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Abstract

In this paper, we propose a novel Adaptive Discrimi-
nant Analysis for semi-supervised feature selection, namely
SADA. Instead of computing fixed similarities before per-
forming feature selection, SADA simultaneously learns an
adaptive similarity matrix S and a projection matrix W with
an iterative method. In each iteration, S is computed from the
projected distance with the learned W and W is computed
with the learned S. Therefore, SADA can learn better pro-
jection matrix W by weakening the effect of noise features
with the adaptive similarity matrix. Experimental results on 4
data sets show the superiority of SADA compared to 5 semi-
supervised feature selection methods.

Introduction
Since it is often costly to obtain labeled data, the study
of ‘semi-supervised feature selection” has gained more and
more attention. Recently, Chen proposed a semi-supervised
feature selection method RLSR (Chen et al. 2017), in which
a rescaled linear square regression is proposed to extend the
least square regression for feature selection. Yuan et al. im-
proved RLSR by introducing a ε-dragging technique in or-
der to enlarge the distances between different classes (Yuan
et al. 2018). In real applications, multimodality phenom-
ena that samples in some classes form several separate clus-
ters is often observed (Fukunaga 1990). However, existing
semi-supervised feature selection methods cannot solve this
problem.

To address the “multimodality” problem, we propose
a new semi-supervised feature selection method, namely
Semi-supervised Adaptive Discriminant Analysis (SADA).
Instead of computing a fixed similarity matrix before per-
forming feature selection, SADA learns an adaptive simi-
larity matrix S and a projection matrix W simultaneously
with an iterative method. In each iteration, S is computed
from the projected distance with the learned W and W is
computed with the learned S. Therefore, SADA can better
rank the features by weakening the affection of noise fea-
tures with the adaptive similarity matrix. Experimental re-
sults on 4 data sets show the superiority of SADA in com-
parison to 5 semi-supervised feature selection methods.
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The Proposed Method
In semi-supervised learning, a data set X ∈ Rd×n with c
classes consists of two subsets: a set of l labeled objects
XL = (x1, ...,xl) which are associated with class labels
YL = {y1, ...,yl}T ∈ Rl×c, and a set of u = n − l unla-
beled objects XU = (xl+1, ...,xl+u)

T whose labels YU =
{yl+1, ...,yl+u}T ∈ Ru×c are unknown. Let W ∈ Rd×m
be a projection matrix where m is the projection dimension.
Inspired by the paper (Xiaojun Chen and Huang 2018), we
can learn W by solving the following objective function
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whereM1
i consists of k nearest neighbors of xi in XL and

M2
i consists of k nearest neighbors of xi in XU . Specif-

ically, if xi is labeled, M1
i consists of min{k, nci} near-

est neighbors which are in the same class as xi and nci is
the number of objects in the class to which xi belongs. The
`2,p norm is used to obtain more sparser solution if we set a
smaller p where p ∈ (0, 2). ε is a sufficiently small constant,
e.g. 10−10, which is used to avoid zero denominators.

It is difficult to directly solve problem (1). In this paper,
we propose to obtain W by solving the following problem
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where Q ∈ Rd×d is a diagonal matrix in which
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and S ∈ Rn×n is defined as
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With fixed Q and S, problem (2) can be solved directly to
obtain the optimal solution to W as the m eigenvectors of
XLSX

T + γQ corresponding to the m smallest eigenval-
ues, where LS = Ds − S is the Laplacian matrix of S and
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(a) The first two dimensions of
D1.
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(b) The projection directions in
the first two dimensions.

Figure 1: Projection direction results on D1. In each figure,
the blue points and red points indicate two different classes,
while the black points indicate unlabeled objects.

Ds ∈ Rn×n is a diagonal matrix with the i-th diagonal ele-
ment as

∑n
j=1 sij . Then, with the new W, we update Q and

S according to Eqs. (3) and (4). Finally, {
∥∥wj

∥∥
2
}dj=1 are

computed from the learned W and the r most important fea-
tures are selected out according to {

∥∥wj
∥∥
2
}dj=1. The above

algorithm is denoted as Semi-supervised Adaptive Discrim-
inant Analysis (SADA). The convergence of SADA is en-
sured by the following theorem:

Theorem 1. The iteration process of SADA will monotoni-
cally decrease the objective function of problem (1) in each
iteration.

Experimental Results and Analysis
We generated a synthetic data set D1 to test the projec-
tion ability of the proposed method for feature selection.
The data set consists of 12 dimensions, where the data
in the first two dimensions are distributed in three Gaus-
sian shapes while the data in the other dimensions are uni-
formly distributed noise features. Figure 1a shows the data
set in the first two dimensions, in which two small Gaussian
clusters are buried in one red class. We compared SADA
with five methods, including sSelect (Zhao and Liu 2007),
LSDF (Zhao, Lu, and H 2008), PRPC (Xu et al. 2016),
RLSR (Chen et al. 2017) and DSFFS (Yuan et al. 2018). In
this experiment, the projection dimension was set as 1 and
the nearest neighborhoods k was set as 5. The regulariza-
tion parameters in RLSR, DSFFS and SADA were set as 1
for fair comparison. The neighborhood parameters in LSDF
and SADA was set to 5 for all datasets. For SADA, we set
p = 1.5. The projection direction results are displayed in
Figure 1b, which shows that if we consider separating only
the red class from the blue class, the direction of projec-
tion revealed by LSDF is good. However, if we want to sep-
arate the two small classes contained within the red class,
SADA achieves the best direction of projection. In this ex-
periment, we compared six methods on four real-life data
sets whose characteristics are shown in Table 1. We set pa-
rameters of all methods in the same strategy to make the
experiments fair enough, i.e., {10−3, 10−2, . . . , 103}. The
neighborhood parameters in LSDF and SADA was set to 10
for all datasets. p in SADA was set to 10 values from 0.1 to
1.9. The average accuracies of 6 methods on 4 datasets are

Table 1: Characteristics of 4 benchmark data sets.

Name #Samples #Features #Classes
Colon 62 2000 2

Segment 2310 19 7
Srbct 63 2308 2
Glass 214 9 6

Table 2: The average accuracies of 6 semi-supervised feature
selection methods on 4 benchmark data sets (the best result
on each data set is highlighted in bold).

Name Colon Segment Srbct Glass
LSDF .877±.012 .859±.089 .551±.025 .502±.023
sSelect .682±.000 .654±.295 .356±.000 .434±.082
PRPC .893±.023 .834±.060 .429±.037 .479±.019
RLSR .841±.027 .923±.032 .591± .004 .492±.020
DSFFS .841±.053 .923±.046 .593±.018 .492±.027
SADA .911±.019 .909±.044 .591±.027 .494±.023

reported in Table 2, in which we used 30% data as labeled
data and 70% data as unlabeled data and test data. Over-
all, our proposed method SADA outperformed other meth-
ods on most datasets, especially on the Colon datasets. To
be specific, SADA achieves a greater than 2% average im-
provement on the Colon dataset, compared to the second-
best method PRPC. SADA also achieved good performance
on the rest datasets in average. This indicates that the learnt
implicit adaptive local structure learning indeed improves
the performance of feature selection.
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