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Abstract
In several reinforcement learning (RL) scenarios, mainly in se-
curity settings, there may be adversaries trying to interfere with
the reward generating process. However, when non-stationary
environments as such are considered, Q-learning leads to sub-
optimal results (Busoniu, Babuska, and De Schutter 2010).
Previous game-theoretical approaches to this problem have
focused on modeling the whole multi-agent system as a game.
Instead, we shall face the problem of prescribing decisions to
a single agent (the supported decision maker, DM) against a
potential threat model (the adversary). We augment the MDP
to account for this threat, introducing Threatened Markov De-
cision Processes (TMDPs). Furthermore, we propose a level-k
thinking scheme resulting in a new learning framework to deal
with TMDPs. We empirically test our framework, showing the
benefits of opponent modeling.

1 Threatened MDPs
A Threatened Markov Decision Process (TMDP) is a tuple
pS,A,B, T , r, pAq in which S is the state space; A denotes
the set of actions available to the supported agent; B des-
ignates the set of threat actions, or actions available to the
adversary; T : S ˆAˆB Ñ ∆pSq is the transition distribu-
tion; r : S ˆAˆ B Ñ ∆pRq is the reward distribution; and
pApb|sq models the beliefs that the DM has about his oppo-
nent move, i.e., a distribution over B for each state s P S .

We propose to replace the standard Q-learning rule by
Qps, a, bq :“ p1´ αqQps, a, bq`

` α
´

rps, a, bq ` γmax
a1

EpApb|s1q

“

Qps1, a1, bq
‰

¯

(1)
and compute its expectation over the opponent’s action argu-
ment

Qps, aq :“ EpApb|sq rQps, a, bqs . (2)
This may be used to compute an ε´greedy policy for the
DM, i.e., choosing with probability p1 ´ εq the action a “
arg maxaQps, aq or a uniformly random action with proba-
bility ε when the DM is at state s.

In general, we will consider both the DM and the adver-
sary as rational agents that aim to maximize their respective
expected cumulative rewards.
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1.1 Non-strategic opponent
We assume that the supported DM is a joint action learner
(i.e., she observes her opponent’s actions after he has com-
mitted them). At every iteration, the DM shall choose her
action using the Q-function from Eq. (2). However, she needs
to predict the action b chosen by her opponent. A typical
option is to model her adversary using fictitious play (FP),
i.e., pApb|sq is computed using the empirical frequencies of
the opponent past plays.

Algorithm 1 Level-2 thinking update rule
Require: QA, QB , αA, αB (DM and opponent Q-functions

and learning rates, respectively).
Observe transition ps, a, b, rA, rB , s1q from the TMDP en-
vironment
QBps, b, aq :“ p1 ´ αBqQBps, b, aq ` αBprB `

γmaxb1 EpBpa1|s1q rQBps
1, b1, a1qsq Ź Level-1

Compute B’s estimated ε´greedy policy pApb|s1q from
QBps, b, aq
QAps, a, bq :“ p1 ´ αAqQAps, a, bq ` αAprA `

γmaxa1 EpApb1|s1q rQAps
1, a1, b1qqs Ź Level-2

1.2 Level-k thinking
Now a level-k scheme (Stahl and Wilson 1994) will be in-
troduced. The previous section described how to model a
level-0 opponent, i.e. a non strategic opponent, which can
be practical in several scenarios. However, if the opponent
is strategic, he may model the supported DM as a level-0
thinker, thus making the adversary a level-1 thinker. This
chain can go up to infinity, so we will have to deal with mod-
eling the opponent as a level-k thinker, with k bounded by
the computational or cognitive resources of the DM.

To deal with it, we introduce a hierarchy of TMDPs in
which TMDPk

i refers to the TMDP that agent i needs to
optimize, while considering its rival as a level-pk´1q thinker.
Thus, we have the following process:

• If the supported DM is a level-2 thinker, she may optimize
for TMDP2

A. She models B as a level-1 thinker. Conse-
quently, this “modeled” B optimizes TMDP1

B , and while
doing so, he models the DM as level-0 (using Section 1.1).
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• In general, we have the chain of TMDPs:

TMDPk
A Ñ TMDPk´1

B Ñ ¨ ¨ ¨ Ñ TMDP1
B .

Exploiting the fact that we are in a repeated interaction setting
(and by assumption that both agents can observe all past
committed decisions and obtained rewards), each agent may
estimate their counterpart’s Q-function, Q̂k´1: if the DM
is optimizing TMDPk

A, she will keep her own Q-function
(we refer to it as Qk), and also an estimate Q̂k´1, of her
opponent’s Q-function. This estimate may be computed by
optimizing TMDPk´1

B and so on until k “ 1. Finally, the top
level DM’s policy is given by

arg max
ak

Qkpak, bk´1, sq,

where bk´1 is now given by

arg max
bk´1

Q̂k´1pak´2, bk´1, sq

and so on, until we arrive at the induction basis (level-1)
in which the opponent may be modeled using the fictitious
play approach from Section 1.1. Note that in the previous
hierarchy of policies the decisions are obtained in a greedy,
deterministic manner (i.e. just by maximizing the lower level
Q̂ estimate). We may add uncertainty to the policy at each
level, for instance, by considering ε´greedy policies.

Algorithm 1 specifies the approach for a level-2 DM. Be-
cause she is a level-2 DM, we need to account for her Q-
function, QA (equivalently Q2 from before), and that of her
opponent (who will be level-1), QB (equivalently Q̂1q.

2 Experiments and Results
To illustrate the TMDP’s and level-k reasoning framework,
we focus on the friend or foe environment, from a suite of RL
safety benchmarks introduced in (Leike et al. 2017). The sup-
ported DM needs to travel a room and choose between two
identical boxes, hiding positive and negative rewards, respec-
tively. This reward assignment is controlled by an adaptive
adversary, who estimates the DM’s actions using an expo-
nential smoother. Let p “ pp1, p2q be the probabilities with
which the DM will choose targets 1 or 2, respectively, as
estimated by the opponent. Then, at every iteration he up-
dates his knowledge through p :“ αp ` p1 ´ αqa where
0 ă α ă 1 is a learning rate, unknown from the DM’s point
of view, and a P tp1, 0q, p0, 1qu is a one-hot encoded vec-
tor indicating whether the DM has chosen target 1 or 2. We
consider an adversarial opponent which places the positive
reward in target t “ arg minippqi.

In particular, we compare the independent Q-learner and
a level-2 Q-learner against the adaptive opponent. Targets’
rewards are delayed until the DM arrives at one of the respec-
tive locations, obtaining ˘50 depending on the target chosen
by the adversary. Each step is penalized with a reward of
-1 for the DM. Results are displayed in Figure 1. Note that
the independent Q-learner is exploited by the adversary. In
contrast, the level-2 agent is able to approximately estimate
the adversarial behavior, modeling him as a level-1 agent,
thus being able to obtain positive rewards.

Figure 1: Rewards against the adversarial opponent

Adversary RL1Q RL2Q

WoLF-PHC ´2.05 0.77
L2Q ´1.99 ´0.78
L1Q ´0.29 0.87

Table 1: DM’s rewards in iterated matrix game

In addition, we test our framework in the iterated variant
of the classic Chicken game.We compare a FP Q-learner
(L1Q) and a level-2 Q-learner (L2Q) DM against a WoLF-
PHC (Bowling and Veloso 2001), L1Q and L2Q adversaries,
reporting rewards (averaged over the last 100 iterations and
10 random seeds) for the DM in Table 1. Note how the higher
level DM achieves greater rewards and even exploits other
kind of opponents. Details and code can be found at https:
//github.com/vicgalle/ARAMARL.

3 Conclusions
We have introduced TMDPs, a novel framework to support
decision makers who confront adversaries that interfere with
the reward generating process in RL settings. In addition,
we propose a scheme to model adversarial behavior based
on level-k reasoning about opponents. Further empirical evi-
dence is provided via experiments, with encouraging results.
Further work shall study the properties of higher order adver-
saries.
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