The label is set to 1 when the first concept is a pre-
requisite to the second and 0, otherwise. These vectors are
passed through the sub-networks, Gw(.). We use the sum
of the weighted element-wise differences between the twin
feature vectors v1 and v2. W and b denotes the weights and
biases that connects the difference of the outputs from the
two sub-networks to the loss layer. We use the cross-entropy
loss function and obtain the probability (Pcs,ct ) of the first
input vector (cs) being a prerequisite to the second (ct):

Pcs,ct = log

(
efyi∑

j∈{0,1} e
fj

)
(1)

where fj is the jth element of the 2-dimensional vector
f = WT (Gw(β

T
cs) − Gw(β

T
ct)) + b, and yi = 1, as we are

solving a binary classification problem. The trained Siamese
network can be used for predicting prerequisite relations.

Related Work
Inferring concept prerequisites, from course dependencies
or from video based course data are relatively new areas
of study. To our knowledge, there have been three previ-
ous methods specifically designed to infer educational con-
cept prerequisites, viz. CGL (Liu et al. 2016), CPR-Recover
(Liang et al. 2017), and MOOC-RF (Pan et al. 2017). CGL
is a supervised learning approach to map courses from dif-
ferent universities onto a universal space of concepts and
predict prerequisites between both courses and concepts
(Liu et al. 2016). They represent the courses in vector
space and use ranking and another classification based ap-
proach. CPR-Recover solves the same problem by formu-
lating a quadratic optimization problem (Liang et al. 2017)
and shows better performance than CGL. But the number
of constraints in the optimization problem is proportional
to the number of course prerequisite edges, which does not
scale well with the size of the training data. Pan et al. re-
cently proposed a method MOOC-RF for concept prereq-
uisite recovery from Coursera data (Pan et al. 2017). They
define various features and train a classifier that can iden-
tify prerequisite relations among concepts from video tran-
scripts. They do not use course/video prerequisite pairs to
infer concept prerequisites. Both CGL and MOOC-RF use
semantics and context based features. Our method, instead
of using hand tuned features, utilizes a pairwise generative
model to automatically learn the features from the hidden
representation in order to infer concept prerequisite edges.

Experiments
We first compare the performance of PREREQ (source
code1) with that of other state-of-the-art algorithms for infer-

1https://github.com/suderoy/PREREQ-IAAI-19/

ring prerequisite relations on benchmark datasets. We con-
sider both cases of course prerequisites as well as video
playlists, as input, with corresponding baseline methods.
Additionally we demonstrate how PREREQ can learn effec-
tively even when there is less training data available.

Data
We use a published benchmark dataset, the University
Course Dataset and in addition create a new dataset as de-
scribed below. Dataset statistics are detailed in table 1.

Dataset |D| |ED| |EC | |C|
University Course Dataset 654 861 1008 365
NPTEL MOOC Dataset 382 1445 1008 345

Table 1: Dataset Statistics.

University Course Dataset. This dataset, from (Liang et
al. 2017), has 654 courses, from various universities in
USA, and 861 course prerequisite edges. Manual annotation
of 1008 pairs of concepts with prerequisite relations are
provided. There are 406 unique concepts (word or phrases)
among which 1008 prerequisite relationships are annotated.
Data Preparation. We create bag-of-words (BoW) for
unigram, bigram and trigrams from each course text,
removing the standard English stopwords, to represent each
course as a BoW vector. The BoW vectors of 654 courses
and 861 course prerequisite edges are used by the pairwise
link-LDA model to infer concept vectors. We lemmatize the
given concepts to match with the concepts from the BoW
vocabulary and get 365 concepts from the vocabulary out
of the 406. The concept vectors, which are inferred by the
pairwise link-LDA, and the 1008 concept prerequisite pairs
are used by the Siamese network for 5 train-test splits as
described below.

MOOC Dataset. This dataset is based on video playlists
from a MOOC corpus. We download the subtitles of the
videos from playlists of computer science departments from
NPTEL 2. We use 382 videos from 38 different playlists. The
same 1008 concept prerequisite pairs from the University
Course Dataset are used as annotated concept pairs, since
both the datasets are based on computer science courses.
Data Preparation. We use the video subtitle text (i.e. speech
transcripts) to create the BoW vectors of the videos and the
words and phrases present in concept vocabulary are consid-
ered as the vocabulary for creating BoW. Using similar pre-
processing as for the previous dataset, here we find 345 con-
cepts from the BoW vocabulary. As there is no video-video
(or course) prerequisite edge present in this case, we use the
temporal relatedness as a proxy for course prerequisite rela-
tionships. That is, a video lecture in a particular playlist is
a prerequisite for all the videos that are in the same playlist
after the particular video, which may add some noise in the
form of erroneous edges. This gives us total 1455 prerequi-
site edges between video pairs.

2http://nptel.ac.in/
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Performance Evaluation
To evaluate the performance of PREREQ on the datasets, we
split the concept prerequisite edges into train and test sets.
60% of the given concept pairs from the datasets are used
for training while the rest 40% for testing. Training a binary
classifier requires both positive and negative instances. But
the University Course dataset has only positive samples: the
concept prerequisite pairs that are manually annotated. We
generate negative samples by sampling random unrelated
pairs of phrases from the vocabulary in addition to the re-
verse pair of original positive samples, to enable our model
to learn prerequisite directionality. We oversample the neg-
ative instances to 1.5 times the number of positive examples
in the training set to address the imbalance. All presented
results are averaged over 5 train-test splits.

PREREQ Parameter Settings. For all our experiments,
we choose number of topics K = 100 and a fixed Dirichlet
parameter α = 0.01, to enable sparse topic distribution. The
Siamese network is trained with learning rate of 0.0001 and
batch size of 128 over 3500 iterations.

Evaluation Metric. To compare the performance of PRE-
REQ, we use the same evaluation metric used in our main
baseline CPR-Recover (Liang et al. 2017), i.e., Precision@K
=

∑K
i=1 rel(i)

K , where rel(.) is a binary indicator of presence of
the concept pair (cs, ct) in the ground truth. We sort all con-
cept pairs based on their probability (as in Eq. 1 predicted by
PREREQ) and choose top K = 50 or K = 100 to calculate the
precision. The x-axis in the performance graphs denotes the
number of course prerequisite edges used to predict the con-
cept prerequisite pairs. In addition we also use Precision, Re-
call and F-score to evaluate performance of PREREQ with
all the baselines.

Baseline Methods. The method CPR-Recover (Liang et
al. 2017) is, to our knowledge, the best known method
(though unsupervised) for inferring concept prerequisites as
tested on the University Course Dataset, where they have
shown that it outperforms previous methods including CGL
(Liu et al. 2016). MOOC-RF (Pan et al. 2017) is a su-
pervised method, designed for online video based courses.
Note that they have a different problem setting and do not
use course/video prerequisite pairs to infer concept prerequi-
sites. Hence, precision@Kfor using different sets of course
prerequisite edges is not a computable measure for this
method. So, we compare with MOOC-RF using metrics pre-
cision, recall and F-score.

In addition to these baselines, we use a simple count-
based method, Freq, that calculates the score of a concept
pair based on the number of times the pair ‘co-occurs’ in
course prerequisite pairs as described in (Liang et al. 2017).
Also, based on the parameters (β and η) inferred from the
pairwise link-LDA model, we predict the directed relation-
ship between a pair of concepts cs and ct by computing the
score scs,ct = βTcsηβct . Each column of β is exponentiated
and normalized by dividing all element of the column by the
maximum element. For precision, recall and F-score compu-
tation we use a threshold of 0.5 on the score to distinguish
the classes. We call this method Pairwise LDA.

Performance on Benchmark Datasets
From the University Course Dataset, 100, 200, ..., 800
course prerequisite edges are randomly sampled and preci-
sion@K values are computed and averaged over multiple it-
erations. Figure 5 shows the comparative results where PRE-
REQ performs significantly better than CPR-Recover con-
sistently over different number of tested prerequisite edges.
Figure 6 shows the Precision@K scores for K = 50 and K
=100 on the MOOC dataset obtained from the NPTEL video
playlists. The results demonstrate that on video playlists,
where course/video prerequisite information is not available,
PREREQ is able to infer concept prerequisites accurately.

Figure 5: PREREQ shows significant improvement in Pre-
cision@50 and Precision@100, on the University Course
Dataset. The performance is consistently better even when
lesser course prerequisites (ED) are used.

Figure 6: Results on the MOOC Dataset. PREREQ ac-
curately retrieves the concept prerequisite edges with
high probability, as measured by Precision@50 and Preci-
sion@100, even on video playlist data where course prereq-
uisite links are unavailable.

(a) Performance of PREREQ (b) Representation comparison

Figure 7: Results on University Course dataset, (a) Effect of
Training Data Size (b) Effect of Concept Representations.

Table 2 shows the precision, recall and F-score on both
the University Course Dataset and MOOC Dataset. The F-
score of PREREQ is higher than that of CPR-Recover and
MOOC-RF in both the datasets.
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Dataset University Course Dataset MOOC Dataset
Method PREREQ Pairwise LDA CPR-Recover MOOC-RF PREREQ Pairwise LDA CPR-Recover MOOC-RF
Precision 46.76 98.27 16.66 43.70 55.60 48.43 17.18 59.74
Recall 91.64 16.42 46.51 53.43 75.74 10.47 52.97 56.48
F-score 59.68 28.14 24.54 50.95 60.73 17.22 25.94 58.07

Table 2: Performance of PREREQ on benchmark University Course Dataset and MOOC dataset. Row-wise best results in bold.

Effect of Training Data Size on Performance. Labeled
concept prerequisites may be hard to obtain and may not be
sufficient to train a supervised model. However the simple
Siamese architecture in PREREQ uses very few parameters
and can be trained easily even with less training data as seen
in Figure 7(a) where the performance of PREREQ on differ-
ent amounts of training data is compared. We find that the
performance reduces only marginally even when only 40%
of the available labeled data is used for training.

Effect of Concept Representations. Our experiments
(not shown) show that inferred topics from pairwise-link
LDA can discriminate between related and unrelated doc-
uments (based on the prerequisite relation), but the topics do
not have sufficient signal to determine the directionality of
the prerequisite edge. Nevertheless, inferred topics are good
concept representations. We test the performance of three
different concept representations – (1) topic distributions ob-
tained from pairwise-link LDA (as used in PREREQ), (2)
topic distributions obtained directly from LDA learnt from
the same document corpus, and (3) word2vec representa-
tions (Mikolov et al. 2013), trained over Wikipedia. Figure
7(b) shows that pairwise-link LDA based concept represen-
tations are superior to those based on LDA and word2vec.

Conclusion
We develop PREREQ, a supervised learning method, to
learn concept prerequisites from course prerequisite data
and from unlabeled video playlists (increasingly available
from MOOCs), that obviates the need for manual creation
of labeled course prerequisite datasets. PREREQ obtains la-
tent representations of concepts through the pairwise-link
LDA model, which are then used to train a Siamese network
that can identify prerequisite relations accurately. PREREQ
outperforms state-of-the-art methods for inferring prerequi-
site relations between educational concepts, on benchmark
datasets. We also empirically show that PREREQ can learn
effectively from very less training data and from unlabeled
video playlists. PREREQ can effectively utilize the large and
increasing amount of online educational material in the form
of text (course webpages) and video (MOOCs) to solve a
fundamental problem that is essential for several online ed-
ucational technology applications.
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