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Abstract

Deep neural networks are prone to overfitting, especially in
small training data regimes. Often, these networks are over-
parameterized and the resulting learned weights tend to have
strong correlations. However, convolutional networks in gen-
eral, and fully convolution neural networks (FCNs) in par-
ticular, have been shown to be relatively parameter efficient,
and have recently been successfully applied to time series
classification tasks. In this paper, we investigate the applica-
tion of different regularizers on the correlation between the
learned convolutional filters in FCNs using Batch Normaliza-
tion (BN) as a regularizer for time series classification (TSC)
tasks. Results demonstrate that despite orthogonal initializa-
tion of the filters, the average correlation across filters (espe-
cially for filters in higher layers) tends to increase as training
proceeds, indicating redundancy of filters. To mitigate this re-
dundancy, we propose a strong regularizer, using simple yet
effective filter decorrelation. Our proposed method yields sig-
nificant gains in classification accuracy for 44 diverse time
series datasets from the UCR TSC benchmark repository.

Introduction
Time Series Classification (TSC) has been a fundamental
task in signal processing with applications in multiple do-
mains such as healthcare and finance. Traditionally, distance
based methods such as Dynamic Time Warping (DTW) have
been employed for TSC tasks. Recently, deep networks have
consistently outperformed DTW (Malhotra et al. 2017). In
contrast to standard deep networks, Fully Convolutional
Networks (FCNs) utilize fewer parameters and have yielded
very promising results for TSC tasks (Wang, Yan, and Oates
2017). However, these networks still tend to be overparame-
terized resulting in redundant parameters after training. Or-
thogonal Initialization (OI) (Mishkin and Matas 2015) of
filters in convolutional layers has also been demonstrated
to improve performance compared to random initialization.
Further, decorrelation of filters (OrthoReg) (Rodrı́guez et al.
2016) and network activations (Cogswell et al. 2015) were
proposed for regularization of CNNs. Specifically, OrthoReg
tries to reduce the redundancy of the filters by minimizing
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pairwise filter similarities. Leveraging the property of decor-
relating filters, we propose FCN with filter decorrelations
imposed via a loss function along with the standard classi-
fication loss and show that it leads to better classification
performance. To the best of our knowledge, this is the first
attempt to show the effectiveness of using filter decorrela-
tion loss for time series classification.

Decorrelating Filters in FCNs
Let L be the number of convolutional layers, and pl be
the number of filters in layer l. Let wl

i ∈ Rnl represent
the weights of the i-th filter in the l-th layer. Here nl =
tl × 1× pl−1, where tl is the length of the filter, pl−1 is the
number of filters in the (l − 1)-th layer. The decorrelation
loss is given by,
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where ||.||2 denotes the L2 norm, and x · y denotes the
dot-product of the vectors x and y. For a K-class classifica-
tion problem, letLCE = −

∑N
n=1

∑K
k=1 y

k
n ·log(ŷkn), where

ŷnk denotes the probability of k-th class for n-th training in-
stance, as given by softmax layer with K units, and N is the
number of training instances. The total loss is then given by
L = LCE + λLDecorr.

Experimental Evaluation and Observations
We evaluated our approach on 44 univariate time series
datasets taken from publicly available UCR TSC benchmark
dataset (Chen et al. 2015). To select the best hyperparame-
ter setting, we held out 25% of training data via stratified

Figure 1: FCN Architecture
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sampling. As shown in Fig. 1, FCN model contains 3 con-
volutional layers with batch normalization (BN) followed
by ReLU activation, and ends with Global Average Pooling
(Lin, Chen, and Yan 2013) and Softmax layer. With mini-
batch size of 10% of the training data, we trained it with
Adam (lr= 0.001, β1 = 0.9, β2 = 0.999) till 600 epochs
with early-stopping tolerance of 30. We then performed grid
search over pl = [8, 16, 32, 64] and tl = [0.05T, 0.1T ],
where T is the length of time series.

We considered the following baselines for comparison: i)
using BN, ii) using BN and Dropout (a random subset of
filters is dropped at each layer in each iteration of train-
ing) (BN+DO), iii) using BN and the proposed decorrela-
tion loss (BN+Decorr). We also incorporated regularization
factors into grid search in the following way: for case ii)
dropout factor = [0.05, 0.15, 0.25], and for case iii) λ =
[1, 0.1, 0.01, 0.001].

To summarize the classification errors of 3 models for 44
datasets, let

I =
# training instances

# labels in training data

We group the datasets by I . Small contains datasets with
I ≤ 11 (up to the 33rd Percentile), Medium contains datasets
with 11 < I ≤ 33 (33rd − 66th percentile) and Large con-
tains datasets with I > 33 (above the 66th percentile).

Table 1: Average Classification error rates on 44 UCR
datasets grouped by I

Group BN BN+DO BN+Decorr
Small (I ≤ 11) 0.2961 0.6050 0.2509

Medium (11 < I ≤ 33) 0.1500 0.49405 0.1320
Large (I > 33) 0.1522 0.4047 0.1468

Observations
• From Table 1, we observe that for Small and Medium

datasets, BN+Decorr has significant gain over the others.
It shows that Decorr is reducing overfitting in the case of
small training data.

• We observed that BN+Decorr improved performance in
26/44 datasets and had same performance in 5/44 datasets
with BN, out of which 4 were having zero classification
error. Dropout is usually known to be effective for dense
fully connected layers after the convolutional layers and
not effective when applied to filters. We observed the
same behavior as BN+DO performs significantly worse
than BN alone.

• For datasets where BN+Decorr and BN are similar, we
further explored the effect of Decorr regularizer by re-
ducing the training dataset size, and observe that when
only a fraction (30%) of the training data is available,
BN+Decorr performed significantly better than BN alone
implying better regularization with average percentage
gain of 8.61%.

• To understand the working of decorrelation loss, we an-
alyzed the layer-wise correlation of filters. As shown in

Figure 2: Layer-wise filter correlations averaged over all
datasets with and without using decorrelation loss.

Figure 2, randomly initialized filters are reasonably decor-
related to begin with, but over several training epochs, the
correlation between filters tends to increase if LDecorr is
not included, whereas the filters tend to remain decorre-
lated if LDecorr is included in the loss function.

Conclusion
In this work, we have explored regularization of FCNs with
application to time series classification. The proposed reg-
ularizer attempts to learn filters that are decorrelated and is
simple to implement, but is effective nevertheless. We ob-
served that the decorrelation loss added to the loss function
yielded significant performance gain in terms of classifica-
tion error rates on diverse TSC benchmark datasets. In the
future, we plan to explore the effectiveness of the proposed
regularizer for multivariate time series applications, and fur-
ther explore methods for disentangled representation (Ben-
gio 2013) for time series.
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