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Abstract

We propose a novel graph-driven generative model, that
unifies multiple heterogeneous learning tasks into the same
framework. The proposed model is based on the fact that
heterogeneous learning tasks, which correspond to different
generative processes, often rely on data with a shared graph
structure. Accordingly, our model combines a graph convolu-
tional network (GCN) with multiple variational autoencoders,
thus embedding the nodes of the graph (i.e., samples for the
tasks) in a uniform manner, while specializing their organiza-
tion and usage to different tasks. With a focus on healthcare
applications (tasks), including clinical topic modeling, pro-
cedure recommendation and admission-type prediction, we
demonstrate that our method successfully leverages informa-
tion across different tasks, boosting performance in all tasks
and outperforming existing state-of-the-art approaches.

Introduction

Multi-task learning aims to jointly solve different learn-
ing tasks, while leveraging appropriate information sharing
across all tasks (Thrun 1996; Caruana 1997). It has been
shown that learning under a multi-task setting usually yields
enhanced performance relative to separately building single-
task models (Sermanet et al. 2013; Hashimoto et al. 2016;
Ruder 2017). However, multi-task learning has been consid-
ered primarily for homogeneous tasks that share the same
objective (e.g., the same set of labels) (Baxter 1997; Bakker
and Heskes 2003; Yu, Tresp, and Schwaighofer 2005; Luo
et al. 2015). Real-world tasks are often heterogeneous (Jin
et al. 2014), meaning that each task potentially has a dif-
ferent objective and relies on complicated, often unobserved
interactions. Examples of tasks having different objectives
include classification, regression, recommendation, etc.

From the perspective of generative models, heteroge-
neous tasks often correspond to distinct generative pro-
cesses. This implies that traditional generative multi-task
learning methods (Baxter 1997; Bakker and Heskes 2003;
Yu, Tresp, and Schwaighofer 2005; Zhang, Ghahramani, and
Yang 2008), which often generalize a single class of gen-
erative model to multiple tasks, are not appropriate. Under
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these circumstances, a new mechanism is required to lever-
age relationships across the entities from different tasks. So
motivated, we propose a graph-driven generative model to
learn heterogeneous tasks in a unified framework.

Taking advantage of the graph structure that commonly
appears in many real-world data, the proposed model treats
feature views, entities and their relationships as nodes and
edges in a graph, and formulates learning heterogeneous
tasks as instantiating different sub-graphs from the global
data graph. Specifically, a sub-graph contains the feature
views and the entities related to a task and their interactions.
Both the feature views and the interactions can be reused
across all tasks while the representation of the entities are
specialized for the task. We combine a shared graph convo-
lutional network (GCN) (Kipf and Welling 2017) with mul-
tiple variational autoencoders (VAEs) (Kingma and Welling
2013). The GCN serves as a generator of latent representa-
tions for the sub-graphs, while the VAEs are specified to ad-
dress the different tasks. The model is then optimized jointly
over the objectives for all tasks to encourage the GCN to pro-
duce representations that can be used simultaneously by all
of them.

In health care, our motivating example, ICD (International
Statistical Classification of Diseases) codes for diseases and
procedures can be used as a source of information for mul-
tiple tasks, e.g., modeling clinical topics of admissions, rec-
ommending procedures according to diseases and predict-
ing admission types. These three tasks require the capture of
clinical relationships among ICD codes and admissions. A
given admission has an associated set of disease and proce-
dure codes (i.e., feature views). However, the admission has
to be organized with different views (i.e., specialized enti-
ties) for tasks with different objectives. For instance, topic
modeling is an unsupervised task needing procedures and
diseases, admission-type prediction is a supervised task also
using procedures and diseases, and procedure recommen-
dation is a supervised task that only uses disease codes. In
the context of our work, ICD codes and hospital admissions
constitute a graph as shown in Figure 1. The edges between
ICD codes and those between ICD codes and admissions are
quantified according to their coherency. The ICD codes are
embedded during training, which are used to specialize the
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Figure 1: Illustration of the proposed model for healthcare tasks. Each task operates on a different sub-graph from the admission
graph. The shared GCN (fφ) learns embeddings for ICD codes and admissions, and the embeddings pass through task-specific
VAEs.

embeddings of admissions for different tasks. At test time,
the GCN is used to represent sub-graphs, i.e., collections of
shared ICD codes, specialized admissions and their interac-
tions, that feed into different task-specific VAEs. We test our
model on the three tasks described above. Experimental re-
sults show that the jointly learned representation for the ad-
mission graph indeed improves the performance of all tasks
relative to the individual task model.

Proposed Model

To solve heterogeneous multi-task learning from a genera-
tive model perspective, a natural solution is to model mul-
tiple generative processes, one for each task. In particular,
given K tasks, each task k is associated with training data
(xk,yk), where yk represents the target variable, and xk
represents the variable associated with yk. We propose us-
ing K sets of VAEs (Kingma and Welling 2013) for mod-
eling {yk}Kk=1 in terms of latent variables {zk}Kk=1, where
each zk is inferred from xk using a task-specific inference
network. Note that here the term VAE is used loosely in the
sense that yk and xk need not to be the same. The generative
processes are defined as

yk ∼ pθk(yk|zk) , zk ∼ p(zk) , k = 1, . . . ,K. (1)

with corresponding inference networks specified as

zk ∼ qψk(zk|fφ(xk)) , k = 1, . . . ,K. (2)

For the k-th task, pθk(·) represents a generative model (i.e.,
a stochastic decoder) with parameters θk, and p(zk) is the
prior distribution for latent code zk. The corresponding in-
ference network for zk consists of two parts: (i) a determin-
istic encoder fφ(·) shared across all tasks to encode each
xk into x̂k = fφ(xk) independently; and (ii) an encoder
with parameters ψk to stochastically map x̂k into latent code
zk. The distribution qψk(zk|fφ(xk)) serves as an approxi-
mation to the unknown true posterior p(zk|yk). Note that
since {yk}Kk=1 are in general associated with heterogeneous
tasks, they may represent different types of information. For
example, they can be labels for classification and bag-of-
words for topic modeling. Motivated by the intuition that

real-world tasks are likely to be related with each other in
latent space, using a shared representation fφ(·) can be ben-
eficial as a means to consolidate information in a way that
allows tasks to leverage information from each other.

In likelihood-based learning, the goal for heterogeneous
multi-task learning is to maximize the empirical expec-
tation of the log-likelihood 1

K

∑K
k=1 log(p(yk)), with re-

spect to the data provided for each task. Since the marginal
likelihood p(yk) rarely has a closed-form expression, the
VAE seeks to maximize the following evidence lower bound
(ELBO):

L(θ1:K , ψ1:K , φ) =
∑

k

[
Eqψk (zk|fφ(xk))[log pθk(yk|zk)]

− KL(qψk(zk|fφ(xk)) ‖ p(zk))
]
. (3)

However, for heterogeneous tasks, features are often orga-
nized in different views and the interactions between ob-
served entities can as well be different. As a result, it is
challenging to find a common fφ(·) for the {xk}Kk=1 with
incompatible formats or even in incomparable data spaces.

Fortunately, such data can often be modeled as graph-
based, with graph nodes corresponding to the entities ap-
pearing in different tasks and edges capturing their com-
plex interactions. Accordingly, different tasks re-organize
the graph and leverage its information from shared but dif-
ferent views. Specifically, we represent a data graph as
G(V,X ,A), where V = {v1, v2, ...} is the set of nodes cor-
responding to the observed entities, A ∈ R

|V|×|V| is the ad-
jacency matrix of the graph, and X = ∪Kk=1Xk is a union of
(trainable) feature sets. For the k-th task, Xk = {xv,k}v∈Vk
is its feature set, where Vk ⊂ V contains the nodes related
to the task and xv,k is the feature of the node v in task k.
Based on Xk, the observations of the k-th task correspond
to a sub-graph from G, i.e., Gk = G(Vk,Xk,Ak), where
Ak = A(Vk,Vk) selects rows and columns from A. In such
a situation, instead of finding a unified inference network for
each individual observation in different tasks, for the sub-
graphs we define an inference network based on a graph
convolutional network (GCN) (Kipf and Welling 2017), i.e.,
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implementing fφ(·) in (3) as a GCN with parameters φ and
thus zk ∼ qψk(zk|GCNφ(Gk)), hence a large portion of the
parameters of the inference network are shared among tasks.

The independent generative processes with a shared
GCN-based inference network match with the nature of het-
erogeneous tasks. In particular, the sub-graphs in different
tasks are derived from the same data graph with partially
shared nodes and edges, enabling joint learning of latent
variables through the shared inference network. Then, the
inferred latent variables pass through different generative
models under the guidance of different tasks. In the next sec-
tion, we demonstrate that this model is suitable for challeng-
ing healthcare tasks.

Typical Specification for Healthcare Tasks

Observations, tasks, and proposed data graph

To demonstrate the feasibility of our model, we describe a
specification to solve tasks associated with hospital admis-
sions. Let Vd = {vd1 , vd2 , . . .} and Vp = {vp1 , vp2 , . . .} denote
the set of disease and procedure ICD codes, respectively,
i.e., each component vdi ∈ Vd represents a specific disease
and each vpi ∈ Vp represents a specific procedure. Sup-
pose we observe N hospital admissions, denoted as Va =
{va1 , va2 , . . . , vaN}. Each van ∈ Va is associated with ICD
codes and a label representing its type, i.e., {Vdn,Vpn, cn} for
n = 1, . . . , N , where Vdn ⊆ Vd, Vpn ⊆ Vp and cn ∈ C is an
element in the set of admission types C. Based on these ob-
servations, we consider three healthcare tasks: i) clinically-
interpretable topic modeling of admissions; ii) procedure
recommendation; and iii) admission-type prediction.

As illustrated in Figure 1, the observations can be repre-
sented as an admission graph G(V,X ,A), where the node
set V = Vd∪Vp∪Va and A ∈ R

|V|×|V| is the adjacency ma-
trix. The union of feature sets X = X d ∪ X p ∪ X a, where
X d = {xv}v∈Vd and X p = {xv}v∈Vp contain trainable
vector embeddings of ICD codes for diseases and proce-
dures, respectively. These embeddings are reused for differ-
ent tasks. X a = ∪Kk=1X a

k , where X a
k = {xkv}v∈Va contains

the embeddings of admissions for different tasks. Specifi-
cally, for each admission van, its embedding in the k-th task
is derived from the aggregation of the embeddings of ICD
codes, i.e., xkvan = MaxPooling({xv}v∈Vkn), where Vkn is
the set of the ICD codes associated with task k. For topic
modeling and admission-type prediction, Vkn = Vdn ∪ Vpn,
while for procedure recommendation, in which the proce-
dure codes are unavailable, Vkn = Vdn. Given admission
graph G, the three healthcare tasks correspond to different
sub-graphs G(Vk,Xk,Ak), which yield a typical heteroge-
neous scenario. Table 1 highlights their differences on target
variables and sub-graphs. Although the sub-graphs special-
ize the information of admission nodes, they reuse the rep-
resentations of ICD code nodes and the edges in G.

Construction of edges

Inspired by existing research (Matveeva 2006; Chen et al.
2012; Rekabsaz et al. 2017; Yao, Mao, and Luo 2019), we
enrich the representation power of our model with meaning-

ful population statistics, considering two types of edges in
our adjacency matrix.

Edges between ICD codes. ICD codes are correlated in
many admissions, e.g., diabetes and its comorbidities like
cardiovascular disease. Accordingly, edges between ICD
codes with high coherency should be weighted heavily.
Based on this principle, we apply point-wise mutual infor-
mation (PMI), which is a commonly-used similarity mea-
surement in various NLP tasks (Levy and Goldberg 2014;
Arora et al. 2016; Newman et al. 2010; Mimno et al. 2011;
Ogura and Kobayashi 2013), as the weight between each
pair of ICD codes. Formally, for each pair of ICD codes,
we evaluate the PMI as

PMI(i, j) = log pij − log(pipj), for i, j ∈ Vd ∪ Vp, (4)

where pij =
|{van|i,j∈Vdn∪Vpn}|

N and pi =
|{van|i∈Vdn∪Vpn}|

N .
Positive PMI values indicate that the ICD codes in the pair
are highly-correlated with each other. Conversely, negative
PMI values imply weak correlation. Therefore, we only con-
sider positive PMI values as the weights of edges.

Edges between ICD codes and admissions. Analogous
to the relationship between words and documents, we weight
the edge between ICD codes and admissions with the help of
the term frequency-inverse document frequency (TF-IDF)1.
The term frequency (TF) is the normalized version of the
number of times an ICD code appears in an admission,
and the inverse document frequency (IDF) is the log-scaled
inverse fraction of the number of admissions that contain
the ICD code. The TF-IDF is the element-wise multiplica-
tion of TF and IDF, which defines how important an ICD
code is in an admission (Onan, Korukoğlu, and Bulut 2016;
Shen et al. 2018).

Summarizing the above, elements aij in the adjacency
matrix A are represented as

aij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, i = j

PMI(i, j), i, j ∈ Vd ∪ Vp and PMI(i, j) > 0

TF-IDF(i, j), i ∈ Va, j ∈ Vd ∪ Vp

0, otherwise

. (5)

Graph-driven VAEs for different tasks

Focusing on the three tasks mentioned above, we specify our
model as graph-driven variational autoencoder (GD-VAE).
Specifically, GD-VAE consist of: i) a GCN-based inference
network that is shared by all the three tasks, and ii) three spe-
cialized generative networks that account for different sets
of observations corresponding to the three tasks.

Topic modeling of admissions In the context of topic
modeling, each ICD code can be considered as a word or
token, while each admission corresponds to a document, i.e.,
a collection of ICD codes. However, patient admissions ex-
hibit extreme-sparsity issues in the sense that a very small set
of codes are associated with each admission. Classic topic
models, such as latent Dirichlet allocation (LDA) (Blei,
Ng, and Jordan 2003) and the Neural Topic Model (Miao,
Grefenstette, and Blunsom 2017), can therefore be inappro-
priate in this case. To circumvent this, inspired by (Yan et al.

1https://en.wikipedia.org/wiki/Tf-idf
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Task Gk ykVk xkvan in Xk
Topic Modeling V MaxPooling({xv}v∈Vdn∪Vpn) Bi-term ICD codes

Procedure Recommendation Vd ∪ Va MaxPooling({xv}v∈Vdn) List of procedures
Admission-type Prediction V MaxPooling({xv}v∈Vdn∪Vpn) Admission type, c ∈ C

Table 1: Illustration of the differences between the three healthcare tasks.

2013), instead of modeling a bag-of-ICD-codes for a single
admission, we aim to model bi-term collections, and then
aggregate all the unordered ICD code pairs (bi-terms) from
several admissions together as one document. The genera-
tive process of our proposed Neural Bi-term Topic Model
(NBTM) is described as follows:
zT ∼ Dir(α), l ∼ Multi(1, zT ), yT ∼ Multi(2,βl) ,

(6)

where yT is the bi-term variable and its instance is {vi, vj},
where vi, vj are two ICD codes. zT is the topic distribu-
tion. α is the hyper-parameter of the Dirichlet prior, a vector
with length L, where L is the number of topics. β = {βl ∈
R

|Vd|+|Vp|}Ll=1 are trainable parameters, each representing
a learned topic, i.e., the distribution over ICD codes. The
marginal likelihood for the entire admission corpus yT can
be written as

p(yT ) =

∫
zT

p(zT )
∏

i,j

∑
l
p(vi, vj |βl)p(l|zT )dzT

=

∫
zT

p(zT )
∏

i,j
p(vi, vj |β, zT )dzT . (7)

The Dirichlet prior is known to be essential for generating
interpretable topics (Wallach, Mimno, and McCallum 2009).
However, it can rarely be applied to a VAE directly, since no
effective re-parameterization can be adopted for the Dirich-
let distribution. Fortunately, the Dirichlet distribution can be
approximated with a logistic normal and a softmax formu-
lation by the Laplace approximation (Hennig et al. 2012).
When the number of topics L is large, the Dirichlet distri-
bution can be approximated with a multivariate logistic nor-
mal (Srivastava and Sutton 2017) with the i-th element of its
mean μT and diagonal covariance matrix ΣT as follows:

μTi = logαi − 1

L

∑L

j=1
logαj ,

ΣTii =
1

αi
(1− 2

L
) +

1

L2

∑L

j=1

1

αj
. (8)

Under such an approximation, a topic distribution can be
readily inferred by applying re-parameterization, sampling
ε ∼ N (0, I) and inferring zT via zT = softmax(μT +

Σ
1/2
T ε).

Procedure recommendation In this task, for an admission,
we aim to predict the set of procedures yR for a set of dis-
eases. Inspired by (Liang et al. 2018), we consider the fol-
lowing generative process for modeling admission proce-
dures:
zR ∼ N (0, I), πR ∝ exp{g(zR)}, yR ∼ Multi(M,πR) ,

(9)

Small Median Large

|Vd| 247 874 2, 765
|Vp| 75 258 819
|Va| 28, 315 30, 535 31, 213

Table 2: Statistics of the MIMIC-III dataset.

where yR is |Vp|-dimensional variable and its instance is
a list of M recommended procedures. g(·) is a multi-layer
perceptron (MLP). The output of this function is normal-
ized to be a probability distribution over procedures, i.e.,
πR ∈ Δ|Vp|, where Δ denotes a simplex. Then we derive
procedures for the given admission by sampling M times
from a multinomial distribution with parameter πR.
Admission-type prediction Given an admission, the goal
is to predict the admission type given both its diseases and
procedures. We consider the following generative process
for modeling admission types:

zP ∼ N (0, I), πP ∝ exp{h(zP )}, yP ∼ Multi(1, πP ) ,
(10)

where yP is a variable and its instance corresponds to an ad-
mission type in the set C. h(·) is another MLP, whose output
is normalized to be a distribution over admission types, i.e.,
πP ∈ Δ|C|. Finally, the instance of yR (the type of the given
admission) is sampled once from a multinomial distribution
with parameter πP .
Inference with a shared GCN The proposed model unifies
three tasks via sharing a common GCN-based inference net-
work. Specifically, the posteriors of the three latent variables
are

zT ∼ LN (μT ,ΣT ), zR ∼ N (μR,ΣR), zP ∼ N (μP ,ΣP ),
(11)

where diag(σk) = Σ
1/2
k , diag(·) represents a diagonal

matrix, and [μk; logσk] = MLPψk(GCNφ(Gk)) for k ∈
{P,R, T}.

Let θT , θR, θP denote the parameters of the generative
networks for topic modeling, procedure recommendation
and admission-type prediction, respectively. All parameters
{θT , θR, θP , ψP , ψR, ψT , φ} are optimized jointly via max-
imizing (3).

Related Work

Multi-task learning Many multi-task learning methods
learn a shared latent representation (Thrun 1996; Caruana
1997; Baxter 1997), or impose structural constraints on the
shared features for different tasks (Ando and Zhang 2005;
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Method Small Median Large
T=10T=30 T=50 T=10T=30T=50 T=10T=30T=50

LDA (Blei, Ng, and Jordan 2003) 0.1100.106 0.098 0.1230.1020.107 0.1010.1060.103
AVITM (Srivastava and Sutton 2017)0.1320.125 0.121 0.1350.1100.107 0.1230.1160.108

BTM (Yan et al. 2013) 0.1170.109 0.105 0.1270.1080.105 0.1040.1100.107
GD-VAE (T) 0.1420.141 0.135 0.1400.1370.132 0.1280.1290.123

GD-VAE (TP) 0.1420.138 0.136 0.1430.1370.134 0.1290.1270.125
GD-VAE (TR) 0.1470.147 0.144 0.1460.1410.137 0.1360.1330.127

GD-VAE 0.1510.149 0.145 0.1480.1440.140 0.1360.1370.131

Standard deviation for GD-VAE and its variants is around 0.003.

Table 3: Results on topic coherence for different models.

Chen et al. 2009). The work in (He and Lawrence 2011)
proposed a graph-based framework leveraging information
across multiple tasks and multiple feature views. Follow-
ing this work, the methods in (Zhang and Huan 2012; Jin
et al. 2013) applied structural regularizers across different
feature views and tasks, and ensured the learned predictive
models are similar for different tasks. However, these meth-
ods require that multiple tasks directly share some label-
dependent information with each other, which is only ap-
plicable to homogeneous tasks. Focusing on heterogeneous
tasks, many discriminative methods have been proposed,
which map the original heterogeneous features to a shared
latent space, through linear or nonlinear functions (Zhang
and Yeung 2011; Jin et al. 2014; Liu et al. 2018b) or sparsity-
driven feature selection (Yang, Kim, and Xing 2009; Jin
et al. 2015), and solve heterogeneous tasks jointly in the
framework of discriminant analysis. Generative models have
achieved success in the past few years (Wang et al. 2017;
2018b; 2019). However, to our knowledge, the generative
solutions to heterogeneous multi-task learning have not been
fully investigated.

ICD code embedding and analysis of healthcare data
Machine learning techniques have shown potential in many
healthcare problems, e.g., ICD code assignment (Shi et al.
2017; Baumel et al. 2017; Mullenbach et al. 2018; Huang,
Osorio, and Sy 2018), admission prediction (Ma et al. 2017;
Liu et al. 2018a; Xu et al. 2017), mortality prediction (Haru-
tyunyan et al. 2017; Xu et al. 2018), procedure recommen-
dation (Mao, Yao, and Luo 2019), medical topic model-
ing (Choi et al. 2017; Suo et al. 2018), etc. Although these
tasks have different objectives, they often share the same
electronic health records data, e.g., admission records. To
learn multiple healthcare tasks jointly, various multi-task
learning methods have been proposed (Wang, Wang, and
Hu 2014; Alaa and van der Schaar 2017; Suo et al. 2017;
Harutyunyan et al. 2017; Mao, Yao, and Luo 2019). Tradi-
tional multi-task learning methods often impose structural
regularizers on the features shared by different tasks (Ar-
gyriou, Evgeniou, and Pontil 2007). The work in (Mao, Yao,
and Luo 2019) applied GCNs (Kipf and Welling 2017) to
extract features and jointly train models for medication rec-
ommendation and lab-test imputation, which constitutes an
attempt to apply GCNs to multi-task learning. However, in-
troducing GCNs into the framework of generative heteroge-
nous multi-task learning remains unexplored, that this paper
seeks to address.

Experiments

We test our method (GD-VAE) on the MIMIC-III
dataset (Johnson et al. 2016), which contains more than
58,000 hospital admissions with 14,567 disease ICD codes
and 3,882 procedures ICD codes. For each admission, it con-
sists of a set of disease and procedure ICD codes. Three sub-
sets of the MIMIC-III data are considered, with summary
statistics in Table 2. The subsets are generated by threshold-
ing the frequency of ICD codes, i.e., the ICD codes appear-
ing at least 500/100/50 times and the corresponding non-
empty admissions constitute the small/median/large subset.

To demonstrate the effectiveness of our method, we com-
pare GD-VAE with state-of-the-art approaches on each of
the healthcare tasks mentioned above. Specifically, (i) for
topic modeling, we compare with LDA (Blei, Ng, and
Jordan 2003), AVITM (Srivastava and Sutton 2017) and
BTM (Yan et al. 2013). (ii) For procedure recommen-
dation, we compare with Bayesian Personalized Ranking
(BPR) (Rendle et al. 2009), Distilled Wasserstein Learn-
ing (DWL) (Xu et al. 2018), and a VAE model de-
signed for collaborative filtering (VAE-CF) (Liang et al.
2018). We also compare with a baseline method based on
Word2Vec (Mikolov et al. 2013), which enumerates all pos-
sible disease-procedure pairs in each admission, and then
recommends procedures according to the similarity between
their embeddings and those of diseases. (iii) For admission-
type prediction, we consider the following baselines: TF-
IDF (combined with a linear classifier), Word2Vec (learn-
ing ICD code embeddings with Word2Vec (Mikolov et al.
2013), and using the mean of the learned embeddings to pre-
dict the label), FastText (Joulin et al. 2016), SWEM (Shen et
al. 2018) and LEAM (Wang et al. 2018a). We use “T”, “R”
and “P” to denote topic modeling, procedure recommenda-
tion and admission-type prediction, respectively. GD-VAE
learns the three tasks jointly. To further verify the benefits
of multi-task learning, we consider variations of our method
that only learn one or two tasks, e.g., GD-VAE (T) means
only learning a topic model, and GD-VAE (TR) indicates
the joint learning of topic modeling and procedure recom-
mendation.

Configurations of Our Method

We test various methods in 10 trials and record the mean
value and standard deviation of the experimental results. In
each trial, we split the data into train, validation and test sets
with a ratio of 0.6, 0.2 and 0.2, respectively. For the net-
work architecture, we fix the embedding space to be 200 for
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Dataset Method Top-1 (%) Top-3 (%) Top-5 (%) Top-10 (%)
R P F1 R P F1 R P F1 R P F1

Word2Vec (Mikolov et al. 2013)19.547.824.7 35.4 34.930.8 47.129.632.0 62.321.128.5
DWL (Xu et al. 2018) 19.748.225.0 35.9 35.231.3 47.530.332.4 63.020.928.7

BPR (Rendle et al. 2009) 23.557.629.8 44.8 43.538.7 56.835.738.8 73.124.833.6
Small VAE-CF (Liang et al. 2018) 24.057.830.7 46.0 43.539.3 57.835.239.1 74.024.233.8

GD-VAE (R) 24.858.231.1 46.5 43.439.5 58.135.339.2 74.524.434.0
GD-VAE (RP) 25.058.331.3 46.8 43.539.5 58.235.439.2 74.724.534.1
GD-VAE (RT) 25.458.331.6 47.0 43.639.7 58.535.939.4 75.224.834.3

GD-VAE 25.658.631.8 47.0 43.839.8 58.736.239.6 75.925.134.5

Word2Vec (Mikolov et al. 2013) 7.8 27.610.9 27.7 30.525.1 38.326.927.7 52.820.126.1
DWL (Xu et al. 2018) 8.0 27.511.1 27.9 30.825.2 39.527.027.9 53.920.927.4

BPR (Rendle et al. 2009) 10.235.814.9 38.6 40.234.3 49.333.334.9 65.223.831.4
Median VAE-CF (Liang et al. 2018) 21.252.926.2 41.2 42.036.0 53.435.337.3 68.224.932.9

GD-VAE (R) 22.055.127.9 42.3 41.237.2 54.035.737.8 69.325.233.1
GD-VAE (RP) 22.355.128.0 42.7 41.537.4 53.735.537.6 69.625.133.4
GD-VAE (RT) 22.857.829.3 43.0 43.538.1 54.235.938.1 70.125.233.6

GD-VAE 23.257.929.6 43.2 43.938.2 54.636.038.4 70.425.333.7

Word2Vec (Mikolov et al. 2013) 5.3 22.9 8.7 14.6 21.115.3 24.821.020.1 41.117.722.2
DWL (Xu et al. 2018) 5.6 23.0 9.0 14.9 21.315.6 24.821.420.5 42.018.223.0

BPR (Rendle et al. 2009) 7.3 26.710.2 23.0 27.121.2 38.427.627.9 56.621.728.0
Large VAE-CF (Liang et al. 2018) 17.850.123.5 35.2 37.933.4 47.932.434.6 63.021.730.2

GD-VAE (R) 20.153.425.8 37.2 40.135.5 49.132.535.2 64.623.731.0
GD-VAE (RP) 20.453.326.1 37.9 39.735.9 49.932.735.5 65.124.031.2
GD-VAE (RT) 20.956.227.2 41.0 42.236.5 50.935.136.6 66.024.732.5

GD-VAE 21.256.427.4 40.9 43.036.7 51.435.236.8 66.524.932.7

The standard deviation for GD-VAE and its variants is less than 0.2.

Table 4: Comparison of various methods on procedure recommendation.

Data Small Median Large
Method P R F1 P R F1 P R F1
TF-IDF 84.2687.1985.18 86.1288.6187.22 88.4589.1087.76

Word2Vec (Mikolov et al. 2013)85.0887.8986.23 86.6088.8787.71 87.1189.1688.12
FastText (Joulin et al. 2016) 84.2187.1585.29 86.6688.6587.39 88.0689.2388.00
SWEM (Shen et al. 2018) 85.5688.1086.77 87.0189.2888.12 87.5589.8888.67

LEAM (Wang et al. 2018a) 85.3488.0386.55 87.0389.2988.14 87.6189.9488.73
GD-VAE (P) 86.0188.1386.91 87.7689.3188.51 88.2390.4189.30

GD-VAE (TP) 86.1888.5287.22 87.8289.2188.52 88.3190.5689.41
GD-VAE (RP) 86.8789.3887.93 88.0889.5788.82 89.0790.9890.00

GD-VAE 87.0089.6088.01 88.1989.7088.94 89.1491.0190.05

The standard deviation for GD-VAE and its variants is around 0.05 on F1 score.

Table 5: Results on admission-type prediction.

(a) t-SNE visualization (b) Topic Modeling (c) Procedure Recommendation (d) Admission-type Prediction

Figure 2: (a) t-SNE visualization of zP . (b, c, d) Rationality analysis of graph construction.

ICD codes and admissions, and a two-layer GCN (Kipf and
Welling 2017) with residual connection is considered for the
inference network. Concerning the dimension of latent vari-
able, zT is identical to the number of topics for topic mod-
eling and 200 for the other two tasks, zR and zP . For the
generative network, a linear layer is employed for both topic
modeling and admission-type prediction. For the procedure
recommendation, a one-hidden-layer MLP with tanh as the
nonlinear activation function is used. Concerning the hyper-
parameters, we merge 10 randomly sampled admissions to
generate a topic admission for our NBTM, such that yT is

not too sparse, and 5,000 samples are generated so as to train
the model. Following (Srivastava and Sutton 2017), the prior
α is a vector with constant value 0.02.

Topic modeling

Topic coherence (Mimno et al. 2011) is used to evaluate the
performance of topic modeling methods. This metric is com-
puted based on the normalized point-wise mutual informa-
tion (NPMI), which has proven to match well with human
judgment (Lau, Newman, and Baldwin 2014). Table 3 com-
pares different methods on the mean of NPMI over the top
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Table 6: Full description of topic words.

ICD codesDescription

Topic 1

d8708 Other Specified open wounds of ocular adnexa
d85306 Other and unspecified intractranial hemorrhage following injury
dE8192 Closed reduction of mandibular fracture
p7817 Application of extrenal fixator device, tibia and fibula
p2751 Suture of Iaceration of lip

Topic 2

p3783 Initial insertion of dual-chamber device
p3764 Removal of external heart assist system or device
d7660 Exceptionally large baby
93514 Open heart valvuloplasty of tricuspid value without replacement
d41021 Acute myocardial infarction of inferolateral wall, initial episode of care

Topic 3

d8774 Retrograde pyelogram
d5503 Percutaneous nephrostomy without gragmentation
d6084 Other inflammatory disorders of male genital organs
p560 Transurethral removal of obstruction from ureter and renal pelvis
d1981 Secondary malignant neoplasm of other urinary organs

Topic 4

p3951 Clipping of aneurysm
d2242 Frontal sunusectomy
p109 Other cranial puncture
d78552 Other craniotomy
d51883 Other specified acquired deformity of head

Topic 5

d33520 Amyotrophic lateral sclerosis
d51902 Mechanical complication of tracheostomy
p3199 Other operations on trachea
d7708 Other tracheostomy complications
d8718 Chronic respiratory failure

Topic 6

d7783 Other hypothermia of newborn
p640 Circumcision
d76406 “light-for-dates” without mention of fetal malnutrition
d7731 Hemolytic disease of fetus or newborn due to ABO isoimmunization
p9983 Other phototherapy

Topic 7

d45620 Esophageal varices in diseases classified elsewhere, with bleeding
p9635 Gastric Gavage
d4560 Esophageal variaces with bleeding
d4233 Endoscopic excision or destruction of lession or tissue of esophagus
d53240 Chronic or unspecified duodenal ulcer with hemorrhage, without mention of obstruction

5/10/15/20 topic words. We find that LDA (Blei, Ng, and
Jordan 2003) performs worse than neural topic models (in-
cluding ours), which demonstrates the necessity of introduc-
ing powerful inference networks to infer the latent topics. In
terms of the GCN-based methods, GD-VAE and its variants
capture global statistics between ICD codes and those be-
tween ICD codes and admissions, thus outperforming the
three baselines by substantial margins.

Compared with only performing topic modeling, i.e., GD-
VAE (T), considering more tasks brings improvements, and
the proposed GD-VAE achieves the best performance. Con-
cerning leveraging knowledge across tasks, we find that the
improvements are largely contributed by procedure recom-
mendation, and marginally from admission prediction. This
is because procedure recommendation accounts for the con-
currence between disease codes and procedure codes within
an admission, while the topic model considers the concur-
rence between the codes from different admissions. Both
models capture the concurrence of ICD codes in different
views, thus, naturally enhancing each other.

To further verify the quality of the learned topics, we vi-
sualize the top-5 ICD codes for some learned topics in the
Supplementary Material. We find that the topic words are
clinically-correlated. For example, the ICD codes related to
surgery and those about urology are concentrated in two top-
ics. Additionally, each topic contains both disease codes and
procedure codes, e.g., “d85306” and “p7817” are orthopedic
surgery related disease and procedures, showing that disease
and procedures can be closely correlated, which also implies

the potential benefits brought to procedure recommendation.

Procedure recommendation

Similar to (Chen et al. 2018; Xu et al. 2018), we use top-
M precision, recall and F1-Score to evaluate the perfor-
mance of procedure recommendation. Given the n-th ad-
mission, we denote Wn and Yn as the top-M list of rec-
ommended procedures and ground-truth procedures, respec-
tively. The top-M precision, recall and F1-score are calcu-
lated as follows: P =

∑N
n=1 Pi =

∑N
n=1

|Wn∩Yn|
|Wn| , R =∑N

n=1Ri =
∑N
i=1

|Wn∩Yn|
|Yn| , F1 =

∑N
n=1

2PnRn
Pn+Rn

. Results
are provided in Table 4. GD-VAE (R) is comparable to pre-
vious state-of-the-art algorithms. With additional knowledge
learned from topic modeling and admission-type prediction,
the results can be further improved. Similar to the observa-
tion in the previous section, topic modeling contributes more
to procedure recommendation than admission-type predic-
tion, since both topic modeling and procedure recommen-
dation explore the underlying relationship between diseases
and procedures.

Admission-type prediction

Similar to procedure recommendation, we use precision, re-
call and F1-Score to evaluate the performance of admission-
type prediction. Results in Table 5 show that GD-VAE out-
performs its competitors. It is interesting to find that com-
pared with topic modeling, procedure recommendation is
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more helpful to boost the results of admission-type predic-
tion. One possible explanation is that the admission type is
more relevant to the set of procedures, hence the embedding
jointly learned with procedure recommendation can better
guide itself towards an accurate prediction, e.g., it is likely
to observe a surgery procedure in an urgent admission. Ad-
ditionally, to better understand the representation learned by
GD-VAE, we visualize the inferred latent code zP with t-
SNE (Maaten and Hinton 2008), as shown in Figure 2a. The
zP is visually representative of different admission types be-
ing clustered into different groups.

Rationality of graph construction

To explore the rationality of our graph construction, we also
compare the proposed admission graph with its variants. In
particular, the proposed admission graph considers the PMI
between ICD codes and the TF-IDF between ICD codes and
admissions (i.e., PMI + TF-IDF). Its variations include: (i)
a simple graph with binary edges between admissions and
ICD codes (Binary); (ii) a graph only considering the TF-
IDF between admissions and ICD codes (TF-IDF); and (iii)
a graph considering the PMI between ICD codes and the
binary edges between admissions and ICD codes (PMI +
Binary). Results using different graphs are provided in Fig-
ures 2b through 2d, which demonstrate that both PMI edges
and TF-IDF edges make significant contributions to the per-
formance of the proposed GD-VAE.

Conclusions

We have proposed a graph-driven variational autoencoder
(GD-VAE) to learn multiple heterogeneous tasks within a
unified framework. This is achieved by formulating entities
under different tasks as different types of nodes, and using
a shared GCN-based inference network to leverage knowl-
edge across all tasks. Our model is general in that it can
be easily extended to new tasks by specifying the corre-
sponding generative processes. Comprehensive experiments
on real-world healthcare data demonstrate that GD-VAE can
better leverage information across tasks, and achieve state-
of-the-art results on clinical topic modeling, procedure rec-
ommendation, and admission-type prediction.
Acknowledgement: This research was supported in part by
DARPA, DOE, NIH, ONR and NSF.

GCN-based Inference Network

Graph convolutional network (GCN) (Kipf and Welling
2017) has attracted much attention for leveraging informa-
tion representations for nodes and edges, and is promising to
tasks with complex relational information (Kipf and Welling
2017; Hamilton, Ying, and Leskovec 2017; Yao, Mao, and
Luo 2019).

Given a graph G(V,X ,A), a graph convolution layer de-
rives the node embeddings H ∈ R

N×d̃ via

H = ReLU(ÃXW ) ,

where d̃ is the dimension of feature space after GCN, Ã =

D− 1
2AD− 1

2 is the normalized version of adjacency matrix,

D is a diagonal degree matrix with Dii =
∑
j Ãij , and W

is a matrix of trainable graph convolution parameters. The
GCN aggregates node information in local neighborhoods to
extract local substructure information. In order to incorpo-
rate high-order neighborhoods, we can stack multiple graph
convolution layers as

H l+1 = ReLU(ÃH lW l) ,

where H0 = X , H l is the output of the l-th graph convolu-
tional layer. However, GCN can be interpreted as Laplacian
smoothing. Repeatedly applying Laplacian smoothing may
fuse the features over vertices and make them indistinguish-
able (Li, Han, and Wu 2018). Inspired by (He et al. 2016),
we alleviate this problem in our inference network by adding
shortcut connections between different layers.

Description of topic ICD codes

A full description of the top-5 topic ICD codes is shown in
Table 6.
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