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Abstract

Spatial classification with limited feature observations has
been a challenging problem in machine learning. The prob-
lem exists in applications where only a subset of sensors are
deployed at certain regions or partial responses are collected
in field surveys. Existing research mostly focuses on address-
ing incomplete or missing data, e.g., data cleaning and im-
putation, classification models that allow for missing feature
values, or modeling missing features as hidden variables and
applying the EM algorithm. These methods, however, assume
that incomplete feature observations only happen on a small
subset of samples, and thus cannot solve problems where the
vast majority of samples have missing feature observations.
To address this issue, we propose a new approach that incor-
porates physics-aware structural constraints into the model
representation. Our approach assumes that a spatial contex-
tual feature is observed for all sample locations and estab-
lishes spatial structural constraint from the spatial contex-
tual feature map. We design efficient algorithms for model
parameter learning and class inference. Evaluations on real-
world hydrological applications show that our approach sig-
nificantly outperforms several baseline methods in classifica-
tion accuracy, and the proposed solution is computationally
efficient on a large data volume.

Introduction

Given a spatial raster framework with explanatory feature
layers, a spatial contextual layer (e.g., a potential field), as
well as a set of training samples with class labels outside the
framework, the spatial classification problem (Jiang 2019)
aims to learn a model that can predict a class layer. We par-
ticularly focus on spatial classification with limited feature
observations, i.e., only limited pixel locations in the raster
framework have explanatory feature data available. For ex-
ample, in earth imagery classification, the explanatory fea-
ture layers are spectral bands of earth imagery pixels; the
spatial contextual layer can be elevation, and the target class
layer consists of pixel classes (e.g., flood or dry). In the ex-
ample, it often happens that the elevation values are avail-
able for all pixels in the framework, but only limited pixel lo-
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cations have spectral data (e.g., a drone or aerial plane could
not cover the entire region due to limited time during a flood
disaster).

The problem is important in many societal applications
such as flood extent mapping for disaster response and na-
tional water forecasting. Flood extent mapping plays a cru-
cial role in addressing grand societal challenges such as
disaster management, national water forecasting, as well
as energy and food security (Jiang and Shekhar 2017;
Xie, Jiang, and Sainju 2018; Jiang, Xie, and Sainju 2019).
For example, during Hurricane Harvey floods in 2017, first
responders needed to know where floodwater was in order
to plan rescue efforts. In national water forecasting, detailed
flood extent maps can be used to calibrate and validate the
NOAA National Water Model (National Oceanic and At-
mospheric Administration 2018). In current practice, flood
extent maps are mostly generated by flood forecasting mod-
els, whose accuracy is often unsatisfactory in a high spatial
resolution (Cline 2009; Merwade et al. 2008). Other ways
to generate flood maps involve sending a field crew on the
ground to mark down the floodwater extent on a map, but the
process is both expensive and time-consuming. A promising
alternative is to utilize observation data from groundwater
sensors and remote sensors on aerial planes or drones. How-
ever, sensor observations may have limited spatial coverage
due to only a subset of sensors being deployed at certain re-
gions, making the problem in spatial classification with lim-
ited features. For example, a drone during a flood disaster
can only collect spectral images in limited areas. Note that
though we use flood mapping application as an example, the
problem can potentially be applied to other broad applica-
tions such as water quality monitoring (Yang and Jin 2010)
along river networks.

The problem poses several unique challenges that are
not well addressed by traditional classification techniques.
First, there are limited feature observations on samples in
the raster framework due to only a subset of sensors being
deployed in certain regions. In other words, only a subset
of samples has complete explanatory feature values, mak-
ing it hard to predict classes for all samples. Second, among
the sample pixels with complete explanatory feature values,
their feature values may contain rich noise and obstacles.
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For example, high-resolution earth imagery often has noise:
clouds and shadows. Third, the explanatory features of im-
age pixels can be insufficient to distinguish classes (also
called class confusion) due to heterogeneity. For instance,
pixels of tree canopies overlaying flood water have the same
spectral features with trees in dry areas, yet their classes are
different. Finally, the number of pixel locations can be very
large for high-resolution data (e.g., hundreds of millions of
locations in one city), requiring scalable algorithms.

Over the years, various techniques have been devel-
oped to address missing feature observations (or incomplete
data) in classification (Garcı́a-Laencina, Sancho-Gómez,
and Figueiras-Vidal 2010). Existing methods can be cate-
gorized into data cleaning or imputation, utilizing classi-
fication models that allow for missing feature values, and
modeling missing features as hidden variables with the EM
(Expectation-Maximization) algorithm. Data cleaning will
remove samples that miss significant feature values. Data
imputation focuses on filling in missing values either by sta-
tistical methods (Little and Rubin 2019) (e.g., mean fea-
ture values from observed samples) or by predicted fea-
ture values using a regression model based on observed
samples (Schafer 1997; Batista, Monard, and others 2002;
Yoon and Lee 1999; Bengio and Gingras 1996; Rubin 2004).
A different approach focuses on classification models and
algorithms that allow for missing feature values in learn-
ing and prediction without data imputation. For example, a
decision tree model allows for samples with missing fea-
tures in learning and classification (Quinlan 2014; 1989;
Webb 1998). During training, the weight is one for an ob-
served feature value but is lower than one if the feature value
is missing (the weight for different possible values are based
on their frequencies in completely observed samples). Dur-
ing classification, a decision tree can explore all possible
tree traversal paths for samples with missing features and
select the final class prediction with the highest probability.
Similarly, there are some other models or algorithms that
can be extended to allow for missing feature values, such
as neural network ensembles (Jiang, Chen, and Yuan 2005),
support vector machine (Chechik et al. 2007; Smola, Vish-
wanathan, and Hofmann 2005; Pelckmans et al. 2005), etc.
The last category is to model missing feature values as hid-
den variables and use the EM (Expectation-Maximization)
algorithm for effective learning and inference (McLachlan
and Krishnan 2007; Ghahramani and Jordan 1994b; 1995;
Williams et al. 2007). Specifically, the joint distribution of
all samples’ features (both observed and missing features)
can be represented by a mixture model with fixed by yet
unknown parameters. In the EM algorithm, we can use ini-
tialized parameters and observed features to estimate the
posterior distribution of hidden variables (missing features),
and then further update the parameters for the next iteration.
However, all these existing methods above assume that in-
complete feature observations only happen on a small sub-
set of samples, and thus cannot adequately be applied to our
problem where the vast majority of samples have missing
features (limited feature observations).

To fill the gap, we propose a new approach that incor-
porates physics-aware structural constraints into model rep-

resentation. Our approach assumes that a spatial contextual
feature is observed for all sample locations, and establishes
spatial structural constraints from the spatial contextual fea-
ture map. We design efficient algorithms for model parame-
ter learning and class inference and conduct experimental
evaluations to validate the effectiveness and efficiency of
the proposed approach against existing works. More specif-
ically, we make the following contributions:

• We propose a new approach that utilizes physics-aware
spatial structural constraints to handle limited feature ob-
servations in spatial classification.

• We design efficient algorithms for model parameter learn-
ing and class inference.

• We evaluated the proposed model on two real-world hy-
drological datasets. Results show that our approach sig-
nificantly outperforms several baseline methods in classi-
fication accuracy, and the proposed solution is computa-
tionally efficient on a large data volume.

Problem Statement

Preliminaries

Here we define several basic concepts to define the problem
formally.

A spatial raster framework is a tessellation of a two-
dimensional plane into a regular grid of N cells. Spatial
neighborhood relationship exists between cells based on cell
adjacency. The framework can contain m non-spatial ex-
planatory feature layers (e.g., spectral bands in earth im-
agery), one potential field layer (e.g., elevation), and one
class layer (e.g., flood, dry).

Each cell in a raster framework is a spatial data sample,
noted as sn = (xn, φn, yn), where n ∈ N, 1 ≤ n ≤ N ,
xn ∈ R

m×1 is a vector of m non-spatial explanatory feature
values with each element corresponding to one feature layer,
φn ∈ R is a cell’s potential field value, and yn ∈ {0, 1} is a
binary class label.

A raster framework with all samples is noted as F =
{sn|n ∈ N, 1 ≤ n ≤ N}, non-spatial explanatory feature
matrix of all samples are noted as X = [x1, ...,xN ]T , the
potential field vector is noted as Φ = [φ1, ..., φN ]T , and the
class vector is noted as Y = [y1, ..., yN ]T .

In a raster framework, it may happen that only a limited
number of samples have non-spatial explanatory features be-
ing observed. We define O as the corresponding set of these
sample indices. Samples with complete explanatory features
are noted as {xn|n ∈ O}. The corresponding sample feature
matrix is noted as Xo.

Problem Definition

Given a raster framework with the explanatory features of a
limited number of samples in the framework Xo, the po-
tential field layer of all samples in the framework Φ =
[φ1, ..., φN ]T , and a set of training samples with class la-
bels outside the framework, the spatial classification prob-
lem aims to learn a classifier f to predict the class layer
Y = f(Xo,Φ). For example, in earth imagery classifi-
cation, the explanatory feature layers are spectral bands of
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earth imagery pixels; the spatial contextual layer can be el-
evation, and the target class layer consists of pixel classes
(e.g., flood or dry). In the example, it often happens that
the elevation values are available for all pixels in the frame-
work (elevation values do not change over time and thus can
be collected at once), but only limited pixel locations have
spectral data (e.g., a drone or aerial plane could not cover
the entire region due to limited time during a flood disas-
ter). Figure 1 shows a toy example of a raster framework
that consists of sixty-four samples with a one-dimensional
explanatory feature and a full potential field layer. There are
only eight samples with observed explanatory features (four
non-empty cells in Figure 1(b)). The goal is to learn a model
that can predict the class layer in Figure 1(c).
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(a) Spatial potential
field (elevation, Φ)

�� �� �� �
�� �� �� �

(b) Non-spatial
feature (Xo)

(c) True classes of
all samples (Y)

Figure 1: An illustration problem example (green color for
the dry class, orange color for the flood class in (c))

Approach

In this section, we introduce our proposed approach. We
start with physics-aware structural constraints and then in-
troduce our probabilistic model and its learning and infer-
ence. We will introduce our approach in the context of flood
mapping application example, but the proposed method can
be potentially generalized to other applications such as ma-
terial science and biochemistry.

Physics-Aware Structural Constraint

The main idea of our proposed approach is to establish a
spatial dependency structure of sample class labels based on
the physical constraint from the spatial potential field lay-
ers (e.g., water flow directions based on elevation). Figure 2
is an illustrative example. Figure 2(a) is the elevation val-
ues of eight pixels in one dimensional space (e.g., pixels
on a row in Figure 1). Due to gravity, water flows from
high locations to nearby lower locations. If location 4 is
flooded, locations 1 and 3 must also be flooded. Such a de-
pendency structure can be established based on the topology
of the potential field surface (e.g., elevation). Figure 2(b)
shows a directed tree structure that captures the flow de-
pendency structure. If any node is flood, then all sub-tree
nodes must be flood due to gravity. The structure is also
called split tree in topology (Carr, Snoeyink, and Axen 2003;
Edelsbrunner and Harer 2010), where a node represents a
vertex on a mesh surface (spatial potential field), and the
edges show the topological relationships between vertices.
We can efficiently construct the tree structure from a po-
tential field map following the topological order of pixels

based on the union-find operator (the time complexity is
O(N logN)) (Carr, Snoeyink, and Axen 2003). We do not
introduce details due to space limitations. It is worth to note
that though our illustrative example in Figure 2 is in one-
dimensional space for simplicity, the structure can be appli-
cable to two-dimensional space in general cases (Jiang and
Sainju 2018). For example, we can create a single tree struc-
ture for the entire elevation map in Figure 1(a).
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(a) Eight consecutive sample lo-
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(b) Partial order constraint
in a reverse tree

Figure 2: Illustration of partial order class dependency

Model Probabilistic Formulation

Now we introduce our approach that integrates physics-
aware structural constraint into the probabilistic model for-
mulation to handle limited samples with observed features.
Figure 3 illustrates the overall model structure. It consists
of two layers: a hidden class layer with unknown sample
classes (yn) and an observation layer with limited sample
feature vectors (xn). Each node corresponds to a spatial
data sample (raster cell). Edge directions show a probabilis-
tic conditional dependence structure based on physical con-
straint.
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Hidden class node

Observed feature node

Figure 3: Illustration of model structure

The joint distribution of all observed samples’ features
and classes can be expressed as Equation 1, where Pn is the
set of parent samples of the nth sample in the dependency
tree, and yk∈Pn

≡ {yk|k ∈ Pn} is the set of class nodes
corresponding to parents of the nth sample. For a leaf node
n, Pn = ∅, and P (yn|yk∈Pn

) = P (yn).

P (Xo,Y) = P (Xo|Y)P (Y) =
∏
n∈O

P (xn|yn)
N∏

n=1

P (yn|yk∈Pn )

(1)
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The conditional probability of sample feature vector given
its class can be assumed i.i.d. Gaussian for simplicity, as
shown in Equation 2, where μyn

and Σyn
are the mean

and covariance matrix of feature vector xn for class yn
(yn = 0, 1). It is worth noting that P (xn|yn) could be more
general than i.i.d. Gaussian.

P (xn|yn) ∼ N (μyn
,Σyn) (2)

Class transitional probability follows the partial order
constraint. For example, due to gravity, if any parent’s class
is dry, the child’s class must be dry; if all parents’ classes are
flood, then the child has a high probability of being flood.
Consider flood as the positive class (class value 1) and dry
as the negative class (class value 0), the transitional proba-
bility is actually conditioned on the product of parent classes
yPn
≡ ∏

k∈Pn
yk. Table 1 shows two parameters for class

transitional probability (ρ) and class prior probability (π).

Table 1: Class transition probability and prior probability

P (yn|yPn
) yPn

= 0 yPn
= 1

yn = 0 1 1− ρ
yn = 1 0 ρ

P (yn)
yn = 0 1− π
yn = 1 π

Model Parameter Learning and Class Inference

Our model parameters include the mean and covariance ma-
trix of sample features in each class, the prior probabil-
ity of leaf node classes, and class transition probability for
non-leaf nodes. We denote the entire set of parameters as
Θ = {ρ, π,μc,Σc|c = 0, 1}. Learning the set of parameters
poses two major challenges: first, Equation 1 both unknown
parameters and hidden class variables Y = [y1, ..., yN ]T

that are non-i.i.d.; second, the number of samples (N ) can
be huge (e.g., millions of pixels).

To address these challenges, we propose to use the
expectation-maximization (EM) algorithm together with
message (belief) propagation. The main idea of the EM al-
gorithm is to first initialize a parameter setting, and com-
pute the posterior expectation of log-likelihood (Equation 1)
on hidden class variables (E-step). The posterior expecta-
tion is a function of unknown parameters, and thus can
be maximized by updating the parameter values (M-step).
The two steps can be done iteratively until the parame-
ter values converge. One remaining issue is the calcula-
tion of posterior expectation of log-likelihood on hidden
class variables. The requires to compute the marginal pos-
terior distribution of P (yn, yk∈Pn

|O,Θ0) and P (yn) for
each node n. This is very challenging due to its high dimen-
sionality of Y. To address this challenge, we use message
propagation. Message propagation is based on the sum and
product algorithm (Kschischang, Frey, and Loeliger 2001;
Ronen, Rohlicek, and Ostendorf 1995). Propagation of mes-
sage along nodes in a graph (or tree) is equivalent to
marginalizing out node variables in the overall joint distri-
bution in Equation 1. Due to the space limit, we only show
the major steps in the following discussion. More details of
the theoretical proof are in the appendix.

(a) From leaves to root (b) From root to leaves

Figure 4: Illustration of message propagation in split tree

The message passing process is illustrated in Figure 4.
Specifically, forward message propagation from leaves to
root is based on Equation 3 and Equation 4, where f i

n(yn)
and fo

n(yn) are the incoming message into and outgoing
message from a hidden class node yn respectively. Back-
ward message propagation from root to leaves also follows
a recursive process, as shown in Equation 5 and Equation 6,
where gin(yn) and gon(yn) are the incoming and outgoing
messages for class node yn respectively. For those samples
without feature vector xn, the outgoing forward and back-
ward messages are the same with incoming forward and
backward messages respectively, because we do not con-
sider the feature probability for those samples.

f i
n(yn) =

⎧⎨
⎩

P (yn) if yn is leaf∑
yk∈Pn

P (yn|yk∈Pn
)

∏
k∈Pn

fo
k (yk) otherwise

(3)

fo
n(yn) =

{
f i
n(yn)P (xn|yn) if n ∈ O
f i
n(yn) otherwise

(4)

gin(yn) =

⎧⎨
⎩

1 if yn is root∑
ycn ,yk∈Sn

gocnP (ycn |yn)
∏

k∈Sn

fo
k (yk) otherwise

(5)

gon(yn) =

{
gin(yn)P (xn|yn) if n ∈ O
gin(yn) otherwise

(6)

After both forward and backward message propagation,
we can compute the marginal posterior distribution of hid-
den class variables based on the equations below, where P ′
is unnormalized marginal distribution.

P ′(yn|Xo,Θ0) =

{
f i
n(yn)g

i
n(yn)P (xn|yn) if n ∈ O

f i
n(yn)g

i
n(yn) otherwise

(7)

P ′(yn, yk∈Pn
|Xo,Θ0) =

∏
k∈Pn

fo
k (yk)g

o
n(yn) (8)

P (yn|Xo,Θ0)← P ′(yn|Xo,Θ0)∑
yn

P ′(yn|Xo,Θ0)
(9)
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P (yn, yk∈Pn |Xo,Θ0)← P ′(yn, yk∈Pn |Xo,Θ0)∑
yn,yk∈Pn

P ′(yn, yk∈Pn
|Xo,Θ0)

(10)
After the computation of marginal posterior distribution,

we can update model parameters by maximizing the poste-
rior expectation of log-likelihood (the maximization or M
step in EM), as shown by equations below.

ρ =

∑
n|Pn �=∅

∑
yn

∑
yPn

yPn
(1− yn)P (yn, yPn

|X,Θ0)

∑
n|Pn �=∅

∑
yn

∑
yPn

yPn
P (yn, yPn

|X,Θ0)
(11)

π =

∑
n|Pn=∅

∑
yn

ynP (yn|X,Θ0)

∑
n|Pn=∅

∑
yn

P (yn|X,Θ0)
(12)

μc =

∑
n∈O

xnP (yn = c|X,Θ0)

∑
n∈O

P (yn = c|X,Θ0)
, c = 0, 1 (13)

Σc =

∑
n∈O

(xn − μc)(xn − μc)
TP (yn = c|X,Θ0)

∑
n∈O

P (yn = c|X,Θ0)
, c = 0, 1

(14)

After learning model parameters, we can infer hidden
class variables by maximizing the overall probability. A
naive approach that enumerates all combinations of class as-
signments is infeasible due to the exponential cost. We use a
dynamic programming-based method called max-sum (Ra-
biner 1989). The process is similar to the sum and product
algorithm above. The main difference is that instead of us-
ing sum operation, we need to use max operation in message
propagation, and also memorize the optimal variable values.
We omit the details due to space limit.

How the Model Address Limited Observations?

The main intuition behind how our model handles limited
observations is that the model can capture physical con-
straints between sample classes. The spatial structural con-
straints are derived from the potential field layer that is
fully observed on the entire raster framework, regardless of
whether non-spatial features are available or not. The topo-
logical structure in a split tree is consistent with the phys-
ical law of water flow directions on a topographic surface
based on gravity. In this sense, even though many samples
in the raster framework do not have non-spatial explanatory
features observed, we can still infer their classes based on
information from the pixels in the upstream or downstream
locations.

Another potential question is how our model can effec-
tively learn parameters given very limited observations. This
question can be answered from the perspective of how model
learning works. The major task of model learning is to effec-
tively update parameters of P (xn|yn) for observed pixels in
the test region, so that we can infer the posterior class prob-
abilities on these pixels and further infer hidden classes on

other pixels. As long as the training samples could give the
model a reasonable initial estimate of posterior class proba-
bilities on the observed pixels (e.g., truly dry pixels having
a higher probability of being dry), the update of parameters
should be effective. This is because that parameter updates
are largely weighted average of the sample mean and covari-
ance matrices on fully observed pixels. The weights are the
posterior class probability of observed samples.

Experimental Evaluation

Experiment Setup

In this section, we compared our proposed approach with
baseline methods in related works on real-world datasets.
Evaluation candidate methods are listed below. Note that
we did not include data imputation methods (e.g., filling in
mean feature values) due to its low capability of handling
very limited observations. Unless specified otherwise, we
used default parameters in open source tools for baseline
methods. Experiments were conducted on a Dell worksta-
tion with Intel(R) Xeon(R) CPU E5-2687w v4 @ 3.00GHz,
64GB main memory, and Windows 10.

• Label propagation with structure (LP-Structure): In
the implementation of this baseline method, we used the
maximum likelihood classifier (MLC) and GBM respec-
tively to pre-classify fully observed samples and then ran
label propagation (Wang and Zhang 2007) on the topog-
raphy tree structure. We named them as LP-Structure-
MLC and LP-Structure-GBM. The initial classifiers
were from R packages.
• EM with i.i.d. assumption (EM-i.i.d.): In the implemen-

tation of this baseline method (Ghahramani and Jordan
1994a), we treated missing features and unknown classes
as latent variables and used the EM algorithm assuming
that sample features follow i.i.d. Gaussian distribution in
each class. Moreover, we assumed RGB (red, green, blue)
features and elevation features are uncorrelated.
• EM with structure (EM-Structure): This is our pro-

posed approach. We treated unknown classes as latent
variables and used the EM algorithm assuming that sam-
ples follow the topography tree dependency structure. The
codes were implemented in C++.

Data Description: Our real-world datasets were collected
from Kinston North Carolina and Grimesland North Car-
olina in Hurricane Matthew 2016. We used aerial imageries
from NOAA National Geodetic Survey (National Oceanic
and Atmospheric Administration 2017) with red, green, blue
bands in a 2-meter spatial resolution and digital elevation
map from the University of North Carolina Libraries (NCSU
Libraries 2018). The test region size was 1743 by 1349 in
Kinston and 2757 by 3853 in Grimesland. The number of
observation samples was 31,168 in Kinston and 237,312
in Grimesland. The number of training and testing samples
(pixels) are listed in Table 2.

Evaluation Metric: For classification performance evalu-
ation, we used precision, recall, and F-score. For computa-
tional performance evaluation, we measured the computa-
tional time costs in seconds.
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Table 2: Dataset description

Dataset Training Set Testing Set
Dry Flood Dry Flood

Matthew, Kinston 5,000 5,000 48,071 47,967
Matthew, Grimesland 5,000 5,000 75,670 59,405

Classification Performance Evaluation

Table 3: Comparison on Mathew, Kinston flood data

Classifiers Class Prec. Recall F Avg. F

LP-Structure-GBM Dry 0.91 0.56 0.69 0.74Flood 0.68 0.94 0.79

LP-Structure-MLC Dry 0.86 0.55 0.67 0.72Flood 0.67 0.91 0.77

EM-i.i.d. Dry 1.00 0.39 0.56 0.66Flood 0.62 1.00 0.76

EM-Structure Dry 0.94 0.99 0.96 0.96Flood 0.99 0.94 0.96

Table 4: Comparison on Mathew, Grimesland flood data

Classifiers Class Prec. Recall F Avg. F

LP-Structure-GBM Dry 0.81 0.60 0.69 0.70Flood 0.61 0.82 0.70

LP-Structure-MLC Dry 0.90 0.75 0.82 0.81Flood 0.73 0.90 0.81

EM-i.i.d. Dry 0.83 0.74 0.78 0.77Flood 0.71 0.80 0.75

EM-Structure Dry 0.99 0.96 0.97 0.97Flood 0.95 0.99 0.97

We first compared different methods on their precision,
recall, and F-score on the two real-world datasets. The re-
sults were summarized in Table 3 and Table 4 respectively.
On the Kinston dataset, EM algorithm with the i.i.d. as-
sumption performed the worst with an average F-score of
0.66. The reason was that this method was not able to utilize
the spatial structural constraint between sample classes. Its
training process only updated the parameter of Gaussian fea-
ture distribution in each class. When predicting the classes
of samples with only elevation feature, the method used
only the learned Gaussian distribution of elevation feature
on each class without considering spatial structure based on
elevation values. On the same dataset, label propagation af-
ter pre-classification with the GBM model and the maximum
likelihood classifier slightly outperformed the EM algorithm
with the i.i.d. assumption. The main reason was that label
propagation on the topography tree (split tree) structure uti-
lized the physical constraint between sample classes when
inferring the classes of unobserved samples without RGB
features. However, label propagation still showed signifi-
cant errors, particularly in the low recall on the dry class.
Through analyzing the predicted map, we observed that the
label propagation algorithm was very sensitive to the pre-
classified class labels on the observed samples in the test
region. Errors in the pre-classification phase may propaga-

tion into unobserved samples (those without RGB feature
values). In label propagation methods, once the errors were
propagated to unobserved samples, they were hard to be re-
verted. This was different from the EM algorithm, which
could update the probabilities in iterations. We did not re-
port the results of label propagation on a grid graph struc-
ture (only considering spatial neighborhood structure with-
out physics-aware constraint) due to poor results. Our model
based on the EM algorithm assuming structural dependency
between class labels performed the best with an average F-
score of 0.96. The main reason was that our model could
leverage the physical constraint to infer unobserved samples,
and also could effectively update sample probabilities dur-
ing iterations with the EM algorithm. In our model, we used
training samples to initialize the parameters of the Gaussian
distribution of sample features in each class. Based on the
reasonable initial parameters, we can have a reasonable es-
timation of the posterior class probabilities of all samples in
the test region. Based on the posterior class probabilities, the
distribution parameters could be further updated. The repre-
sentative training samples helped make sure that parameter
iterations would converge in the right path.

Similar results were observed on the Grimesland dataset.
In the label propagation method, pre-classification based
on GBM performed worse than pre-classification based on
MLC. The reason may be due to overfitting of GBM com-
pared with MLC when predicting initial labels on the fully
observed samples. The EM algorithm with the i.i.d. as-
sumption performed slightly better on this dataset. The rea-
son might be that the final prediction of classes of the un-
observed samples (with only elevation feature but without
RGB features) was based on a slightly better fitted normal
distribution. Our model showed the best performance with
an F-score of 0.97.

The effect of model initial parameters We now analyzed
the sensitivity of our proposed model on different initial pa-
rameter settings. The parameters of μc and Σc were esti-
mated from training data, but parameters ρ and π were from
user input. Since ρ captured the transitional probability of a
sample being flood given its parents were all flood, its value
should be very high (close to 1) due to spatial autocorre-
lation. π is the initial class prior probabilities for samples
without parent nodes (local lowest location). We could set it
close to 0.5. We tested the sensitivity of our model to dif-
ferent initial values of ρ and π on the Kinston dataset. We
first fixed ρ as 0.999 and varied the value of π from 0.1 to
0.9. Then we fixed π as 0.3 and varied the value of ρ from
0.9. The results were shown in Figure 5. We can see that the
model was generally not very sensitive to the initial parame-
ter values. For parameter ρ, as long as 1−ρ was smaller than
0.01 (ρ greater than 0.99), the converged F-score was good.
For parameter π, the results were consistently good for our
model with an initial π between 0.1 to 0.9. The main reason
was that π influenced only a small number of samples at the
local lowest locations on the elevation map.

The parameter iterations of our model were shown in Fig-
ure 6. The model converged fast with only 20 iterations. Due
to the space limit, we only showed the parameters of ρ and
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(a)

(b)

Figure 5: Sensitivity of our model to initial parameters π and
ρ

π.

Figure 6: Parameter iterations and convergence in our model

Computational Performance Evaluation

We also evaluated the computational performance of our
model learning and inference on different input data sizes.
We used the Grimesland dataset to test the effect of different
test region sizes. We varied the region size from around 2
million pixels to over 10 million pixels. The computational
time costs of our model was shown in Figure 7. It can be seen
that the time cost grows almost linearly with the size of the
test region. This was because our learning and inference al-
gorithms involve tree traversal operations with a linear time
complexity on the tree size (the number of pixels on the test
region). The model was computationally efficient. It could
classify around 10 million pixels in around 2 minutes.

We further analyzed the time costs of different compo-
nents in our model, including split tree construction, model

Figure 7: Computational performance of out model on vary-
ing test region sizes

parameter learning, and class inference. We analyzed the re-
sults on both datasets (same as the settings in Table 3 and
Table 4. Results showed that tree construction and class in-
ference took less time than parameter learning. This was be-
cause the learning involves multiple iterations of message
propagation (tree traversal operations).

Table 5: Time Costs Analysis of Our Model (seconds)

Kinston Grimesland
Tree construction 3.2 8.39
Parameter learning 25.74 86.79
Class inference 3.8 15.62
Total time 32.74 110.80

Conclusions and Future Work

In this paper, we address the problem of spatial classification
with limited feature observations. The problem is important
in many applications where only a subset of sensors are de-
ployed at certain regions or partial responses are collected
in field surveys. Existing research on incomplete or missing
data has limitations in assuming that incomplete feature ob-
servations only happen on a small subset of samples, and
thus cannot solve problems whereby the vast majority of
samples have missing feature observations. To address this
issue, we propose a new approach that incorporates physics-
aware structural constraints into model representation. We
propose efficient algorithms for model parameter learning
and class inference. Evaluations on real-world hydrologi-
cal applications show that our approach significantly out-
performs several baseline methods in classification accuracy,
and the proposed solution is computationally efficient on a
large data volume.

In future work, we plan to extend our proposed model
to address other problems such as fusing noisy, incomplete,
and multi-modal observation data such as volunteered geo-
graphic information (VGI). We also plan to explore the inte-
gration of deep learning framework with our approach.
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