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Abstract

In settings with related prediction tasks, integrated multi-task
learning models can often improve performance relative to
independent single-task models. However, even when the av-
erage task performance improves, individual tasks may ex-
perience negative transfer in which the multi-task model’s
predictions are worse than the single-task model’s. We show
the prevalence of negative transfer in a computational chem-
istry case study with 128 tasks and introduce a framework that
provides a foundation for reducing negative transfer in multi-
task models. Our Loss-Balanced Task Weighting approach
dynamically updates task weights during model training to
control the influence of individual tasks.

Introduction
Multi-task learning aims to exploit information from related
tasks to improve the generalization performance of all the
tasks jointly. Deep learning-based multi-task learning has
been successfully applied in chemical screening, genomics,
object detection, natural language processing, and other do-
mains. Shared hidden layers in a neural network can trans-
fer knowledge among related tasks, which may reduce over-
fitting and improve learned latent representations, especially
when the task-specific training data is limited. However,
when the tasks considered are not sufficiently related, the
multi-task setting can be detrimental to performance.

Although the performance may improve on average over
all tasks in the multi-task setting, for some specific tasks,
the multi-task performance can be worse than a single-task
model. This decrease in performance is known as negative
transfer. Negative transfer occurs naturally in real scenar-
ios and is especially problematic if a subset of tasks is of
primary interest and the others are used only to improve the
representation learning. We have two conjectures for why
negative transfer may happen. (1) All tasks are diverse and
unrelated to each other; there is no suitable common latent
representation so multi-task learning produces poor repre-
sentations. (2) One group of related tasks dominates the
training process. The performance for those tasks improves
as more related tasks are added, but tasks outside the domi-
nant group suffer.
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Despite abundant approaches for multi-task learning, few
methods aim to improve average task performance while
simultaneously minimizing negative transfer. Our contribu-
tions are (1) demonstrating the presence of negative trans-
fer in a chemistry dataset and (2) proposing a preliminary
algorithm intended to reduce negative transfer by learning
task-specific weights. On our computational chemistry case
study, this algorithm has the best average performance and
fewest tasks with negative transfer.

Methods
Our goal is to design a multi-task learning framework that
reduces negative transfer while still improving the average
task performance. We consider five neural network-based
transfer learning algorithms and a single-task baseline.

Single-Task Learning (STL) and Multi-Task Learning
(MTL) are fully-connected neural networks, where MTL
has shared hidden layers and separate outputs for T tasks in
the last layer. Fine Tuning is another transfer learning strat-
egy that first trains a MTL model on T−1 tasks and then ini-
tializes a STL model for the final task with the MTL weights.
This strategy transfers the latent representation from the
larger multi-task dataset to the single-task dataset so as to
alleviate data insufficiency.

Another approach is to apply a task-specific weight vec-
tor. Reinforced Multi-Task Learning (RMTL) (Liu 2018)
uses cosine similarity of the gradients between T − 1 tasks
and a single emphasized task as task weights. GradNorm
(Chen et al. 2018) assumes that tasks with larger loss domi-
nate the training and therefore learns a balanced global task
weight. In GradNorm the task weight is static because it is
identical among all batches, whereas RMTL assumes the
task weight should be dynamic. Dynamic means that the
task weight differs given different inputs. We propose that
the challenging tasks can be identified by their loss, and
the loss dynamically changes for different batches of data.
Therefore, we introduce Loss-Balanced Task Weighting
(LBTW), which combines and expands upon ideas from
RMTL and GradNorm.

LBTW follows the RMTL framework with dynamic task
weights. However, LBTW assumes that the task-specific
loss is informative for balancing different tasks. For each
task and batch, LBTW considers the loss ratio between the
current loss and the initial loss, which is a proxy for how
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Table 1: Mean PR AUC on all 128 tasks and the number of tasks with negative transfer based on PR AUC.

Evaluation Metric STL MTL FineTuning GradNorm
(α = 0.1)

GradNorm
(α = 0.5) RMTL LBTW

(α = 0.1)
LBTW

(α = 0.5)
Mean PR AUC 0.232 0.241 0.239 0.189 0.181 0.238 0.247 0.253

# Negative Transfer - 48 46 98 103 47 45 42

well the model has trained for that task. Poorly trained tasks
have ratios close to 1 and contribute more to the overall loss
and gradient. A hyperparameter α balances the influence of
the task-specific weights, and LBTW approaches standard
MTL as α goes to 0 (Algorithm 1). Implementation details
and model hyperparameters are provided in the Appendix.

Algorithm 1: Loss-Balanced Task Weighting
Given T tasks and parameter α.
Initialize neural network weights W .
for each epoch i do

for each batch of data B do
Get the loss on each task `B ∈ RT .
Store the first batch loss as `(0,i) ∈ RT .
for each task t do

Set the task weight wt =
(
`(B,t)

`(0,i,t)

)α
.

Update weighted loss `(B,t) = `(B,t) × wt.
end for
Update W with respect to `B .

end for
end for

Results
We test LBTW on the PubChem BioAssay chemistry
dataset. It includes 128 tasks and approximately 440,000
chemicals, where each task is a binary classification prob-
lem on whether the chemical affects a biological target. The
data processing follows (Liu et al. 2018).

We compute the difference in predictive performance for
each transfer learning model versus the STL baseline using
PR AUC (Figure 1 and Table 1) or ROC AUC (Appendix)
for evaluation. In this domain, there are far more inactive
than active chemicals, so PR AUC is more meaningful than
ROC AUC (Liu et al. 2018). All five approaches improve
mean ROC AUC, but on average the GradNorm PR AUC
is worse than STL (Table 1). No method eliminates nega-
tive transfer or even reduces it substantially for PR AUC.
However, LBTW has the best mean PR AUC overall and the
fewest tasks with negative transfer, slightly fewer than MTL,
Fine Tuning, and RMTL.

Conclusion
Although the preliminary version of LBTW provides only
a minor reduction in the number of tasks with negative
transfer, the LBTW framework provides flexibility to tune
task weights. Currently, LBTW uses uniform task weights
when making predictions, but future versions could apply
gradient-based task weighting during prediction as well. In

Figure 1: Distribution of the change in PR AUC relative to
STL for 128 tasks. Values below 0 indicate tasks with neg-
ative transfer. Details and ROC AUC results are in the Ap-
pendix.

settings where there is no shared optimal latent representa-
tion for all tasks, there will be natural tradeoffs between av-
erage performance and instances of negative transfer. LBTW
provides a platform to continue to explore and tune that
tradeoff.
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