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Abstract

Functionality is a fundamental attribute of an object which in-
dicates the capability to be used to perform specific actions. It
is critical to empower robots the functionality knowledge in
discovering appropriate objects for a task e.g. cut cake using
knife. Existing research works have focused on understanding
object functionality through human-object-interaction from
extensively annotated image or video data and are hard to
scale up. In this paper, we (1) mine object-functionality
knowledge through pattern-based and model-based methods
from text, (2) introduce a novel task on physical object-
functionality prediction, which consumes an image and an
action query to predict whether the object in the image can
perform the action, and (3) propose a method to leverage the
mined functionality knowledge for the new task. Our experi-
mental results show the effectiveness of our methods.

1 Introduction

Functionality indicates the capability of an object to be used
to perform specific actions. According to the study of psy-
chologist (Gibson 2014; Oakes and Madole 2008), func-
tionality is a fundamental attribute for an object to be per-
ceived by human, which is as important as appearance for
object recognition. Learning object functionality is signif-
icantly important for robots to interact with environment,
which has been widely studied in robotic community.

Query: Can cut cake?
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Figure 1: Object-functionality prediction task. Given the

query <cut, cake>, whether the object in the image can be

used as tool to cut cake. The knife and spoon should output

yes, and others should output no.

With the recent advances in NLP tasks, including question
answering(Petrochuk and Zettlemoyer 2018) and dialogue
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(Serban et al. 2016; Young et al. 2018), chat with robots
has achieved significant progress. Besides, in robotic com-
munity, interacting with robot to complete tasks is a long-
standing research problem, which required both language
understanding and physical grounding. Generally, human
would like to give orders like cut cake without specifying
the tool e.g. cut the cake using knife. The robot should be
able to find a tool autonomously, which can be potentially
used to cut cake.

According to our study, WikiHow' contains sentences
of guiding human to perform physical actions. Within
7,800,973 sentences we have collected, around 4% sen-
tences mention the actual tool explicitly. After the inves-
tigation on 20 commonly used actions which require tool
to perform, about 6% sentences explicitly mention the tool.
Human regards the object functionality as commonsense
knowledge and would like to not specify the tool. Without
explicitly mentioned, it is critical to empower robots the
functionality knowledge in discovering appropriate objects
for a task. We focus on two research problems:

1. What functionalities/actions an object has?

2. Whether the object can perform the action on another ob-
Jject?

Existing knowledge graph ConceptNet(Speer and Havasi
2012) has UsedFor relation, which were collected in a
crowdsourcing way and far from satisfying application
demands due to low coverage. Previous research works
have mainly focused on understanding object functionality
through human-object-interaction from extensive annotated
image or video data and are hard to scale up. According to
our study on Visual Genome(Krishna et al. 2017), which is
an extensive labeled scene graph of each image, most rela-
tions are spatial (e.g. on, near, etc.) relations and only a few
are physical (e.g. wear, hold, etc.) relations.

In this paper, we first mine the object-functionality knowl-
edge through pattern-based and model-based methods from
large amount of text data, which improve the coverage to
a great extent. The extracted object-functionality are repre-
sented as knowledge tuples <head, action, tail>, which in-
dicates the head object performs an action on the tail object.

"https://www.wikihow.com/Main-Page



In real applications, a robot seeks visible objects that can
be used to complete the task based on appearance. Moti-
vated by this, we introduce a new task and dataset on phys-
ical object-functionality prediction, which consumes an ob-
ject image and an action query <action, object> to predict
whether the object in the image can perform the action. Fig-
ure 1 gives a showcase of the task. As an example, we can
use knife or spoon to cut the cake but not scissors, hammer or
rolling pin. To resolve this task, we propose a novel model
to predict the object-functionality through both visual ap-
pearance and the extracted functionality knowledge. More
specifically, on one hand, we use a CNN based model to
perform object and functionality classification. On the other
hand, we directly use the predicted object and the action
query to construct a tuple <head, action, tail> and employ
both PRA (Path ranking algorithm)(Lao, Mitchell, and Co-
hen 2011) and Dismult(Yang et al. 2015) module for infer-
ence. Then we finalize the score through a linear combina-
tion.

We conduct experiments on evaluating the quality and
coverage of the mined object-functionality knowledge. Ex-
perimental results of applying the knowledge for object-
functionality prediction task show the effectiveness of our
model. To sum up, the contributions of this paper are:

1. We propose to mine functionality from large scale text
data.

2. We introduce a new task for object-functionality predic-
tion and constructing a new dataset.

3. We design a model through visual-based recognition and
knowledge inference modules to resolve the task.

2 Related Works

Object affordance and functionality have been studied
for years and have attracted more attention in computer vi-
sion and robotics community. According to Gibson(Gibson
2014), Object affordance reveals the possible actions the
object can perform or be performed on them when inter-
acting with environment. In this work, we focus on object
functionality, which is the action that object can perform.
Yao(Yao, Ma, and Fei-Fei 2013) discovered object function-
ality through human interaction with the object. Zhu(Zhu,
Fathi, and Fei-Fei 2014) proposed to infer object affor-
dance by reasoning in knowledge base which consists of
visual, physical, categorical as well as HOI (human-object-
interaction) concepts. Zhu(Zhu, Zhao, and Chun Zhu 2015)
introduced a method to understand functionality by imag-
ing actions on physical concepts. However, it is hard to col-
lect large scale HOI dataset with annotation. Azuma(Azuma,
Takiguchi, and Ariki ) shown that functionality can be ef-
fectively recognized from appearance according to attributes
like shape or material. Different from previous work, we first
mine the functionality knowledge and predict the function-
ality from both object appearance and knowledge,

Knowledge extraction aims to mine propositions in the
form of <subject, verb, object > from large scale cor-
pus. NELL (Never Ending Language Learner)(Mitchell et
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al. 2018) extracted structured knowledge by bootstrapping
techniques. Recently, neural based open information extrac-
tion(Stanovsky et al. 2018) has been widely used to mine
knowledge. In this paper, we adopt RnnOIE(Stanovsky et
al. 2018) which is a Bi-LSTM model for sequence tagging.
Object functionality is rarely declared as the form of subject-
verb-object in the corpus and we apply several post process-
ing methods for further extraction.

Commonsense knowledge ConceptNet(Speer and Havasi
2012) is the most widely used commonsense knowledge
graph and is collected in a crowdsourcing way. We-
bChild(Tandon et al. 2014) extracted commonsense knowl-
edge from text automatically. Recent advances attempted to
extract knowledge through visual images. NEIL(Chen, Shri-
vastava, and Gupta 2013) is a pipeline to extract knowl-
edge from images endlessly. Xin(Lin and Parikh 2015;
Vedantam et al. 2015) has proposed to extract commonsense
knowledge by abstract images. Yatskar(Yatskar, Ordonez,
and Farhadi 2016) extract visual commonsense knowledge
mainly on spatial relations such as on, above, besides, touch,
etc. However, these knowledge graphs neglect physical ac-
tions. Chao(Chao et al. 2015) has proposed to mine seman-
tic affordance through text mining, visual mining and col-
laborative filtering methods. We not only mine functional-
ity, but also incorporate the knowledge for further object-
functionality prediction task.

Incorporating knowledge Tremendous research
works aim to incorporate knowledge for AI agents e.g.
KBQA(Petrochuk and Zettlemoyer 2018), Dialogue(Young
et al. 2018), VQA(Lu et al. 2018). Knowledge embedding
are widely used techniques for link prediction and incor-
porating knowledge in many tasks. which embed discrete
tokens to vector representation, such as TransE(Bordes
et al. 2013), Dismult(Yang et al. 2015), URGE(Chen et
al. 2019). In this work, we adopt Dismult to predict the
relationship between the head and tail entities. Different
from knowledge embedding, we also predict object and its
functionality through PRA(Lao, Mitchell, and Cohen 2011)
with regard to: (1) PRA(Lao, Mitchell, and Cohen 2011)
uses the explicit pathes to predict relations (2) Existing
knowledge embedding models aim to encode encyclopedic
knowledge instead of commonsense knowledge. Experi-
mental results have shown that combining Dismult and PRA
can effectively predict object functionality.

3 Object-Functionality Prediction Task

In this section, we first formulate the object-functionality
prediction task, then discuss the framework, and finally in-
troduce the dataset.

Problem Formalization

Given an image of object I, and an action query () as <ac-
tion, object>, predict whether the object I can be used to
complete the task . This is formalized as a classification
problem.



Framework

We discuss the framework to perform the task. Firstly, we
extract the object-functionality knowledge from various text
dataset; Secondly, we consolidate these candidates into one
knowledge graph; Finally, we propose a model to predict
the plausibility score through object and functionality clas-
sification module followed by an inference module. Figure
2 shows the overview of the framework.

Data
WikiHow
Google N-Gram
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Figure 2: Framework

Data Collection

We collect a dataset for the object-functionality predic-
tion task. This dataset contains <head (image), action,
tail> with a label 1(yes) or O(no). We start by selecting
actions which require tools to complete. Then we label (1)
the <head, action> pairs to judge whether the head object
can execute the action; (2) the <head, action, tail> tuples
to decide whether the head object can perform the action on
the tail. Finally, we crawl and clean the images of objects.

Actions Following (Chao et al. 2015), We first extract the
100 most frequently used and physically visible actions from
the dataset in (Chao et al. 2015). Chao(Chao et al. 2015)
labeled the visualness score of verbs, and we use their label
and select the visible verbs (score >3.6). We also removed
several vague actions like have, make, be and actions which
do not require a tool to perform such as think, run. At last,
we select 20 actions listed in Table 1.

Table 1: Action List

break cut heat roll
build | decorate hit shoot
clean draw kill tie
contain drink paint | wash
cook eat repair | write

Head-Action pairs We select top 70 objects which are fre-
quently used to perform the 20 actions from ConceptNet.
Then we conduct Cartesian product on all 70 head objects
and 20 actions into 1400 <head, action > pairs as candi-
dates. After that, we ask two labelers to annotate the ques-
tion:

Q: “whether the object can perform action 7

Two labelers have the consistent labels for over 80% pairs
and we asked another labeler to make a final judgment for
the inconsistent labels. In total, we get 330 positive pairs and
1,070 negative pairs. Figure 3 lists number of objects which
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can perform the action. From the figure we can see that more
than 50 objects can perform hit while only a few can perform
tie.
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Figure 3: Number of objects can perform the action

Action-Tail affordance pairs (Chao et al. 2015) has stud-
ied the affordance whether human can perform the actions
on the objects e.g. cut is not affordable for water but is af-
fordable for cake. We sample 200 action-tail pairs from all
valid affordance dataset to avoid meaningless tuples.

Head-Action-Tail tuples We merged the 330 <head, ac-
tion> and 200 <action, tail> reasonable pairs by a inner
join on action, and get 3,900 tuples. Then we ask labelers to
annotate:

Q: “whether the head object can perform action on the
tail object”.

Similarly, two labelers are asked to label and one for con-
firmation. Altogether, we get 2,232 positive tuples. Table 2
shows some examples.

Table 2: <head, action > pair and <head, action, tail > tu-
ple examples

Head Action | Tail Label
toothbrush | wash - 1
knife kill - 1
ax drink - 0
bag cut - 0
toothbrush | wash face 0
knife clean fish 1
ax cut tree 1
bag contain | water | 0

Figure 4 depicts the positive ratio for each action. From
the result, we can see 1) all tuples with action hit are positive,
which shows that this functionality is general and can per-
form on all objects in our dataset. 2) While for actions like
cook and roll, there are more negative tuples than positive,
which shows that the object can only perform the function-
ality to a small group of objects. Take clean as an example,
mop can be used to clean floor but not food.

To collect the images, we crawl the top 200 images for
each object from a commercial search engine. Then we clean
and collect 11,666 images in all. The overall dataset con-
tains:
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Figure 4: Positive ratio for each action

Table 3: List of patterns

Type Pattern
Token [head used for doing tail]
#1 | Dependence tree | [nsubj(pass) root prep comp, dobj]
POS tagging [NN VB IN VB NN]
Token |do tail using head]
#2 | Dependence tree | [root dobj comp dobj]
POS tagging [VB NN VB NN]
Token [do tail with head]
#3 | Dependence tree | [root dobj prep pobj]
POS tagging [VB NN IN NN]J

1. Head-Action pairs: 330 over 1,400 pairs are positive,
which are used for evaluating quality of mined knowl-
edge and functionality classification.

2. Head-Action-Tail tuples: 3,900 tuples to evaluate infer-
ence module.

3. Head(image)-Action-Tail tuples: 678,900 tuples in all
used to evaluate end-to-end object-functionality predic-
tion task.

4 Extract Object-Functionality Knowledge

In this section, we study the first research problem: What
Sfunctionalitylactions an object has? We employ both pattern-
based and model-based knowledge mining methods to mine
<head, action, tail> tuples and then evaluate the consoli-
dated tuples.

UsedFor tuples in ConceptNet

ConceptNet(Speer and Havasi 2012) is a commonsense
knowledge graph and has UsedFor relation indicating ob-
ject functionality. We first select this relation, and extract the
verb and object from the tail. For example, the tuple <knife,
UsedFor, cutting cakes> is refined to <knife, cut, cake>.

Pattern-based method

We adopt a pattern-based method on Google Syntactic N-
gram dataset (Lin et al. 2012), which parsed the dependency
syntactic from large scale corpus. We directly apply patterns
listed in Table 3 to extract tuples.

Model-based method

WikiHow is “the world’s most popular how-to website il-
lustrating instructions for everything”, which contains sen-
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Table 4: A showcase of model based example
Cut the cake using a sharp knife and put one piece into a place
RnnOIE:

cut: [V: Cut] [ARGI: the cake using a sharp

knife and put one piece into a place]

using: Cut [ARGO: the cake] [V: using] [ARG1: a

sharp knife] and put one piece into a place

put: [ARGO: Cut] [ARGO: the cake] using a sharp knife

and [V: put] [ARGI: one piece] [ARG2: into a place]

Tuples: <, cut, the cake using...>, <the cake, using, a

sharp knife>, <cut, put, one piece>, <the cake, put, one piece>
Our: <knife, cut, cake>

New label: Cuty the, cakearg) using, a, sharp,

knifearco and, put, one, piece, into, a, place,.

tences stating how to perform physical actions. In this paper,
we collect 7,800,973 sentences to extract tuples.

We adopt RnnOIE(Stanovsky et al. 2018), a bi-LSTM se-
quence tagging model, to extract tuples. This model itera-
tively lends itself to BIO (Beginning-Inside-Outside) tag-
ging to capture a wide range of propositions. The label types
are predicate(V), argument(ARG) or others(O) with BIO
scheme. Given the sentence, sequentially predict each token
with one of the labels. RnnOIE generates multiple extrac-
tions from a single sentence through certain syntactic con-
struction.

Table 4 lists one showcase of creating training data from
existing RnnOIE results. Although the existing model can
extract many tuples, none of them are object-functionality
tuples. We apply several post processing rules to further ex-
tract the valid tuples. One sentence has multiple outputs. The
first tuple <, cut, the cake using...> is taking cut as V and
using clause as ARG1 and the second tuple <the cake, us-
ing, a sharp knife> 1is taking using as V and a sharp knife as
ARGIH. (1) we take V and ARG in the first tuple as action
and tail object, and ARG1 in the second tuple as head ob-
ject. Through this way, we get <a sharp knife, cut, cake us-
ing...>. (2) we apply dependency tree parser to ARGI sen-
tences in both tuple and take the root as head and tail objects
respectively. Finally, we get the expected tuple <knife, cut,
cake>. Similarly, for the with clause, the extraction has a
with clause as ARG?2, and we take the V as action, root of
ARGTI as tail, and root of ARG2 as head object.

After post processing, we have a group of seed tuples and
use them to relabel the sentences to train a model for extrac-
tion. The goal is to train a new RnnOIE model to directly
predict object-functionality tuple. Table 4 shows an exam-
ple of the label. In all, we have collected 266,827 sentences
for training.

Implementation setting We use the RnnOIE open source
code? to run the model using the PyTorch framework. The
bi-LSTM model has 1 layer and each LSTM cell uses 128
hidden units followed by a ReLU activation function. We
train the model for 500 epochs with mini batch size as 80
and 0.001 as learning rate. We use GloVe 100-dimensions
word embeddings. Simultaneously, we use a dependency
parser’(Qi et al. 2018) to predict syntactic feature for ex-

Zhttps://github.com/allenai/allennlp
*https://stanfordnlp.github.io/stanfordnlp/



tracting root entity.

Consolidation

At last, we link all the extracted tuples together to build an
object functionality knowledge graph. After consolidation,
we removed high frequency noisy objects such as people,
it, one, tool, this etc. and actions such as do, try, be, have
etc. Specifically, we remove head of entity type as person
which is likely to be stated as subject in many sentences.
E.g. "people cut cake” rather than “knife cut cake”. Table
5 lists the statistics of extraction results. Furthermore, we
adopt PMI to calcualte a prior score for each triplet in order
to rerank the frequently or rarely used tool, such as knife v.s.
spoon to cut cake.

p(h,t)

PMI(h1) = log-o5s (1)

log

Table 5: Extraction results

#Head Object #Pair | #Tuple
ConceptNet 3,243 13,857 27,043
Pattern 1 2,921 23,923 84,368
Pattern 2 2,384 15,192 | 20,068
Pattern 3 4,732 | 215,819 | 466,587
Model-based 6,028 | 60,713 | 101,257
Consolidation 7,602 | 278,679 | 649,060

Evaluation

We evaluate the performance of each method using the
Head-Action dataset described in section 3. We employ Pre
(precision), Rec (recall) and F1 as metrics to evaluate each
method. From the results shown in Table 6, we can see (1)
ConceptNet, collected in a crowdsourcing way, shows the
best precision but lowest recall. (2) pattern-based method
can enlarge the coverage a lot with the help of the large scale
Google N-gram dataset. (3) model-based method get bet-
ter precision than pattern-based method. (4) Consolidation
method significantly improves the coverage and achieves the
best F1 result.

Table 6: Performance of each extraction method

Pre Rec
ConceptNet 0.862 | 0.152 | 0.258
Pattern-based | 0.632 | 0.536 | 0.580
Model-based | 0.694 | 0.255 | 0.373
Consolidation | 0.597 | 0.624 | 0.610

5 Object-functionality Prediction

In this section, we study the second research problem:
whether the object can perform the actions on another ob-
ject? We employ the object-functionality knowledge ex-
tracted in previous section and predict the plausibility score
for a new tuple. The key assumptions are: on one hand,
functionality can be identified by visual appearance to some
extent, and on the other hand, prior UsedFor knowledge is
powerful for reasoning the functionality. Motivated by this,
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we propose a multi-stage model as shown in Figure 5. First,
we predict the object categories and functionality through a
pre-trained ResNet (He et al. 2016) to extract image feature
and a fully connect layer to do prediction. Both category and
functionality classification can do simultaneously or sepa-
rately. Furthermore, we adopt Dismult and Path Ranking
Module to inference the plausibility of a tuple <head, ac-
tion, tail>. Finally, we combine the score through weighted
combination.
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Figure 5: The framework of object-functionality prediction
module

Visual appearance module

According to (Azuma, Takiguchi, and Ariki ), object appear-
ance can be used to estimate the functionality to a great ex-
tent. Therefore, to predict functionality given an object im-
age, we directly use vision features to train models to pre-
dict object category as well as the functionality. To be spe-
cific, we adopt the image features from a pre-trained convo-
Iutional model followed with object and functionality clas-
sifiers. In order to acquire the representation of each image,
we resize them to I € R2?°6%256 firgt and then use a 5-crop
(top-left, top-right, bottom-left, bottom-right and center) on
both original and left-right mirror flipped images as the in-
put data 77 € R10%224x224x3 (the Jast dimension repre-
sents the RGB channels). Next, we feed this augmented in-
put into an ImageNet pre-trained ResNet152(He et al. 2016)
model and extract the output of the last convolutional layer
Cr € R19%2048 After a mean pooling on the first dimension,
we finally get the image feature representation: F; € R2048,

Then we use a fully connection layer with 512 neurons
followed by a batch normalization layer and a ReLU ac-
tivation layer to map the input image feature into a 512-
dimension feature vector. For object classifier, we use a fully
connection layer and train as a multi-label classification task.
As for functionality classification, we use 20 fully connec-
tion layer with binary output for each functionality. These
two modules will predict object category as well as a list of
recognized functionality.

Dismult inference module

The task is to link prediction given the head object is an
image. Dismult(Yang et al. 2015) is an effective knowledge
embedding method, which encodes the entities h, t and re-
lation a as representation vector such that valid triplets re-



ceive high scores. TransE(Bordes et al. 2013), the translation
based embedding methods has a basic principle: H,, + P ~
T, given the entity and predicate, e.g. Eopama+Ppresident ot~
EAmerica- Our goal is to model commonsense knowledge in-
stead of encyclopedic knowledge. This assumption is hard to
satisfy for object-functionality tuples due to one object can
perform the same action on multiple various other objects.
E.g. knife can cut many objects like cake, banana, paper etc.
Different from TransE which only parametrizes the linear
relation operators, Dismult adopts bilinear scoring function

S(e}“ et) = (2)

where M, is the tensor operator and the training objective is
to minimize margin-based ranking loss:

L= Z Z max{S, — S, + 1,0}

positive negative

€hMa€t

3

where .S, is score of positive triplet and .S,, is score of nega-
tive triplet.

To embed the knowledge graph effectively, we also link
consolidated object-functionality knowledge with IsA and
Synonym relation tuples in ConceptNet, which provide in-
tensive linkage between entities to relieve from the sparse-
ness and enrich inference paths.

To train the embedding model, the dimension is set to 200,
learning rate as 0.05, the batch size as 128 the negative sam-
ple number as 10. We adopted the AdaGrad optimizer and
set L2 regularization as 0.0001.

PRA inference module

Besides Dismult, we also employ the path ranking algo-
rithm* (Lao, Mitchell, and Cohen 2011) to inference on the
consolidated graph described in section 4.4 for the follow-
ing consideration: PRA(Lao, Mitchell, and Cohen 2011) is
an explicit inference and output the possible path as reason.
In PRA, given <head, action, tail>, the goal is to predict the
plausibility score and paths of the tuple. We train a model
for each action by the algorithm 1.

Linear Combination

Finally, we combine the score predicted from visual appear-
ance and inference score using a linear combination:

S=a-S,+8-5 7

Where S, is the score from functionality classification
model and S; is the inference score of either PRA or Dis-
mult or both. In our experiment, « is 1.6 and S is 0.57 re-
spectively.

Evaluation

In this section, we first evaluate our end-to-end model for
object-functionality prediction task and then conduct abla-
tion study on visual appearance module and Inference mod-
ule separately. For evaluation metric, we use precision, recall
and F1 as evaluation metrics.

*https://github.com/David-Lee-1990/Path-ranking-algorithm
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Algorithm 1 Training algorithm

Input: action a, graph tuples {<h, p, t>}
Output: model S5,

1: Iterate all pairs <h, p, t> from the graph, and select the
valid tuples for action a with p = a as positive data, and
randomly sample tuples from other relations ( p # a )
as negative data.

2: For each pair <h, t>, enumerate all possible paths as
features {F, Iy, F3,...} and F; = {aq1,as,a3}. Here
we use at most 3-hop relations to learn the possible
paths.

3: Then we calculate the probability of each path through
the relation

a(h,t)
>oialh,t:)
Z Pr(t|h, a;)

Pr(tlh;a) = “)

Pr(F) 5)

where a(h,t) is the count of action a from head  to tail
t

4: Next, we calculate the plausibility score of the tuple by
a learned weighted linear model

Sp =Y w; x Pr(F;) (6)

5: Finally, we adopt regularized cross entropy loss to train
the model.

Prediction task To evaluate the object-functionality pre-
diction, we use 35,860 <head (image), action, tail> tu-
ples as test data and same number as validation from all
678,900 Head(image)-Action-Tail dataset, which share the
same split of the image dataset used in the following ex-
periments for visual object and functionality classification.
We conduct experiments on 5 different settings: Function-
ality Classification predicts the validity of tuples base on
functionality (action) recognized from the image without
taking the tail object into account; Object Classification +
PRA classifies the object category through the image and
then predict the plausibility of the tuple as <predicted ob-
ject, action, tail>using PRA; Similarly, Object Classifica-
tion + Dismult predicts validity using Dismult to inference;
Moveover, Object Classification + Combined inference
predicts score using linear combination of PRA and Dismult
to inference; Our Combination Model is to combine the
scores described in section 5.4.

From Table 7, we get three insights: (1) object classifi-
cation followed by either PRA or Dismult inference algo-
rithm performs worse than prediction by Functionality clas-
sification model directly, which shows it is effective to rec-
ognize the functionality from image appearance with super-
vised data, while object classification followed by a com-
bined inference performs better than prediction by Function-
ality classification model; (2) Dismult performs better than
PRA especially on Recall, which shows that implicit rep-
resentation by knowledge embedding encodes more infor-



Table 7: Result of object-functionality prediction

Pre Rec F1
Functionality Classification 0.741 | 0.771 0.756
Object Classification + PRA 0.652 | 0.388 | 0.486
Object Classification + Dismult 0.671 | 0.633 | 0.651
Object Classification + Combined inference | 0.747 | 0.8139 | 0.7789
Our Combination Model 0.778 | 0.845 | 0.810

Table 8: Result of visual classification models
Pre Rec

Functionality
classification only model
Functionality + object
classification model

0.771 | 0.701 | 0.734

0.776 | 0.691 | 0.731

mation; (3) the combination with both methods get the best
results. According to our analysis, object classification pre-
dicts the object category first, which leads to some error and
propagate to the next inference step. E.g. ’key” is recognized
as “cutter”. While for other cases, although several objects
are mis-classified, e.g. knife is recognized as cutter, we find
that they have similar appearance and functionality. More-
over, "Functionality Classification’ directly learns the func-
tionality through raw image, which can capture various de-
tailed low-level features. The second assumption mentioned
in Section 5 also holds true in most cases. “Knife” can “cut”
almost everything except something hard (like “diamond”).

Ablation study: visual module We study the perfor-
mance of functionality classification module. We split the
dataset into 3 parts with 630 testing images and 630 vali-
dation, and the result as training set. We use the 330 pos-
itive Head-Action pairs to annotate functionality of each
image. We compare the results of predicting functionality
and object categories in: (1) Functionality classification only
model; (2) Functionality + Object classification joint model.
From the results shown in Table 8, we get the comparable
result from both methods, and we apply the Functionality
classification only model in experiment.

Ablation study: Dismult module We train Dismult
model to embed either ConceptNet or consolidated graph
separately, and compared the performance using the object
functionality prediction task. Table 9 shows that with the
large consolidated graph, the prediction result outperforms
that of using ConceptNet graph.

Table 9: Result of Dismult
Graph Pre Rec F1

ConceptNet | 0.564 | 0.516 | 0.539
Consolidated | 0.671 | 0.633 | 0.651

Ablation study: PRA module We also evaluate PRA
module on ConceptNet and our consolidated graph on two
test dataset: randomly sampled data from each graph and
3,900 Head-Action-Tail tuples. From the results in Table 10,

Table 10: Result of PRA
Data source Graph Pre Rec F1
Random sample ConceptNet | 0.793 | 0.073 | 0.134
Head-Action-Tail | ConceptNet | 0.248 | 0.036 | 0.063
Random sample Consolidated | 0.912 | 0.396 | 0.552
Head-Action-Tail | Consolidated | 0.729 | 0.41 | 0.525

we can see that by using our consolidated graph, both the
coverage(Recall) and precision outperforms compared the
result using ConceptNet graph, which verifies the effective-
ness of our extraction method. Simultaneously, the Head-
Action-Tail dataset has different distribution and thus has
worse performs than the randomly sampled dataset from the
original graph. Besides, we analysis the details on each ac-
tion and present the result in Figure 6. Action cut performs
the best, while roll repair, decorate performs the worst due
to knowledge graph sparseness. Given the action cut” has
rich and dense tuples, the performance has achieved the best.
Along with more knowledge, it is easier for inference.
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Figure 6: performance of each action

wash [N
clean
eat [N
hit [
paint [N
write
build [
drink [N
tie [N

kil
draw
heat
shoot
break |
contain
cook
decorate
repair

Case study We analyse several cases and find two in-
sights: 1) If the object classification is incorrect, the func-
tionality prediction may be correct, e.g. "mallet” is classified
as "hammer”, and “cutter” is predicted as “knife”. Despite
inaccurate object classification, we still get correct predic-
tion due to the same functionality of these objects with sim-
ilar appearance. 2) Even though the object classification is
correct, the triplet may not. As shown in Figure 6, although
the function “cut” prediction gets high accuracy, there are
still some errors. One typical error example is that ’scissors
cut cake”: although ”scissors” can ’cut” many things, people
rarely use it to “cut cake”.

6 Conclusion

We propose two research problems: (1) What functional-
itylactions an object has? (2) Whether the object can per-
form action on another object? Object-functionality knowl-
edge is important in robotic community for robots to com-
plete a task. We first mine object functionality knowledge
from text data, and then introduce a new task for object-
functionality prediction to simulate what the robot perceive.
According to our experiment, we found 1) the extraction



method can increase the graph in a large scale, and the ex-
tracted tuples are effective for further link prediction task
and functionality(image as head entity) prediction task. 2)
Dismult models with implicit representation perform better
than explicit PRA model for inference.
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