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Abstract

With the increasing popularity of electric vehicles, distributed
energy generation and storage facilities in smart grid sys-
tems, an efficient Demand-Side Management (DSM) is ur-
gent for energy savings and peak loads reduction. Tradi-
tional DSM works focusing on optimizing the energy activ-
ities for a single household can not scale up to large-scale
home energy management problems. Multi-agent Deep Re-
inforcement Learning (MA-DRL) shows a potential way to
solve the problem of scalability, where modern homes inter-
act together to reduce energy consumers consumption while
striking a balance between energy cost and peak loads reduc-
tion. However, it is difficult to solve such an environment with
the non-stationarity, and existing MA-DRL approaches can-
not effectively give incentives for expected group behavior. In
this paper, we propose a collective MA-DRL algorithm with
continuous action space to provide fine-grained control on a
large scale microgrid. To mitigate the non-stationarity of the
microgrid environment, a novel predictive model is proposed
to measure the collective market behavior. Besides, a collec-
tive behavior entropy is introduced to reduce the high peak
loads incurred by the collective behaviors of all householders
in the smart grid. Empirical results show that our approach
significantly outperforms the state-of-the-art methods regard-
ing power cost reduction and daily peak loads optimization.

Introduction

Due to the growing number of various electric devices in
modern life, meeting the energy demand becomes a signif-
icant challenge for the power grid (Wu, Zeng, and Boulet
2014). Companies spend tremendous time and money to
satisfy the sharply changing demands. With a fast-growing
market share, the large-scale use of electric vehicles brings
a high power consumption burden on the power system. As
more and more electric drive products are introduced into
people’s daily lives, the power grid is facing a major chal-
lenge of a large number of unstable loads. Meanwhile, dis-
tributed renewable power generation, such as wind and so-
lar energy, is considered to be vital to achieving cost and
carbon reduction goals and is gaining prominence (Jain,
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Narayanaswamy, and Narahari 2014). However, renewable
power generation relies on unstable natural resources, which
brings about a significant challenge to maintain demand-
supply balance when consuming electricity from renewable
sources. Meantime, with the rapid development of the ad-
vanced meters and basic computing facilities, smart grids
with distributed energy generation and distributed energy
storage have shown a high potential for energy management.
Therefore, efficient energy-saving, management, and maxi-
mizing energy efficiency draw more and more attention.

Deep reinforcement learning (DRL) has achieved tremen-
dous success not only in various of single-agent tasks (Sil-
ver et al. 2016; Levine et al. 2016; Zheng et al. 2019a;
2019b), but also complex multiagent scenarios (Zheng et al.
2018a; 2018b). Recently, applying DRL in the smart grid
has been studied (Yan and Xu 2018; Huang et al. 2019;
Duan et al. 2019). Berlink and Costa applied a RL-based
demand-side management (DSM) technique to learn an op-
timal management policy in the energy management system
(EMS) (Berlink and Costa 2015). Di Wu et al. studied the
RL-based charing policy for electric vehicles (EV) (Di Wu et
al. 2018). François-Lavet et al. designed a DQN-based stor-
age management strategy for a microgrid (François-Lavet et
al. 2016). However, these works investigate energy policies
for a single household, restricting the algorithm’s effective-
ness and generalization in real scenarios.

From a multiagent system perspective, Dusparic et al.
leverages the independent Q-learning to manage the energy
demand of a small group of households, where each agent
scheduled for the appliance usage of one household (Dus-
paric et al. 2013). However, their approach considered the
role of the household as the traditional power consumer,
and the rigid appliance usage schedules are inconvenient for
flexible usage. The most related work to ours is that of Yang
et al., who focuses on a microgrid scenario and optimizes
the energy expense problem with a multiagent reinforcement
learning framework. They adopted the collective behavior
approximations to further reduce the cost compared with
the single household case and use the entropy-based method
to reduce the high peak load (Yang et al. 2019). However,
the entropy-based rewards encourage the agents to take un-
predictable actions such that EV cannot meet its charging

922



objective during the low-price period. Moreover, same as
other works (Berlink and Costa 2015; Di Wu et al. 2018;
Dusparic et al. 2013), Yang et al. only considers using dis-
crete control actions by simply discretizing the continuous
control values, which may encounter dimensionality issues
with a large number of continuous action spaces. The dis-
cretization unnecessarily throws away information about the
structure of the action domain, which may be essential for
precise control of energy management.

To address these, we extend the collective MA-DRL algo-
rithm to continuous action space, enabling more flexible and
fine-grained control. Besides, a predictive model is intro-
duced to mitigate the non-stationarity by approximating the
market behavior. Lastly, a collective behavior entropy is in-
troduced to balance between maximizing single household’s
interests and encouraging moderate collective behavior for
a smart home community. Empirical results show that, com-
pared with the state-of-art algorithms, our method achieves
better reduction in terms of both costs and peak loads.

Preliminaries

Markov Game

Markov game, as an multiagent extension of Markov deci-
sion process (MDP), provide a commonly used framework
for modeling interactions among agents. It can be formalized
as an tuple < N,S,A, T, R, λ >. Here N is the number of
agents, S is a set of states, A = A1 × · · · × AN is the joint
action set, where Ai is the action space of agent i, R is the
reward function S × A → R, T is the transition function
S × A × S → [0, 1]. At each step t, agent i receives its own
observations st and selects an action at according to its pol-
icy πi(at|st). After every agent taking actions, the env tran-
sits into a new state st+1 according to the transition probabil-
ity function p(st+1|st, a), where a = (a1, · · · , ai, · · · , an)
is the joint actions of all agents. Consequently, each agent
i receives immediate reward ri(st, a) and new observation
st+1. Then the process repeats. The goal is for each agent i
to find a policy πi that maximizes its own expected future

reward Eai∼πi

∞∑
t=0

λtri(st, a), where λ is a discount factor.

Proximal Policy Optimization (PPO)

Policy-based RL algorithms try to maximize the expected
return J(πθ) by leveraging the gradient with respect to the
parameters of its policy πθ as follows:

∇θJ(πθ) = Ea∼πθ
[∇θ log(πθ(at|st))Â(st, at)] (1)

where Â(st, at) is an estimator of the advantage function
at timestep t. However, the estimation may vary dramati-
cally between different runs, resulting in high variance. To
address this, PPO measures a probability ratio between old
and new policies r(θ) = πθ(a|s)

πθold
(a|s) , and imposes the con-

straint by forcing the ratio to stay within a small interval
[1− ε, 1 + ε] as follows:

min
(
r(θ)Â(s, a), clip(r(θ), 1− ε, 1 + ε)Â(s, a)

)
(2)

where ε is a hyperparameter that controls the clipping de-
gree.

Problem Formulation

Following the concept in (Di Wu et al. 2018; Yang et al.
2019), we illustrate the main components in the smart home
as follows:

• base load power consumption from conventional house-
hold appliances.

• power consumption for EV charging.

• micro-generation for renewable energy.

• home battery for electricity storage.

• home energy management system (EMS) for DSM.

Microgrid Market

Microgrid market consists of a great number of households,
which are modeled as the basic unit to schedule their indi-
vidual power trading plan. For households, price signals at
different time slots are provided by the time-of-use (TOU)
rate. At the beginning of every time slot, households need to
make energy decisions (e.g., power trading or EV charging)
based on the given TOU price, energy demand, power gener-
ation status, and other useful signals. The microgrid market
can be modeled as a partially observable Markov Game, and
below we state each component.

States At time t, the observation (state) sit for household i
is formalized as (pt, H

i
l,t, H

i
b,t, H

i
p,t, E

i
a,t, E

i
b,t, E

i
d,t), con-

sisting of following components:

• pt: electricity price at time t.

• Hl,t: power consumption of the base load.

• Hb,t: home-based battery state of charge.

• Hp,t: energy amount of the home-based PV generation.

• Ea,t: EV charging availability.

• Eb,t: EV-based battery state of charge.

• Ed,t: EV departure time.

Note that, Hb,t and Eb,t are 100% when the battery is fully
charged and 0% when fully discharged. Ea,t is set to 1 if EV
is available and 0 otherwise. Ed,t defines how many hours
remains before EV departure.

Actions Home EMS interacts with the power grid by ad-
justing the charging or discharging rate of EV and home-
based batteries with a continuous rate. Thus, for each type
of battery, every household has two alternatives: purchasing
power from the grid (charging) and selling power to the grid
(discharging).

Formally, at each time slot t, home EMS chooses to de-
cide two actions: power trading amount Pc,t and the EV
charging rate Ce,t. For trading behavior, the value of Pc,t is
between [-δ, α], where δ and α are the average gross power
generation and consumption per hour on the previous day,
respectively. As for EV charging rate, following (Di Wu et
al. 2018), Ce,t lies between [-η,η], where -η and η mean
100% discharging and charging, respectively. Note that, for
both behaviors, value 0 means no trading or charging. It is
worth mentioning that, at each time slot t, the home battery
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is responsible for redundancy caused by Pc,t and Ce,t with
satisfying the equation as follow:

Hp,t + Pc,t = Ce,t + Cb,t +Hl,t (3)

where Cb,t is the charging rate of the home-based battery,
and Ce,t will be 0 if the EV is not available. After deciding
Pc,t and Ce,t, the power surplus or shortage Ct are measured
as follows:

Ct = Hp,t +Hb,t ∗Bh −Hl,t − Ce,t, (4)

where Bh is home battery capacity. If Ct �= 0 after perform-
ing Ce,t and Pc,t, the home battery will be charged if power
surplus or discharged if shortage. The battery charging rate
and discharging rate are no more than the maximal charging
rate while deciding the allowed actions. It is worth mention-
ing that, in our setting, EV charge capacity must reach more
than 90% of normal capacity before its departure time.

Rewards One of our goals is to minimize household elec-
tricity costs. We directly use the electricity cost as the in-
centive signal for the DRL agents. The reward function is
calculated as follows:

rt =

{ −Pc,t ∗ pb if Pc,t ≥ 0
−Pc,t ∗ ps if Pc,t < 0

(5)

where pb and ps are buying and selling price at current time
slot, respectively. The negative sign indicates that our goal is
to minimize the overall energy cost. Note that pb is always
higher than ps due to the infrastructure cost of the power
grid and the long-distance transmission fees.

Transitions At each time slot, all households make action
decisions at first. Next, microgrid processes them and deter-
ministically proceeds into the next state. After performing
power actions, each household updates its state based on its
energy management actions and TOU price.

Group Incentive Mechanism

We follow the collective microgrid model from (Yang et
al. 2019). In the large-scale microgrid, each household can
independently interact with the power grid according to its
electricity demand. However, these households are more
willing to ally in order to coordinate the power production
and consumption in a smaller community. This cooperation
not only helps them balance the demand and supply in the
power grid but also saves expenses for households. There-
fore, we devise an incentive-driven market mechanism to
appeal agents to join a community for cooperation. There
are two trading processes in the microgrid market: the in-
ternal trading process and the external trading process. At
first, households trade inside the community and try to sat-
isfy the demand inside. If the internal trading inside the com-
munity fails to fulfill the needs, the external microgrid will
trade with households and address the remaining demand.
The prices for internal trading and external trading are de-
fined as follows:

pos,t ≤ pin,t ≤ pob,t
where pos,t and pob,t are power selling and buying prices

for external trading. pin,t is the internal trading price. In such

a setting, each household prefers internal trading because it
is cost-effective. As for the entire microgrid, the internal op-
timization inside the group avoids some unnecessary inter-
group trading, which is also beneficial for reducing the over-
all operating cost as well as peak load. The final cleaning
price for electricity integrated with external trading is:

ps,t =

{
pin,tΨb,t+pos,t(Ψs,t−Ψb,t)

Ψs,t
, if Ψs,t ≥ Ψb,t

pin,t, if Ψs,t < Ψb,t

pb,t =

{
pin,t, if Ψs,t ≥ Ψb,t
pin,tΨs,t+pob,t(Ψb,t−Ψs,t)

Ψb,t
, if Ψs,t < Ψb,t

(6)

where ps,t and pb,t are current selling and buying price for
external trading. Ψs,t and Ψb,t denote the total amount of
selling and buying by the community. The above settings
ensure that ps,t and pb,t are always in [pos,t, pin,t] and
[pin,t, pob,t], respectively.

In the large-scale microgrid, each household must con-
sider the market dynamics to determine its trading strategy,
and the market dynamics are affected by the actions taken
by other households. Thus, we turn the problem into a mul-
tiagent scenario where the community can be modeled as a
multiagent system. In order to better optimize costs, it is nec-
essary to promote group coordination. The problem is inher-
ently multiagent and can be solved by MARL approaches.

Algorithm

In this section, we introduce the collective PPO algorithm
with continuous action space to provide a more fine-grained
control on a large scale microgrid. To mitigate the non-
stationary issue of the microgrid environment, we propose
a novel supervised predictive model to simulate a joint rep-
resentation of household actions, which is tightly adopted
in our training process. To solve the problem of excessively
high peak loads of microgrid induced by the centralized dis-
tribution of charging behaviors, we reshape the reward func-
tion of our algorithm with an extra collective behavior en-
tropy to reduce the loads without incurring additional costs.

From Discrete to Continuous Control

Like most real-world control tasks, home energy manage-
ment is also a typical continuous control problem, as the
EV battery and home battery can be charged or discharged
at continuous rates. Continuous action spaces are generally
more challenging in reinforcement learning solutions (Lill-
icrap et al. 2015). Yang et al. leveraged discretization over
continuous action space to bypass this challenge (Yang et
al. 2019). However, discrete action space is impractical for a
smart grid as the number of actions increases exponentially
with the number of controlled values. Furthermore, the sit-
uation is even worse for EMS as it demands precise con-
trol actions and more fine-grained discretization. It is chal-
lenging and time-consuming to explore efficiently in such a
vast action space. Moreover, the discrete action space dis-
cards some critical parts of continuous values. For instance,
in (Yang et al. 2019) where EV charging actions are con-
figured as [-100%, -50%, 0, 50%, 100%] , it is impossible
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for one household to charge its EV at 25% of the maximum
charging rate.

To support continuous control, we deploy a Gaussian pol-
icy, which is defined as

πθ(a|s) = 1√
2πσ

exp(− (a− μ)2

2σ2
), (7)

where the mean μ = μθ(s) and standard deviation σ =
σθ(s) are the outputs of the policy network parameterized by
θ. To enable the use of back propagation, we adopt the idea
of reparameterization (Heess et al. 2015) to write the π(a|s)
as a function y = μθ(s) + ξσθ(s), where ξ ∼ N (0, 1). The
policy gradient with respect to μ and σ can be computed as
∇μ log πθ(a|s) = a−μ

σ2 and ∇σ log πθ(a|s) = (a−μ)2

σ3 − 1
σ .

Modeling Market Behavior

In the microgrid market, hundreds of agents simultaneously
decide each other’s charging rate following its RL-based
policies. One issue in such an environment is that, from the
view of any individual agent, the environment becomes non-
stationary caused by the constant changes of other agents’
policies during the training process. One way to tackle this
issue is centralized training with decentralized execution
(Lowe et al. 2017), where the critic can observe joint actions
to approximate the value function. However, as the dimen-
sion of the joint action space grows exponentially with the
number of agents, it is difficult to learn the value function.

Different from traditional multiagent problems, each
agent in a smart gird does not distributively interact with
other agents to trade electricity. Instead, each agent can di-
rectly interact with the centralized power grid. Therefore,
in our situation, the joint action of other agents could be ab-
stracted as the microgrid market behavior. Consequently, the
individual policy for agents i can be formalized as:

πi(st, a
market) ≡ πi(st, a

1
t , ..., a

i−1
t , ai+1

t , ..., aNt ), (8)

where the market behaviors amarket can be approximately
measured by the seller group collective action as, the buyer
group collective action ab and the group EV charging action
distribution 
Ce, changing the policy πi as follows:

πi(st, a
market
t ) ≈ πi(sit, (as,t, ab,t, 
Ce,t)) (9)

As a result, each agent can make decisions based on the mar-
ket behaviors amarket without knowing the specific behav-
iors of the others.

However, the market behaviors can only be garnered af-
ter all agents have made their decisions, resulting in a dead-
lock of dependencies. Yang et al. tackled this issue by using
group collective actions at the same time slot on the previ-
ous day to approximate current market dynamics (Yang et al.
2019). It assumes there exist high similarities in market be-
haviors between consecutive days. However, this approach
only considered daily similarities within 24 hours without
taking into account the gap of the dynamic characteristics of
the microgrid between a longer period, which can result in
a poor approximation performance if the market dynamics
change dramatically.

To characterize the market behaviors more accurately, we
propose a predictive model Pθ (parameterized by θ) to di-
rectly predict the market behavior at time slot t using the
historical information of the microgrid as follows:

âmarket
t = P (st, (s(t−n:t−1), a

market
(t−n:t−1))), (10)

where st, s(t−n:t−1) and amarket
(t−n:t−1) denote the current ob-

servation, n previous observations and market behaviors, re-
spectively. The predictive model P is trained using super-
vised learning. Based on more accurate prediction âmarket

t ,
agent i can take action according to its policy at time slot t
as follows:

πi(st, â
market
t ) = πi(sit, (a

p
s,t, a

p
b,t,


Cp
e,t)), (11)

where (aps,t, a
p
b,t,


Cp
e,t) are components of the predicted mar-

ket behavior.

Collective Behavior Entropy

According to (Zhang, Brown, and Samuelsen 2011), the av-
erage parking duration of EVs at night is more than 10 hours,
and the immediate charging at home significantly surges and
reach grid peak loads. Despite RL-based learning algorithms
could efficiently shift EV loads to the low-price period to re-
duce its operating cost, the uncoordinated EV charging be-
havior can still lead to new peak loads. This phenomenon is
caused by the selfish nature of the agents that every house-
hold trends to turn on the maximum EV charging rate when
the low-price signal triggers. Therefore, the smart grid DSM
pursues a solution where every household can make full use
of the off-peak period (about 8 hours) and charge their EVs
at proper charging rates, rather than charging at a 100% rate
within 2 or 3 hours.

Individual entropy is proposed to diversify the EV charg-
ing behavior, which encourages the individual agent to
take unpredictable actions by maximizing individual en-
tropy (Yang et al. 2019). However, the charging efficiency
remains low, as the EVs, to achieve diverse behavior, choose
to discharge during the low-price period, resulting in poor
performance. Instead of avoiding all kinds of collective be-
haviors, we only punish on the one that may lead to aggres-
sively collective behavior (e.g., collective charging at maxi-
mum charging rates).

To achieve this, we propose the Collective Behavior En-
tropy (CBE), measuring from both the collective and indi-
vidual perspectives as follows:

Ecbe(π
i) = DKL(π

col||πi) ∗DKL(π
ext||πi), (12)

where the KL-Divergence (Kullback and Leibler 1951) are
employed to measure the similarity between policies. The
former one measures the similarity between individual πi

and collective policy πcol, describing the contribution of
policy πi to the collective behavior. Note that, the collec-
tive policy is measured based on all actions in the microgrid
(i.e., μ̂ = ā, σ̂2 =

∑N
i=1(a

i − ā)2). The second entropy is
employed to avoid extreme behavior (e.g., charging with a
maximum rate). Assume πext is the extreme behavior to be
avoid, the similarity between πi and πext can be measured
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by KL-divergence DKL(π
ext||πi

t). Consequently, the com-
binations help to inhibit only extremely collective behavior
rather than all collective behaviors.

In DRL, CBE is used as a reward shaping item as follows:

r(πi) = − β

Ecbe(πi)
, (13)

where β is the coefficient to adjust the impact of CBE on the
ultimate reward function. Note that, due to the similarity be-
ing inversely proportional to the value of the KL divergence,
here we use the reciprocal of the CBE in reward shaping.
Reward shaping item r(πi) will prevent householder i from
charging the EV using a maximum rate when the grid load
is heavy.

Intuitively, CBE will not punish the phenomenon that
all households charge EVs concurrently using a moderate
charging rate (e.g., less than 30%). Besides, it will also not
punish the maximum charging behavior if only a few house-
holders are charging. This guarantees the charging efficiency
of EV while reducing the high peak loads.

Experiments

In this section, we evaluate our proposed approach on sim-
ulated microgrid built on real-world data. We first introduce
our data configuration of the problem, baselines, hyperpa-
rameters of the model. Then comparisons of related base-
lines in terms of cost reduction and peak load reduction are
conducted to evaluate the proposed algorithm. Detail analy-
sis and discussions are given in each evaluation.

Experimental Settings

Microgrid Setup The microgrid environment in this paper
is built on various types of real-world data. A random sam-
ple of 200 household power consumption items comes from
the Midwest region of the United States data set (Muratori
2018). The time-of-use electricity price, EV configurations,
and home battery are from (Di Wu et al. 2018). We calculate
the EV status when arriving home based on the daily driving
distance data, which obeys gamma distribution (Lin et al.
2012) with shape 1.6 and scale 20. The charging efficiency
for home battery and EV battery is set as 0.9. We use the PV
generation data from (of Queensland 2018).

Baselines The methods that we evaluated include (i)
Naive, (ii) DQN, (iii) MA2C, (iv) MA2C-EB, (v) PPO,
(vi) MPPO, (vii) PRE-MPPO, (viii) PRE-MA2C, (ix) PRE-
MPPO-CBE, (x) MA2C-CBE. The Navie method is a rule-
based control algorithm described in (Berlink and Costa
2015), which sells all energy surplus at each instant and is
regarded as the worst-case baseline. The DQN method is in-
troduced by (Di Wu et al. 2018) and performs best in a
single household case. MA2C stands for Multiagent Actor-
Critic method from (Yang et al. 2019), which is augmented
from A2C with market dynamics approximation to repre-
sent the collective group behavior. MA2C-EB is the entropy-
based collective A2C in (Yang et al. 2019) using individual
entropy to encourage diverse group behavior, which is the
baseline for peak load reduction. The next six methods the
ones we proposed or optimized with our approaches. PPO

Algorithm Operating Cost Daily Peak Load
mean std

Naive -263,195 ($) 1360.10 53.27
DQN -113,674 ($) 1249.22 28.87
PPO -97,683 ($) 1375.20 45.81

MA2C -87,632 ($) 1359.94 31.16
MPPO -74,437 ($) 1421.70 42.15

PRE-MA2C -80,922 ($) 1447.75 29.37
PRE-MPPO -67,372 ($) 1432.58 43.59

Table 1: Comparisons of related baselinse in terms of the
cost reduction.

is a continuous control policy-gradient method using PPO
to update policy parameters. MPPO is the multiagent PPO
method leveraging the same group behavior approximations
as MA2C (Yang et al. 2019). PRE-MPPO and PRE-MA2C
are extended with predicted market dynamics. PRE-MPPO-
CBE and MA2C-CBE are equipped with Collective Behav-
ior Entropy as an extra reward shaping method to reduce
peak loads.

Hyperparameters The discount factor γ for MPPO is
0.99, and the clip parameter ε of PPO is 0.2. There are two
dense layers for all neural networks and each with 64 neu-
rons for all multi-agent models. The output layer of the net-
work in PPO is the Gaussian distribution (e.g., μ and σ)
for continuous control. The output actions are stochastic and
sampled from these distributions. The learning rate of pol-
icy and value network for PPO is set as 0.0003 and is de-
cayed linearly with the learning episode. We use the first-
28-day data for training and the rest of the data for test-
ing. We train all the algorithms for 125 episodes. In each
episode, N homogeneous agents determine their action ai

parallelly to jointly optimize one shared policy. All methods
are implemented by Python and run on a server with 12-core
Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz processors
and 1 NVIDIA GTX 1080Ti GPU.

We use the group daily operation cost of the training pro-
cess and total operation cost in testing as the evaluation cri-
teria for cost reduction.

Continuous Control. We first compare Naive, DQN,
MA2C, PPO, and MPPO to validate the performance im-
provement of continuous action space. PPO and MPPO are
our proposed approaches using continuous action space, and
the DQN and A2C are baselines with discrete action space.
In DQN and MA2C, the EV charging action and the trading
action are configured as 5 and 9 discrete action, respectively,
resulting in a combined 45-dimension action space. As illus-
trated in Fig. 1, MPPO outperforms DQN and MA2C, both
in the final performance and data efficiency. Compared with
MA2C, MPPO only uses 3% of episodes to reach the same
performance. This result mainly comes from the adoption
of continuous action space as exploring continuous action
space is more efficient than high-dimensional discrete ones.
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Figure 1: Comparisons regarding the average daily cost.

Evaluation on Cost Reduction

Table 1 shows the operating results of the smart grid config-
ured with the evaluation data. All results are obtained as an
average of 20 random seeds. Naive method performs poorly
as it charges EV once available, ignoring TOU prices and
trades electricity on-demand without using electricity stor-
age. MPPO outperforms single household DQN by 34.5%
and collective MA2C by 15.1%. PPO achieves better cost
reduction than DQN, but worse than MA2C. This indicates
that only using continuous control is not enough to achieve
efficient optimization, and leveraging collective behavior is
beneficial for achieving better control.

Predictive Market Behavior. To demonstrate the advan-
tage of the adoption of predictive market behavior, we con-
duct experiments to compare the performance among PRE-
MPPO, PRE-MA2C, MPPO, and MA2C. As shown in Fig.
1, algorithms with predictive group behavior are superior
to the ones with market dynamics approximations. Table 1
shows that PRE-MPPO gains 9.5% less operating cost com-
pared with MPPO, while PRE-MA2C’s cost is less than
MA2C’s by 7.7%. The reason is that predicted market be-
havior (aps,t, a

p
b,t,


Cp
e,t) takes the periodicity of the grid as

well as the dynamic changes of the market into account re-
sulting in more realistic market behavior. The results also
demonstrate that algorithms can achieve higher performance
with more accurate group behavior estimation.

Another interesting finding is that only PPO, MPPO and
PRE-MPPO perform a steep rise at the early stage, sug-
gesting that continuous action space indeed contributes to
achieving a flexible and accurate control.

Evaluations on Peak Load Reduction

We use the statistic data of the highest load in 24 hours
of a day as the criterion to evaluate our method. The high
peak load data with lower variance means more stable per-
formance.

As shown in Table 1, since RL-based MPPO has achieved
significant performance in reducing operating cost, its daily

Figure 2: Comparisons regarding the average peak load.

Algorithm Operating Cost Daily Peak Load
mean std

MA2C -87,632 ($) 1359.94 31.16
MA2C-EB -88,351 ($) 1194.83 34.80

MA2C-CBE -89,852 ($) 838.25 51.44
PRE-MPPO -67,372 ($) 1432.58 43.59

PRE-MPPO-CBE -74,559 ($) 876.28 115.71

Table 2: Comparisons regarding peak load reduction.

high peak load is even higher than the rule-based baseline
Naive. The reason is that cost-sensitive incentives encour-
age households to discharge EV at the high-price period and
charge EV when the power price is low to save more en-
ergy costs. The consequence is that all households choose
to charge EV when a low price signal triggers lock of coor-
dination, thereby generating a new peak in smart grid load
(0 am to 1 am for PRE-PPO, and 0 am to 2 am for MA2C
shown in Fig. 3).

As the peak load is the key indicator to measure grid per-
formance, we conduct experiments to evaluate our method
as well as the baseline and try to investigate their contribu-
tion to reducing the peak load. The learning curves of vari-
ous algorithms are shown in Fig. 2, and the evaluation results
are shown in Table 2.

First, PRE-MPPO-CBE, compared with PRE-MPPO,
achieves a 38.8% peak load reduction at an additional 10%
electricity cost. This indicates PRE-MPPO-CBE achieves a
better balance by sacrificing some households’ benefits for
the community. By comparing MA2C-EB with MA2C, we
can see that after 70 episodes of training, MA2C-EB starts to
learn to reduce peak load and reaches 12.1% lower peak load
compared with MA2C. Unlike MA2C-EB, with the help of
group behavior entropy, MA2C-CBE starts to reduce peak
loads at the early stage and finally reaches a 38.4% peak
load reduction compared with MA2C.
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Figure 3: The average hourly peak load of related algorithms
at night.

Analysis of Charging Behavior & Hyperparamters

To explain the difference between normal methods (MA2C
and PRE-MPPO), individual entropy (MA2C-EB from
(Yang et al. 2019)), and our collective behavior entropy
(MA2C-CBE and PRE-MPPO-CBE), we visualize the mean
as well as the variance of hourly load in low price period (0
am to 8 am in our TOU data set) in Fig. 3. The results show
that both PRE-MPPO and MA2C choose to charge EV from
at high charging rates from 0 am to 1 am. The charging rate
is pretty low in the later period (5 am to 6 am for PRE-MPPO
and 3 am to 6 am for MA2C), thereby they do not make full
use of the low-price period. The entropy-based MA2C-EB
reduces the load from 0 am to 3 am. However, the loads from
4 am to 6 am are still high as in our environment settings, the
EV must be charged to 90% of the full power before depar-
ture time (7 am). It is because the individual entropy encour-
ages each household to take action different from others, and
households may choose to discharge in the low-price pe-
riod to get a higher bonus. Therefore, the entropy-based ap-
proaches charge EVs insufficiently, resulting in another high
peak (4 am to 6 am for MA2C-EB). Different from MA2C-
EB, the hourly load of our method (MA2C-CBE) is balanced
during the low-price period, and the high peak is signifi-
cantly lower than the entropy-based ones (MA2C-EB). The
reason is that our methods only punish aggressively collec-
tive charging and does not punish other collective behavior,
e.g., moderate collective charging (0 am to 6 am for MA2C-
CBE and PRE-MPPO-CBE).

To search for better coefficients for the reshaped reward
function (β in Equation 13), we use different coefficients
to train our PRE-MPPO-CBE. As shown in Fig. 4, PRE-
MPPO-CBE achieves better peak load reduction by setting
coef to [1.0, 3.0]. With the coef being larger than 10.0, the
daily peak load could reach a low value of about 500 kW
while the operating cost drops dramatically. The reason is
that the agents pay excessive attention to stay far away from
aggressively collective charging without considering reduc-
ing the operating cost.

Figure 4: Grid operating results of PRE-MPPO-CBE with
different coefficients.

Conclusions

In this paper, we focus on the large-scale home EMS op-
timization problem for smart homes. A collective MA-
DRL algorithm is proposed with continuous action space to
achieve flexible and precise control on a large scale micro-
grid. Besides, a novel predictive model is proposed to mit-
igate non-stationarity in the microgrid environment by ap-
proximating the market behavior. Lastly, a collective behav-
ior entropy is introduced to address the high peak loads in-
curred by the collective behaviors of the smart grid. Empir-
ical results demonstrate that all these innovations altogether
contribute to achieving better reduction in terms of both
costs and peak loads than the state-of-the-art algorithms.

As future work, more effective models could be investi-
gated to predict the microgrid market behavior accurately.
In addition, our approach is designed from the community
level to reduce the total cost and peak load for the overall
community, given that all households are willing to follow
the strategy learned from our framework. However, this situ-
ation may not be stable, and there may exist other strategies
for an individual household to increase his utility (further
reduce cost at the cost of increasing peak loads of the com-
munity). This is an interesting direction to further explore
how to make the framework incentive-compatible.
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