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Abstract

Active Object Tracking (AOT) is crucial to many vision-
based applications, e.g., mobile robot, intelligent surveil-
lance. However, there are a number of challenges when de-
ploying active tracking in complex scenarios, e.g., target is
frequently occluded by obstacles. In this paper, we extend the
single-camera AOT to a multi-camera setting, where cameras
tracking a target in a collaborative fashion. To achieve effec-
tive collaboration among cameras, we propose a novel Pose-
Assisted Multi-Camera Collaboration System, which enables
a camera to cooperate with the others by sharing camera
poses for active object tracking. In the system, each cam-
era is equipped with two controllers and a switcher: The
vision-based controller tracks targets based on observed im-
ages. The pose-based controller moves the camera in accor-
dance to the poses of the other cameras. At each step, the
switcher decides which action to take from the two con-
trollers according to the visibility of the target. The exper-
imental results demonstrate that our system outperforms all
the baselines and is capable of generalizing to unseen en-
vironments. The code and demo videos are available on
our website https:/sites.google.com/view/pose-assisted-
collaboration.

Introduction

Active Object Tracking (AOT) is a fundamental and prac-
tical skill for an intelligent visual system. It requires that a
tracker be able to control its motion so as to follow a tar-
get autonomously. In recent years, AOT has been widely de-
ployed in various real-world applications, such as control-
ling a mobile robot to follow a moving target for taking cin-
ematic shots (Hong et al. 2018; Luo et al. 2018) or rotating a
3-axis stabilized camera to auto-track a face or a pedestrian.

Applying active tracking in the surveillance scenario, ro-
tating the camera actively, can continuously track the tar-
get in long-term. However, there are two factors to prevent
us from developing a practical AOT system for surveillance
scenarios: 1) high complexity of environments, in which
there are occlusion, illumination variations, scale variations
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Behaviour Consistency
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Figure 1: The overview of our multi-camera collaboration
system. When the target is visible, the camera uses its vision-
based controller to make an action decision. Otherwise, the
camera chooses the pose-based controller. For example, the
vision-based controller of camera 1 fails to track. Thus, it
uses the output action of the pose-based controller instead,
and the useless visual observation is marked as gray.

of targets and obstacles, and other factors that make the ob-
servation imperfect. 2) limitation of camera mobility, i.e.,
the camera is only allowed to rotate and unable to shift
as mobile robots do. Hence, it is particularly hard for a
single-camera system to accomplish AOT in complex envi-
ronments.

We argue that it is desirable to do AOT by deploying mul-
tiple cross-view cameras and train them to work collabora-
tively. Since, the trackers are able to benefit from the com-
plimentary information provided by other cameras. Here,
we extend the single-camera AOT to a Collaborative Multi-
Camera Active Object Tracking(CMC-AOT) problem, which
aims at coordinating multiple cameras in one system to im-
prove the performance of the active tracker. However, it is
expensive and difficult to learn a general collaborative pro-
tocol under the high-dimensional visual observation, espe-
cially with the increasing number of cameras.

Therefore, in this paper, we focus on building an efficient
yet effective multi-camera collaboration system for CMC-
AOQOT. We propose a “Pose-Assisted Multi-Camera Collab-



oration System,” which exploits the intrinsic relationship
among the poses of cameras to further improve the tracking
policy, shown as Fig. 1.

Inspired by the behavior of the two eyes of human be-
ings, when tracking a target, two eyes consistently point to
the same spot where the target is — we call the coordina-
tion of multiple cameras as Behavior Consistency. To en-
able such consistency, each camera in the proposed system
is equipped with two controllers (a vision-based controller
and a pose-based controller) and one switcher. The switcher
selects which controller to use according to the visibility of
the target in its captured image. When the target is visible,
the vision-based controller is adopted. When the target is oc-
cluded, the switcher will switch to the pose-based controller,
replacing the vision-based one. Actually the pose-based con-
troller learns a policy about the behavior consistency, based
on the poses and the switcher conditions of all cameras. It
aims at keeping the camera pose consistent with others, i.e.,
pointing to the same area as other cameras who can observe
the target. Instead of sharing high-dimensional visual rep-
resentations, our method only needs to share the poses and
the conditions of switcher (indicates if the target is visible)
among cameras.

We build a set of virtual environments for training and
evaluating our proposed system. The environments show
high fidelity, aiming to mimic the real-world multi-camera
active tracking scenarios. Specifically, we build a Random
Training Room where we randomize the surface textures,
the illuminations, the sizes and locations of the obstacles,
the trajectories of the target, and the distribution of cameras,
etc. And we apply the A3C algorithm to update the network
architecture of the Pose-Assisted Multi-Camera Collabora-
tion System. To evaluate the generalization of the system,
we build two additional realistic virtual environments, Ur-
ban City and Garden. Empirical results demonstrate that the
learned multi-camera collaboration could generalize to un-
seen scenarios well and outperforms the baseline methods.
In particular, when the target is out of the view, we observe
that the tracker learns to switch to the pose-based controller
and keep tracking successfully. Benefited from the multi-
camera collaboration, we also find that the tracker is ca-
pable of pointing to the target even when the target is oc-
cluded. Moreover, we conduct an ablation study to analyze
the contribution of each proposed component in our system.
Our method outperforms all the ablative methods in both of
the testing environments, and the empirical results validate
the effectiveness of the proposed method for the CMC-AOT
task.

Our contributions can be summarized in three-fold:

e Considering the limitation of AOT in surveillance, we
extend the independent AOT to the Collaborative Multi-
Camera Active Object Tracking (CMC-AOT).

e To achieve efficient collaboration among cameras in
CMC-AOT, we propose a novel Pose-Assisted Multi-
Camera Collaboration System, which enables the cam-
era to efficiently cooperate with others by sharing camera
poses.

e We provide a set of 3D environments for the training and
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evaluation of multi-camera active object tracking systems
so as to facilitate future research in this direction.

Related Work

Object tracking can be complex due to some factors such as
object motions, occlusions, illuminations, real-time process-
ing requirements (Yilmaz, Javed, and Shah 2006). In recent
years, many video object tracking algorithms (Bertinetto
et al. 2016; Choi et al. 2018; Danelljan et al. 2016;
Held, Thrun, and Savarese 2016; Kalal, Mikolajczyk, and
Matas 2012; Kiani Galoogahi, Fagg, and Lucey 2017; Li
et al. 2018a; 2018b; Ma et al. 2015; Valmadre et al. 2017;
Wang et al. 2018; Zhu et al. 2018) have been proposed for
videos, where the the motion of the camera are uncontrol-
lable. However, there are two typical scenarios requiring
active tracking: surveillance scene and mobile robot track-
ing. The difference between them is the action space to
control the camera, i.e., the mobile robot is able to move
freely to choose a good perspective to track, whereas, in
the surveillance scene, the camera is fixed-position and
only allowed to rotate itself. Previous work (Murray and
Basu 1994; Sankaranarayanan, Veeraraghavan, and Chel-
lappa 2008; Wang 2013) for active tracking need two sep-
arate steps: tracking and control. The tracking step detects
the target object and predicts its location. Then the con-
trol step uses the object location obtained from the track
step to control the camera. But those non-end-to-end solu-
tions require a manual bounding box to indicate the object
to be tracked at the beginning. Simultaneously, joint tuning
of visual tracking and camera control is also tedious and ex-
pensive. Recently, an end-to-end solution (Luo et al. 2018;
2019; Zhong et al. 2019b; 2019a) explores under a single-
target movable-camera tracking setting in which the cam-
era is controlled by the action output from a Conv-LSTM
network given raw input frames. The network is learned by
reinforcement learning in a virtual environment with envi-
ronment augmentation techniques.

The tracking methods above are able to track the target
object based on the appearance and motion of object. But
they often fail when the visual observation is imperfect e.g.,
the object is too small to recognize, the object is occluded or
the environment contains a lot of ambient noise. In contrast,
our method addresses this problem by integrating pose in-
formation which acts as a complementary to image feature
when an imperfect observation occurs.

Using multi-camera information to enhance the tracking
performance has been investigated, e.g., (Kang, Cohen, and
Medioni 2003) perform occlusion handling, accurate mo-
tion measurements, and camera hand-off through the fusion
of multiple cameras. And data fusion is mainly based on
the traditional triangulation approach (Collins et al. 2001;
Kang, Cohen, and Medioni 2003) which projects the lo-
cation of the object in the individual image planes to the
ground plane. While those traditional collaboration methods
are based on image features only, thus would also fail eas-
ily with highly imperfect observations especially there are
heavy occlusions. In contrast, our proposed Pose-Assisted
Multi-Camera Collaboration System is to address the prob-
lem effectively by automatically switching the use of the im-



age features and pose relationship. It is feasible to deal with
imperfect observations and perform well in the multi-camera
active object tracking problem.

Methodology
Preliminaries

Formulation. We formulate the multi-camera active ob-
ject tracking problem as a Partially Observable Multi-
Agent Cooperative Game (Srinivasan et al. 2018) which
extends the Markov Game (Littman 1994) to partial ob-
servation. The n-agent game is governed by the tuple <
1,501, A, R;,T,Z >, where I,S,0,A, R, T, Z denote
a set of agents, state space, observation space, action space,
reward function, transition function, and observation func-
tion respectively. The subscript ¢ € {1,2, ..., I} denotes the
index of each agent. The subscript ¢ € {1,2,...} denotes the
time step. In the case of partial observation, we have the ob-
servation o; ; = 0; ¢(s¢), where 0, ; € O;, s, € S. It reduces
to 0;; = s in case of full observation. In the multi-agent
system, we have the joint observation 0y =< 01 ¢, ..., 01,1 >
and the joint action a; =< a1+,...,ar+ >. When agents
take simultaneous actions d;, the updated state s, and
joint observation 0y 1 are drawn from the environment tran-
sition function T'(s;1|s¢,d:) and the observation function
Z(0¢4+1|St+1, dr). Meanwhile, each agent receives a reward

it = Ri+(St, ). The policy of each agent, m;(a; ¢]0; ¢).
is a distribution over action a;; conditioned on its obser-
vation o, ;. In the cooperative game, the ultimate goal is to
optimize the policy of each agent to maximize the expected
global reward:

ey
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Specifically, in our task, observation is the raw-pixel im-
age and the cameras’ poses, action is the camera’s rotating
angles in two axis (row, pitch) or zooming in/out operation.

Reinforcement Learning. We utilize the Reinforcement
Learning (RL) to optimize the policy of each controller for
two reasons: 1) in active tracking, the camera is a goal-
directed agent interacting with the environment. The camera
senses the state and takes action that affects the state. In in-
teractive problem, it is impractical to obtain examples of all
the situations, thus it needs to learn from its own experience.
2) In CMC-AOT, among the interaction with environment,
there are many failure situations i.e., the target disappears in
the image, the target is fully occluded by occlusion in the
image efc. In these situations, there is delayed reward for
camera to make a right decision, thus it needs to optimize
the long-term cumulative rewards to track the target in the
situation with imperfect observation.

Pose-Assisted Multi-Camera Collaboration

In this section, we give a detailed interpretation of our Pose-
Assisted Multi-Camera Collaboration System. The overview
of our proposed network architecture is shown in Fig 2.
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In the system, each camera is equipped with three compo-
nents: a vision-based controller, a pose-based controller, and
a switcher. At each time step, the vision-based controller
works independently. Meanwhile, the switcher judges if the
vision-based controller is tracking the object successfully
and decides to use the action of the pose-based controller
or not. If the vision-based controller is considered failed,
the behavior of camera will be controlled by the pose-based
controller. The pose-based controller takes the outputs of the
switcher and the poses of cameras as the inputs and corrects
the pose of wrong camera by referring the poses of other
right cameras.

Vision-based Controller. For each camera, it has a vision-
based controller which serves as an image processor and
guides the camera to execute policy based on image observa-
tion. The vision-based controller needs to encode the visual
appearance and be aware of the motion of the target. There-
fore it contains an appearance encoder f,(-) and a sequence
encoder f,(-). The appearance encoder f,(o;) extracts fea-
ture ¢, from the raw observation input o;. Later the sequence
encoder ¥y = fs(¢1, da, ..., ;) models the temporal dif-
ferences over time. In this way, it encodes a representation
1), containing temporal differences information which is fed
into the subsequent policy network, and the policy network
outputs camera’s action a; at each time step.

Concretely, Convolutional Neural Networks (CNNs) are
used here by the appearance encoder f,. And the sequence
encoder is a LSTM Network to deal with sequential features
(¢i1, Pi2, ..., ¢ir) and outputs the final hidden features to
the policy network.

Pose-based Controller. The goal of the pose-based con-
troller is to help the camera who receives an imperfect ob-
servation to execute policy based on the supplementary pose
information provided by other cameras.

There is Behavior Consistency among AOT cameras, i.e.,
they all need to point to the same area where the target is.
Inspired by this, the pose-based controller is constructed
to exploit the behavior consistency of cameras, and then
guides the camera with imperfect observation to rotate to
the right pose. We equip each camera with a binary label
i.e., g; € {0, 1}, provided by the switcher which indicates if
the camera is tracking the object successfully by the vision-
based controller at the current time step. The pose-based
controller takes all binary labels and poses of the camera as
input, containing the successful cameras and failed cameras,
aiming to guide the failed camera to rotate in the right di-
rection under hints given by the poses of other successfully
tracking cameras.

Specifically, the camera pose we use here contains
location information of camera and its rotation [; =
{z:,yi, zi, i, Bi } where x;,y;, z; denote camera i’s loca-
tion, «y; denotes the its pitch angle, 5; denotes its yaw an-
gle. The pose encoder f, for which we use a bidirectional
Gated Recurrent Unit (GRU) network encodes the poses and
binary labels of all cameras into pose features p1,...,pr =
foli, 01, ..., 11, gr). For each camera, its received pose fea-
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Figure 2: The network architecture of our system. For each camera, the vision-based controller takes raw image as input and
outputs action recommendation a; from its policy network, the pose-based controller takes poses and switcher labels ¢ of all
cameras as input and outputs action recommendation a? from its policy network, then the switcher outputs the final action
a; = aj or a; = af by choosing to use vision-based controller or pose-based controller. Note that CNN, FC, LSTM, GRU
represent Convolutional neural network, Fully connected layer, Long short-term memory, Gated recurrent unit, respectively.

ture from the pose encoder contains instructive information
of other cameras which can help it execute right policy when
its vision-based controller failed.

Introducing the camera pose into the CMC-AOT problem
is beneficial and it has two advantages: instructive and low-
cost. In terms of effectiveness, the pose information is in-
structive. Every camera can get indicative information from
the poses of other cameras when it comes to collaborative
object tracking. On the other hand, due to the simplicity of
pose representation, processing the pose information instead
of image information of the camera can save the expensive
transmission cost among multiple cameras.

Switcher. Since there is no god’s perspective to tell the
camera when the vision-based controller is failed, we need
a switcher to make the camera switch between the vision-
based controller and pose-based controller properly. That is,
when the vision-based controller fails, the switcher chooses
to replace the vision-based controller with the pose-based
controller. A well-worked switcher can switch between the
camera’s two controllers reasonably and properly. Specifi-
cally, the switcher is a binary classified neural network that
receives the image features from vision-based controller 1); 4
and outputs the probabilities of choosing controllers.

In the CMC-AOT problem, our Pose-Assisted Multi-
Camera Collaboration System can achieve well-coordinated
collaboration under good cooperation of the vision-based
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controller, the pose-based controller, and the switcher.

Reward Structure

To learn active tracking and the multi-camera coordination
simultaneously, it is essential to design an appropriate re-
ward function for CMC-AOT.

To achieve active tracking successfully, the goal is to min-
imize the error between the current and expected camera
pose. The expectation camera pose corresponds to the pose
when the target object is located in the center of the view of
camera. Therefore, we use pose error to measure the track-
ing effect when the target is in the image. Note that when
the target is occluded by the obstacles causing that it did not
appear in the image, we set the tracking reward as 0, while
when the target goes beyond the view angle of the camera,
we set the tracking reward as —1. We use a vector («, 5, \)
to represent the rotation from the frame of the camera to the
world frame under the form of Euler Angles. In other words,
«, B, A correspond to the pitch, yaw, and roll angles. Note
that for direction reward, we do not take the roll angles A
into account, since we do not control the camera to rotate
along this axis at all, we can only control pitch, yaw angles
of camera in the CMC-AOT task. When the target appears
in the image, we use the yaw angle and pitch angle between
camera direction and target direction to calculate direction
reward. The goal of optimization is to minimize the angle
error as much as possible. Concretely, the direction tracking



reward is written as below:

. Aoy Apy (a)
amaw ﬁmaw '

0, (b)
- 1) (C)

(a): target is visible in the image; (b): target is occluded
by obstacles; (c): target is outside of the view. Where A,
and A, are absolute pitch angle error and absolute yaw an-
gle error between camera direction and target direction re-
spectively. (pqz and B4, give maximum control bound of
each angle error. Note that to achieve better tracking perfor-
mance, we add zoom actions in addition, i.e., choosing zoom
in or zoom out action to enlarge or shrink the image, chang-
ing its zoom scale ¢ which ranges from 1 to 3.3. Similarly,

we compute additional zoom reward as R, ; = 1 — ‘EA& in

condition (a), otherwise R, ; = 0, where A¢&; is the abso-
lute zoom scale error at time step ¢. Hence, the reward of the
camera at each step is

Ry=Ry:+ R,

1

Riy = @)

3

Note that the rewards above are clipped in the range of
[—1, 1] while training. Under the designed reward, the more
accurately the camera keeps tracking the target, the higher
the cumulative reward is.

Training Strategy

We take a two-phase training strategy for learning. In the
first phase, we train the pose-based controller in a numer-
ical simulator, which only performs numerical calculations
on the poses of target and cameras without rendering the im-
age. The pose-based controller does not need the image as
input and only observe the pose (location and rotation) of
each camera and the binary label of the switcher (choosing
vision or pose) to rotate the camera. Since there is no vision-
based controller at this stage, we randomly set the label of
the switcher at each step. During training, if the switcher
selects the pose-based controller, the camera will take the
action proposed by the pose-based controller. After that, the
returned reward will be used to optimize the policy network
via reinforcement learning. If not, the camera will be con-
trolled by a “virtual tracker”, which takes the nearly optimal
action to minimize the errors of relative angles between the
camera and target. To further improve the generalization, we
randomize the distribution of the cameras and the trajecto-
ries of the target at each episode. Thanks to the high frame
rate of the simulator, the time cost of the training process of
the pose-based controller is significantly reduced to 10 ~ 15
minutes.

In the second phase, we train the vision-based controller
and the switcher simultaneously, combining with the pose-
based controller trained at the first phase. Specifically, the
vision-based controller is trained by reinforcement learning,
meanwhile, the switcher is regarded as an auxiliary classifier
i.e., predicting if the target exists in the image. Intuitively,
the visibility of the target is closely related to the choice of
the controller, i.e., we use the vision-based controller when
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Figure 3: From Top to bottom is the 3D environment Ran-
dom Room for training, Garden, Urban City and for testing.
Note that our model is only trained on the Random Room.

the target is visible, otherwise, we use the pose-based con-
troller. The switcher is optimized by binary cross-entropy
loss, and the virtual environment could provide the ground-
truth for learning by extracting the object mask. Note that we
backward propagate the gradients of the vision-based con-
troller only when the switcher selects the vision-based con-
troller, and the network parameters of the pose-based con-
troller is frozen at this phase.

Experiments
Environments

First of all, we build a number of high-fidelity virtual envi-
ronments for learning and testing. We do this, instead of run-
ning on the real-world environment directly, for three rea-
sons: 1) Reinforcement learning needs to interact with envi-
ronment frequently and learns from trail-and-error which is
high-cost in real environment; 2) In real-world scenario, it
is difficult and expensive to get the ground truth to compute
the reward function for training and evaluation; 3) Previous
works (Hong et al. 2018; Luo et al. 2019; Zhong et al. 2019a)
have justified that the tracker trained in virtual environment
with environment augmentation is capable of generalizing
to real-world scenes. We build a number of new 3D envi-
ronments for the CMC-AOT task, in which there are more
cameras and more obstacles in the environment, aiming to
mimic the real-world multi-camera active tracking scenes.
The action space is discrete and contains eleven candidate
actions (turn left, turn right, turn up, turn down, turn top-
left, turn top-right, turn bottom-left, turn bottom-right, zoom
in, zoom out and keep still).

For training, we build a large room with four cameras and
one moving person. The four cameras are randomly placed
around the room at the beginning of each episode. The per-
son is walking in the room with random velocity and trajec-
tories. To simulate the occlusion cases, we randomly place
a number of obstacles with different shapes and sizes. To



learn better feature representation in terms of visual obser-
vation, we also randomize the illumination condition and the
surface textures of each object. Specifically, we choose pic-
tures from a texture dataset (Kylberg 2011) and place them
on the surface of walls, floor, obstacles etc. These random-
ization methods are referred as environment augmentation
and the room with environment augmentation is named Ran-
dom Room, as shown in the top two lines of Fig. 3.

To demonstrate the capability of transferring to unseen
scenes, we also build two realistic environments — Gar-
den, Urban City as testing environments. Both environments
mimic real-world scenarios and cover the most of challeng-
ing cases in active object tracking: obstacle occlusion, illu-
mination variation, scale variation. Garden, as shown in the
third line of Fig. 3, is grassland with trees, fences and big
stones efc. These objects frequently block the target, caus-
ing the tracker to fail to observe the target. The difficulty
increases with the complex illumination which makes the
appearance of the scene vary in a wide range across different
perspectives. Urban City, as shown in the last second line of
Fig. 3, is a high-fidelity street view of an urban city, includ-
ing well-modeled buildings, streets, trees and transportation
facilities.

Evaluation Metric

We use the angle error between camera direction and target
direction to evaluate the quality of active object tracking.
The angle error is the average of absolute pitch angle error
and absolute yaw angle error. A well-worked camera should
track the target accurately in both the pitch angle and yaw
angle.

The multi-camera system evaluation metric is the average
Single Camera Error of all I cameras:

I

b

i=1 t=1

Mean Error =

ZT: (At + ABiy)

5 “

~l =
S| =

where [ is the numbers of camera, the Aa; ; and A, , are
the absolute error of pitch angle and yaw angle of camera ¢
at time step t, respectively. We use Mean Error to measure
the performance of the multi-camera system finally.

Mean Error reflects the tracking precision of the multi-
camera system. However, it is also beneficial to evaluate the
multi-camera tracking success rate (i.e., if there are more
cameras recover tracking under collaboration). Therefore,
we introduce Success Rate to better evaluate the robustness.

11 &
S Rate = — — D;
uccess ate IZ:ZIT; ot

where D; , equals to 1 if the target is within the perspec-
tive of the 7’th camera at time step ¢, otherwise equals to 0,
T is the fixed episode length in the evaluation.

Compare with Two-stage Methods

We compare our method with conventional two-stage track-
ing methods, i.e., the controller rotates the camera ac-
cording to the bounding box of the target from a video
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tracker. We adopt three video tracker to get the bound-
ing box: TLD (Kalal, Mikolajczyk, and Matas 2012),
BACF (Kiani Galoogahi, Fagg, and Lucey 2017), and DaSi-
amRPN (Zhu et al. 2018). We build a heuristic controller
to control the camera to rotate its angle. The control pol-
icy is based on a rule that the camera moves its angle along
with the position of the detected bounding box, i.e., when
the bounding box is at the left of the image, the controller
output a turn-left signal.

Table 1 shows the concrete results of Mean Error and Suc-
cess Rate evaluation metrics on Garden and Urban City en-
vironments. We can see that the traditional tracking methods
perform weakly in the CMC-AOT system. We analyze that
the traditional tracker suffers from two problems that usu-
ally make it fail: 1) the object appearance changes largely
and 2) the target is frequently occluded by obstacles. Since
these methods require the template for object feature match-
ing, when the object disappears outside the view of the cam-
era, the tracker has no effective information on the image to
use which leads to tracking mistakes easily. Once the tracker
lost the target, the tracking error will increase largely in the
long-term. While in our method, we learn the sequential fea-
ture information by the vision-based controller which makes
our tracker becomes more robust with various environment.
More importantly, our method can handle scenes with ob-
stacles or other imperfect observations well due to the as-
sistance of the pose-based controller. And the experiment
results demonstrate that our method is significantly superior
to traditional tracking methods.

Ablative Analysis

To analysis the effectiveness of the proposed Pose-Assisted
Multi-Camera Collaboration System quantitatively, we con-
duct ablative experiments with different collaboration meth-
ods. Concretely, we use the ablative analysis aiming to an-
swer three concerns: 1) is the multi-view collaboration nec-
essary? 2) is the introduced pose information useful for
CMC-AOT? 3) is our method effective to exploit the pose
for collaboration? For this purpose, we further introduce and
evaluate three heuristic neural architectures:

e Single View (SV): Each tracker only uses its own visual
observation to control the camera independently. The neu-
ral network is the same as the end-to-end vision-based
controller in Fig. 2 which is first proposed in (Luo et al.
2018).

e Multiple View (MV): Each tracker fuses the visual repre-
sentation from others as the input of the policy network.
Similar to the pose encoder, the multi-view representation
is also integrated by a one-layer Bi-GRU.

e Single View with Poses (SV + P): Each tracker encodes
a representation which aggregates its visual observation
and the poses of other cameras by Fully Connected Layer
to its policy network. The relative poses are encoded by a
one-layer Bi-GRU.

Comparing SV with MV, the results show that fusing
multi-view features directly is not effective. SV uses only
the vision-based controller at each step without any infor-
mation transmission between agents. The multi-view fusion



Table 1: Comparative results (TLD, BACF, DaSiam vs Ours) and ablative results (SV, MV, SV+P vs Ours) in the 3D Garden
and Urban City environments.

Mean Error (In degrees.) Success Rate(%)
Env Camid | TLD BACF DaSiam SV MV  SV+P Ours | TLD BACF DaSiam SV MV  SV+P  Ours
Cam_1 | 28.53 32.74 2573  29.07 3630 31.53 10.95 | 58.39 50.62 67.81 66.67 42.62 5434 83.94
Garden Cam2 | 21.90 21.19 2042 2642 28.15 2632 9.81 | 73.26 7091 7523  64.18 46.37 6579 88.60
Cam.3 | 33.46 3442 32.15  40.15 30.65 35.19 13.64 | 53.69 45.47 5479  46.67 4495 4294 80.44
Cam 4 | 2147 22.17 17.86 16.65 32.14 14.16 8.62 | 73.74 63.92 78.41 80.76 39.90 88.97 89.65
Mean 26.34 27.63 24.04 28.07 31.81 2680 10.76 | 64.77 57.73 69.06 64.57 4346 63.01 85.66
Cam_1 | 23.68 28.75 21.34  26.18 16.02 21.73 7.22 | 68.83 59.23 73.05 58.05 7259 78.24 75.19
Urban City Cam2 | 2143 27.90 19.78 13.11 20.16 20.04 810 | 7342 59.01 7532 7723 86.69 79.35 82.78
Cam 3 | 54.39 66.41 4985 6246 30.36 38.60 10.02 | 10.13 6.16 1293  29.10 31.65 45.62 89.33
Cam4 | 25.18 32.98 20.75 3431 2129 21.87 6.74 | 69.58 49.64 74.66 4358 63.17 7271 89.41
Mean 31.17 39.01 2793 34.02 2196 2556 8.02 | 5549 4351 58.99 5199 6353 6898 84.18
\ Average [ 2876 3332 2599  31.05 2689 2618 9.39 [ 60.13 50.62 6403 5828 5350 66.0 84.92 |
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Figure 4: The screenshot sequence of our method working in the Garden testing environment. The arrow position and direction
indicate the location and the pointing direction of the camera. The four frames are visual observations of four cameras respec-
tively. The eight direction signs indicate rotating direction of action, the intermediate sign indicates keep still action when it
is a circle, zooming out when it is a minus sign and zooming in when it is a plus sign. Red means using output action of the
vision-based controller, blue means using output action of the pose-based controller.

method implements the image feature information exchange
between cameras by direct network fusion. However, shar-
ing the visual information in this way is time-consuming and
not efficient. There is no obvious improvement, showing that
this collaboration way can not work well in the CMC-AOT
system. Comparing SV and SV + P, the results show that
introducing pose into the collaboration by directly fusing
the vision feature and pose feature can not improve perfor-
mance obviously. Fusing pose information to the collabora-
tion method is still indistinct. While comparing SV + P with
our method, it shows that introducing pose into our multi-
camera tracking system by a switcher can get a significant
performance of collaboration tracking. We use such a de-
signed collaboration structure to explicitly and efficiently
ensemble two controller’s policy. The clear and effective-
ness of each module makes our collaboration method not
limited by the imperfect situations and can achieve higher
tracking accuracy significantly. The lower Mean Error and
higher Success Rate in Table 1 shows the higher tracking
accuracy of our method.

Exemplar Cases. We take a sequence shown in Fig 4
to demonstrate how our three modules work cooperatively.
There exist many obstacles such as brushwood, big stones,
railing etc in the garden scene. It is difficult to track the tar-
get person accurately since the obstacle will occlude the per-
son easily, as shown in camera 1 of frame 112, the person
walks behind the big stone. The vision-based controller of
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the camera fails to track the target, and its switcher makes it
turn to the pose-based controller at the time, hence the cam-
era can keep tracking the target people successfully even the
person is occluded by a big stone. Our method can work
not only in occlusion situations but also in other imperfect
observation situations. As shown in frame 95, the vision-
based controller of camera 3 lost the target. In this situation,
it is difficult for the tracker to make action decisions only
based on the imperfect image observation. Thus the switcher
of camera 3 chooses to use the pose-based controller which
helps it recover the person successfully, as shown in frame
99 and frame 102. In a word, by the coordination of the
vision-based controller, the pose-based controller and the
switcher in the system, our collaboration approach combines
the advantages of the image and pose of camera which can
improve the overall performance in the CMC-AOT system
greatly. To see more cases, please refer to the demo video on
the homepage of our project.

Conclusion

In this work, we introduce the Collaborative Multi-Camera
Active Object Tracking (CMC-AOT) problem, and propose
an effective Pose-Assisted Multi-Camera Collaboration Sys-
tem to further enhance the tracking performance. By intro-
ducing camera pose into the multi-camera collaboration, our
method has the ability to deal with challenging scenes and
outperforms traditional object tracking methods on a va-
riety of multi-camera active object tracking environments.



The results on different realistic environments also show that
our approach has the potential to generalize to more unseen
scenes.
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