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Abstract

Recently, the generative adversarial network is the hotspot in
research and industrial areas. Its application on data genera-
tion is the most common usage. In this paper, we propose the
novel end-to-end framework to extend its application to data
hiding area. The discriminative model simulates the detection
process, which can help us understand the sensitivity of the
cover image to semantic changes. The generative model is to
generate the target image which is aligned with the original
cover image. An attention model is introduced to generate
the attention mask. This mask can help to generate a better
target image without perturbation of the spotlight. The intro-
duction of cycle discriminative model and inconsistent loss
can help to enhance the quality of the generated target image
in the iterative training process. The training dataset is mixed
with intact images and attacked images. The mix training pro-
cess can further improve robustness. Through the qualitative,
quantitative experiments and analysis, this novel framework
shows compelling performance and advantages over the cur-
rent state-of-the-art methods in data hiding applications.

In the information era, a large amount of data is shared
through the Internet at every moment. The barrier of ac-
cessing data is much lower, which leads to more poten-
tial violations of data security, privacy, copyright, etc. Data
hiding technologies are widely used to solve the aforemen-
tioned problems in secret communication (Holub, Fridrich,
and Denemark 2014), digital watermarking (Yu 2016), cryp-
tography (El Hossaini et al. 2016), etc. While some attack
methods (Shi et al. 2017) pose the threat to data hiding tech-
nologies.

In Figure 1, can you easily differentiate between Van
Gogh’s paintings in (a) and (b)? Or Monet’s paintings in (e)
and (f)? Actually, the images in (a) and (e) are the original
version of drawing masters’ works. Images in (b) and (f) are
data hiding version generated by our method. The hidden
images are emblems of painters’ nations: Netherland and
France. The embedded info is kept imperceptible to ensure
there is no influence on the audience to appreciate paintings
from the fidelity aspect.

In this paper, we propose an Attention Based Data Hiding
framework with Generative Adversarial Networks (GAN),
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Figure 1: Illustration of data hiding performance on the
world-renowned art paintings. (a,e) Original version of The
Starry Night painted by Van Gogh and The Rose Arches by
Monet. (b,f) Data hiding version of The Starry Night and
The Rose Arches. (c,g) Emblem of Netherland and France as
the hidden images. (d,h) Residual difference between origi-
nal and data hiding versions. (We multiply the residuals with
constant value 10 to emphasize the difference.)

and use ABDH as the acronym to represent the method in
this paper. The ultimate goal of data hiding is making hid-
den data imperceptible to the detector. So adversarial rela-
tion always exists in data hiding applications. ABDH com-
bines the evaluation metrics of secure data hiding with the
advantages in the latest GAN principle, and integrates the
counterparts into a single framework. The attention mecha-
nism is introduced to further guide ABDH to find the incon-
spicuous areas of cover images, which is suitable for hiding
secret data. With the fine-tuning adversarial training process,
ABDH can iteratively learn to robustly hide data in cover
images or videos in an end-to-end manner.
The main contribution of our work includes:

e ABDH is general for data hiding applications. It can apply
to steganography and watermarking applications.

e ABDH simulates the hidden data detection process with



the discriminative model. It helps the generative model on
understanding the sensitivity of cover images.

e The introduction of attention mechanism helps the gen-
erative model to aware of spotlights and inconspicuous
areas of cover images.

e ABDH learns to resist various attacks (noise, crop, com-
pression, etc.) in an end-to-end manner.

Related Work
Data Hiding

Data hiding (Bansal et al. 2016) is referred as embedding ad-
ditional data in a cover medium such as image, video, audio,
and file. Data hiding technology is widely used in secret in-
formation transmission (Shi et al. 2017), watermarking (Yu
2016), copyright certification (Mun et al. 2017), forgery
detection (Wolfgang and Delp 1996) applications. Among
them, steganography and watermarking are two hotspots in
research and industrial areas. They are the focused applica-
tion areas of ABDH.

Steganography

Steganography literally means “covered writing” and is usu-
ally interpreted to hide information in other information.
Steganography methods can be categorized into three types.

Least Significant Bit Steganography The main strength
of this category is that algorithms are theoretically simple
and have low computational complexities. Secret informa-
tion is embedded into the cover image with the operations
like shifting or replacing of pixels. In typical Least Signif-
icant Bit (LSB) algorithm, pixel values of the cover image
and secret messages are represented by binary form. Stego
image generation process is implemented by replacing the
least significant bits of cover image with the most signifi-
cant bits of secret information. In (Das, Samaddar, and Ke-
serwani 2018), authors proposed to generate an LSB based
hash function for the image authentication process, which
can provide good imperceptibility between the original im-
age and stego image with hash bits.

Content Adaptive Steganography Algorithms in this
category design the hand-crafted distortion functions which
are used for selecting the embedding localization of the im-
age. Wavelet Obtained Weights (WOW) (Holub and Fridrich
2012) embeds information into the cover image according
to the textural complexity of regions. Highly Undetectable
Steganography (HUGO) (Pevny, Filler, and Bas 2010) de-
fines a distortion function domain by assigning costs to
pixels based on the effect of embedding some information
within a pixel. It uses a weighted norm function to represent
the feature space. S-UNIWARD (Holub, Fridrich, and Den-
emark 2014) proposes a universal distortion function that is
independent of the embedded domain. They are all devoted
to minimize distortion functions, to embed the secret into
the noisy area or complex textures, and to avoid the smooth
regions of the cover images.
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Deep Learning Based Steganography As deep learning
has a brilliant capability in image processing, researchers
also attempt to utilize it in steganography. Paper (Volkhon-
skiy et al. 2017) introduces a new model for generating more
steganalysis-secure cover images based on deep convolu-
tional GAN. Based on Wasserstein GAN (Arjovsky, Chin-
tala, and Bottou 2017), paper (Shi et al. 2017) proposes algo-
rithm which is efficient to generate cover images with higher
visual quality. Paper (Dong, Zhang, and Liu 2018) proposes
a steganography model that can conceal a gray secret image
into a color cover image with the same size, and generate
stego image which seems quite similar to cover image in se-
mantics and color. Paper (Zhu et al. 2018) introduces HiD-
DeN, which is an end-to-end trainable framework that works
for both steganography and watermarking applications.

Watermarking

Watermarking is defined as the process of embedding a mes-
sage, called “watermark” into images, videos, and audio
files. There are two main differences between steganogra-
phy and watermarking. Firstly, the information embedded
by watermarking is always associated with the digital ob-
ject to be protected, while steganography just hides any in-
formation that needs to be imperceptible. Secondly, “robust-
ness and safety” criteria are different. Steganography mainly
concerns the detection of the hidden message, while water-
marking concerns potential removal by a pirate.

For watermarking, robustness is a vital feature. It means
the ability of embedded watermark to resist common image
processing operations. According to robustness character,
watermarking techniques can be further divided into two cat-
egories: fragile and robust watermarking. The aim of fragile
watermarking is to identify and detect every possible tam-
pering in the watermarked digital objects. So the embedded
fragile watermark is very sensitive to the modification. On
the opposite, the robust watermark should survive against a
multiplicity of attacks such as cropping, scaling, filtering,
additive noise, and JPEG compression. Digital watermark-
ing methods can be categorized into three types.

Spatial Domain Watermarking In the spatial domain,
watermarking is done in the pixel domain, with advantages
such as low complexity, low cost, and low delay. Paper
(Banitalebi, Nader-Esfahani, and Avanaki 2018) proposes
a robust LSB watermarking method that utilizes structural
similarity in the embedding and extraction rules.

Spectral Domain Watermarking In the spectral domain,
watermarking is achieved by various transform domain tech-
nologies. Discrete Cosine Transform (DCT) is a favored
transform function. In theory, pixel bit values are firstly
transformed using DCT, then added to the cover image’s
DCT coefficients. Because the embedding process is in the
spectral domain, the watermark is more imperceptible in the
spatial domain. Paper (Parah et al. 2016) exploits the cor-
relation between DCT coefficients of adjacent blocks. The
inter-block coefficient difference is the key to decide the
amount of watermark embedded. Discrete Wavelet Trans-
form (DWT) is another promising method. In (Lu et al.
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Figure 2: Framework and workflow chart of ABDH.

2015), DWT is applied to decompose cover image and wa-
termark into the low-frequency and high-frequency sub-
band components. By embedding the watermark in the low-
frequency sub-band, the watermarked image can have better
imperceptibility and higher robustness.

Neural Network Based Watermarking Paper (Mun et al.
2017) introduces a blind watermarking based on the neu-
ral network that can detect a 1-bit message from an image
sub-block. The loop of the learning process consists of wa-
termark embedding, attack simulation, and weight update
stages. In (Ferdowsi and Saad 2017), a deep learning method
based on long short-term memory structure is proposed for
the dynamic watermarking. It enables the communication
device to extract stochastic features from its generated signal
and dynamically watermark these features into the signal.

Attention Based Data Hiding
Principle

For data hiding applications, the common aim is to embed
the secret message into the cover message. So we consider
essential evaluation metrics when designing ABDH'.

e The secret message should remain imperceptible until it
is extracted by specific authorized receiver.

e The target image should be robust and intact to resist tam-
pering and attacks.

For the first evaluation metric, if an eavesdropper wants
to check whether the image he obtained from public media

'In this paper, we use the cover message to represent the host of
hiding data. The secret message refers to the hidden data. The tar-
get message refers to the production that secret message is already
hidden into the cover message.

1122

contains a hidden secret message. So he needs to discrimi-
nate the original cover image and received target image. If
these two images are perceptibly same, then the eavesdrop-
per can hardly differentiate the target image from the cover
image. Then the threat of finding the secret message is lower.
For the purpose of data hiding, we can accumulate the visual
and statistic differences between cover and target images. If
the difference for each evaluation metric is small enough, we
can regard the target image as a high-quality production.

For the second evaluation metric, if the eavesdropper
wants to destroy secret communication. So he makes in-
tentional changes to the target image, like rotate, clip, add
noises and make compression. Because he assumes that even
the image he obtained contains a secret message, these in-
tentional changes will make the secret message extraction
method disabled. If the data hiding method is robust and se-
cure, the intentional changes are in vain.

GAN (Goodfellow et al. 2014) consists of the generative
model and the discriminative model. The purpose of the gen-
erative model is to generate new samples that are very sim-
ilar to the real samples and attempts to confuse the discrim-
inator. While the purpose of the discriminative model is to
classify samples synthesized by the generative model and
the real ones. The discriminative model will also estimate
the probability that a specific sample comes from the gener-
ative model rather than the real ones. When the whole GAN
model achieves Nash Equilibrium, i.e., the generative model
can generate the samples which exactly align with the char-
acter and distribution of real samples. And at the same time,
the discriminative model returns the classification probabil-
ity 0.5 for each pair of generated and real samples. Then this
GAN model is well-trained and converged.

ABDH method combines the purpose of data hiding with
the GAN principle. It consists of a target generative and a



hidden data discriminative model. The purpose of the tar-
get generative model is to generate the target image which
is very similar to the cover image and attempts to confuse
the discriminative model. While the purpose of the discrim-
inative model is to distinguish the generated target image
from the cover image. When ABDH achieves Nash Equilib-
rium, i.e., the generative model can keep the secret message
imperceptible in the target image. And at the same time, the
hidden data discriminative model cannot detect the existence
of a secret message for each pair of target and cover images.
This also aligns with the imperceptible and robust evaluation
criterions of data hiding. In conclusion, designing a data hid-
ing algorithm is equal to make the ABDH model converged.

Algorithm

In ABDH, there are two generative models and two dis-
criminative models. For a general data hiding framework,
it should contain secret message embedding and extraction
processes. So it needs to learn the bijective mapping rela-
tionship between two image collections. For ABDH, one im-
age collection contains the original cover images, the other
collection contains the secret images for hiding. Framework
of ABDH is shown in Figure. 2.

In the left part of Figure 2, the original Cover Image
(CI) goes through the attention model G 4, to produce the
Attention Mask (AM). The attention model used in ABDH
is the feature extraction backbone of ResNet50? (He et
al. 2016). The intuition comes from recent deep network
visualization research (Simonyan, Vedaldi, and Zisserman
2013) (Zhou et al. 2016). These works find the activation
map can build a generic localizable representation that ex-
poses the implicit attention of deep neural networks on im-
ages. This is the imitation of the human attention mecha-
nism. Because the data hiding task is trying to “confuse” the
visual effect between the cover image and target image, so
we introduce this attention mask to help ABDH to learn this
feature explicitly. The attention mask generation process can
be expressed as follows.

AM = GA(CI) (1)

Each value of AM represents the “attention sensitiveness”
of each pixel in CI. The value is regularized to the range
from O to 1. If the value is closer to 1, it means the change
of the corresponding pixel will lead to obvious differences,
and easily cause the attention of visual detection. After AM
is generated, the original CI, AM and original Secret Image
(SI) go through the target image generative model Gy, to
produce the Target Image (77). This is the secret embedding
and target image generation process, which can be expressed
as follows.

TI=Gr(CI,SI,AM) 2)

In the right part of Figure 2, the target image 7/ goes
through the secret image generative model Gy, to get the
Extracted Secret Image (ESI). This is the secret image ex-
traction process, which can be expressed as follows.

ESI =Gg(TI) 3)

?ResNet50 structure and pre-trained model are from the repos-
itory: https://github.com/pytorch/vision.
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The cover image discriminative model D¢ ensures that
the distribution of CI is indistinguishable from that of 77
using an adversarial loss. This is the guarantee of the imper-
ceptible evaluation criterion in data hiding.

To refine the secret extraction process, we introduce the
secret image cycle discriminative model Dg;. Because the
generative model is learned to transform from a source im-
age domain to a target image domain. Take Gg; as an
example, the learned mapping relation is highly under-
constrained, and cannot ensure the extracted secret im-
age ESI is indistinguishable from the original secret image
SI (Zhu et al. 2017). So we couple this mapping relation with
its inverse mapping Gy, and introduce a cycle adversarial
loss:

DSI(SI, ESI) —0 “4)

That is equal to

ESI = GS[(TI) = GSI(GT[(CI, SI,AM)) ~SI (5

It ensures the distribution of ESI is indistinguishable from
that of S/ using cycle adversarial loss Dg;. This is the guar-
antee of the secure and robust extraction criterion in data
hiding.

To guarantee the uniqueness property, we introduce the
extra inconsistent loss. This loss ensures the secret image
can only be extracted from the target image 77. If we apply
the secret image extraction process to the original cover im-
age CI, the Generated fake Secret Image (GSI) should be
totally different from the original secret image SI. The in-
consistent loss can be expressed as follows:

max(GSI, ESI) = max |Gsr(CI) — Gsr(TI)] (6)
Gsr Gsr

The detailed algorithm workflow of ABDH is summa-
rized as Algorithm 1.

Loss Function

The overall loss function of ABDH consists of three parts:
the adversarial loss Lgan(Grr, Dcr), the cycle adversarial
loss Laan(Gsy, Dsr) and the inconsistent loss Ly¢. So the
loss function is written as follows:

Loverali = Laan(Gri,Dcr) + Laan(Gsr,Dsy)

7
FALic[Gsi(C). G (1r)], "

where A is the parameter to adjust the percentages between
adversarial loss and inconsistent loss. The inconsistent loss
needs to change to the minimization format as follows.

. 1
min
Gs; |Gsr(CI) — G (TI)]

®)

In the ABDH framework, the quality of the generated tar-
get image 77 and the extracted secret image ESI are judged
by the difference from the original cover image CI and orig-
inal secret image SI, respectively. In this paper, two quan-
titative image effect indicators are applied to measure the
differences (Yu 2016). Peak Signal to Noise Ratio (PSNR)
indicator is applied to assess the effect difference in the gray-
level fidelity aspect. Structural Similarity (SSIM) (Wang et



Table 1: Evaluation metrics of generated target images 77.

Metrics/Images | Lena | Airplane | Baboon | Fruits | Peppers
PSNR 33.0170 | 33.0065 | 29.1163 | 33.9085 | 30.5124
SSIM 0.9390 0.9589 0.9335 0.9510 | 0.9034

Table 2: Evaluation metrics of extracted secret images ESI.

Metrics/Images | from Lena | from Airplane | from Baboon | from Fruits | from Peppers

30.9730

PSNR
0.9563

30.6247
SSIM

0.9530

30.4095

31.1053
0.9508

30.2076
0.9573

0.9488

Algorithm 1 ABDH Algorithm

Input: Training set of cover images and secret images
Parameter: Loss adjustment A\, Overall loss threshold §
Output: Target image generative model Gy, Secret image
generative model Gg;
1: Initialize generative and discriminative models with ran-
dom value.
Initialize attention model with pre-trained ResNet-50.
while Lo yerqn > 6 do
if Target image generation sub-process then
- Attention mask generation: AM = G 4(CI)
- Secret embedding: TI = G (CI, SI, AM)
- Minimize difference between CI and 77, e.g., Ad-
versarial loss: L an (G, Do)
8: endif
9: if Secret extraction sub-process then

AR AN S

10: - Extract from TI: ESI = Gg(TI)

11: - Minimize difference between SI and ESI, e.g.,
Cycle adversarial loss: Lgan(Gsr, Dsr)

12: - Extract from CI: GSI = Gg;(CI)

13: - Maximize difference between ESI and GSI, e.g.,
Inconsistent loss: Ly~ (ESI, GSI)

14:  endif

15: - Minimize: Loverant = Lgan (GTLDCI) +

Lean(Gs1,Dsr) + ALrc(ESI, GSI)
16: - Update G, Gsr, Doy, Dsy
17: - Learning rate decay

18: end while
19: return Converged generators: Grr, Gsr

al. 2004) indicator which is an image quality assessment in-

dicator based on the human vision system is applied to as-

sess the effect difference in the structure-level fidelity as-

pect. The definitions of these two evaluation indicators are
(MAX;)?

as follows.
PSNR =101 —_— 9
(x,y) 0810 (MSE(x,y)) ’ ( )
where MAX; is the maximum possible pixel value of images
x andy. MSE(x,y) represents the Mean Squared Error (MSE)
between images x and y.
(2415t + C1) (203 + C)

SSIM (x,y) =
=212+ ) (B +o?+C)

(10

1124

where fi, and p, represent the average grey values of im-
ages. Symbol o, and o, represent the variances of images.
Symbol oy, represents covariance between images. C; and
C» are two constants which are used to prevent unstable re-
sults when either p2 + ,uy2 or o2 + ay2 is very close to 0.

Network Structure

The network structure of target image generative model Gy
includes a convolution layer (kernel size = 7, stride = 0, pad
=0), two convolution layers (k =3, s =2, p = 1), nine resid-
ual blocks (He et al. 2016), and two deconvolution layers (k
=3,8=2,p=1, outside pad = 1), and a convolution layer (k
=7,s =0, p=0). Each convolution and deconvolution layer
follows with an instance normalization layer and a ReLU
layer. The structure of secret image generative model Ggy is
identical with Gr;.

The network structure of cover image discriminative
model D¢y is similar with PatchGAN model (Isola et al.
2017). Each time, it operates an image patch with 70x70
size, and classifies whether this patch is real or fake. The
model will run across the whole image, and average all re-
sults in the 70x70 overlapping patches to provide the en-
semble output. The architecture of such a patch-level dis-
criminative model requires fewer parameters and runs faster
than a full-image discriminator (Yi et al. 2017). Moreover,
it has no constraints over the size of the input image. Doy
contains a convolution layer (k = 4, s = 2, p = 1) follows
with a leaky ReLU layer, three convolution layers (k = 4, s
=2, p = 1) follows with an instance normalization layer and
a leaky ReLU layer, a convolution layer (k =4,s=1,p =
1) follows with an instance normalization layer and a leaky
ReLU layer, a convolution layer (k =4, s =1, p=1) follows
with a sigmoid layer to output a scalar output between [0,
1]. The structure of secret image cycle discriminative model
Dg is identical with D¢ .

Moreover, to improve the convergence performance, we
use Adam optimizer (Kinga and Adam 2015) instead of
stochastic gradient descent (SGD) optimizer. It is compu-
tationally efficient and has little memory requirements. The
hyper-parameters of Adam optimizer are: 31=0.5, £2=0.999.
The base learning rate is 0.0002.



Table 3: PSNR metric for extracted secret images.

Images/Algorithms | LSB-TLH | WOW | HUGO | S-UNIWARD | DCT-ICD | DWT-DCT | ISGAN | SSGAN | HiDDeN | DS | ABDH
Gaussian noise 24.8580 | 24.7123 | 27.1831 26.5263 26.3086 26.0104 22.4100 | 23.6919 | 25.8199 | 25.7353 | 33.2285
Possion noise 27.1579 | 27.1803 | 27.1612 27.1810 27.0854 27.0754 27.1757 | 27.1746 | 27.1701 | 25.8348 | 27.1987
Salt and Pepper noise | 19.2052 | 21.2156 | 24.6026 21.3960 24.2090 24.1357 19.8900 | 20.5929 | 21.6048 | 25.5675 | 33.4822
Salt noise 31.5330 | 32.0738 | 35.3124 34.3301 34.2935 34.3127 31.0912 | 31.9889 | 33.3123 | 26.6439 | 45.0600
Pepper noise 17.0777 | 17.3501 | 18.1149 19.2487 21.1004 21.1223 16.1582 | 17.2083 | 17.9478 | 24.5692 | 29.3407
Speckle noise 23.5170 | 24.6379 | 25.5571 27.6822 27.2157 29.7533 21.9666 | 22.4623 | 25.3485 | 28.0589 | 46.4994
JPEG Compression 30.3018 | 32.1750 | 32.4679 31.3277 31.3444 32.4001 30.9556 | 31.2820 | 31.5681 | 31.4456 | 32.9739
Low-pass filter 27.9778 | 33.8242 | 32.7279 30.5234 329714 32.5547 28.8135 | 29.6587 | 31.2633 | 30.4309 | 37.5805
High-pass filter 19.7074 | 20.2493 | 22.0935 20.4663 20.0646 20.0865 19.6455 | 19.7446 | 20.6291 | 20.4875 | 22.8699
Median filter 21.9184 | 22.5196 | 25.4038 23.6964 25.6347 25.5186 21.0874 | 22.0219 | 23.3846 | 23.0524 | 28.5659
Random crop 10% 28.0956 | 28.1163 | 28.1097 28.1035 28.6845 28.5479 28.0996 | 28.1182 | 28.1063 | 28.1078 | 28.1181
Random crop 20% 20.6125 | 22.3013 | 22.3739 22.1683 22.5010 22.3764 20.2038 | 21.0407 | 21.8640 | 21.4467 | 23.3684
Random shift 10% 26.6862 | 30.4574 | 31.0763 29.7196 30.9949 30.6371 27.9319 | 28.8819 | 29.4849 | 29.4024 | 31.6285
Random shift 20% 21.8021 | 22.4331 | 22.5555 24.2972 23.2096 23.1073 21.7754 | 21.8409 | 22.7720 | 22.6172 | 25.0980

Experimental Results

To train ABDH, we apply the COCO dataset (Lin et al.
2014). We randomly divide COCO with the 8:2 ratio to
generate the separate training and validation datasets. In
the training dataset, we randomly choose 50% as cover im-
ages, and 50% as secret images. We crop original images to
512 x 512. For the original images with a smaller size, we
resize them to 550 x 550, then crop to 512 x 512. To improve
the robustness against attacks, we also generate an attacked
training dataset with the same number of the original train-
ing dataset. From the original training dataset, we randomly
select 10% samples each to add multiplicative noise, salt and
pepper noise, gaussian white noise, Poisson noise, low-pass
filter, high-pass filter, median filter, random crop, random
shift, and 10% to do JPEG compression. We add the JPEG
compression to simulate the coding and decoding processes
in the real secure information transmission system. We need
to ensure ABDH can work well against coding and decoding
algorithms. Parameters of each noise (like mean and vari-
ance of random distribution, JPEG compression quality, etc.)
are randomly generated for each image. The testing dataset
is generated by combining Set5 (Bevilacqua et al. 2012) and
Setl4 (Zeyde, Elad, and Protter 2010) datasets. We use Py-
Torch as the framework and train ABDH with 150 epochs.
The loss adjustment parameter ) is set as 0.6.
In experiments, we want to investigate these issues:

ABDH performance experiments.

Quantitative comparison with state-of-the-art methods.

Ablation experiments.

e Influence of embedding secret info amount.

Data Hiding Performance Experiments

We adopt the benchmark images from Set5 and Setl4
datasets as the cover images CI shown in Row 1 of Fig-
ure 3 to test the data hiding performance of ABDH, include
the target image generation and secret extraction processes.
The embedded secret image is a poster image. We choose
this image because it is never seen in training and valida-
tion datasets, and it has enough complexity with characters
in it. The generated attention masks are shown in Row 2
of Figure 3. We use different colors to represent different
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attention-sensitive degrees. The color which is more sim-
ilar to red represents more attention-sensitive areas, while
color which is more similar to blue represents less attention-
sensitive areas.

PSNR and SSIM metrics for generated target images 77
versus cover images CI are shown in Table 1. (77 and CI are
used as image x and y for metrics calculation) The results
shown in Figure 3 and Table 1 can prove the high quality and
difference imperceptibility of 77 in qualitative and quantita-
tive aspects.

Let’s have a further analysis of the obtained results. If we
magnify Figure 3 to see the residual differences, we can find
they are mainly on the marginal and textural parts of ob-
jects. For example, the hat of Lena, the edges of F16 plane,
the skin and whiskers of baboon, the profile of fruits and
peppers, etc. It means ABDH tends to hide the secret info
into marginal parts of the object in original cover images. In
information theory, textures and edges represent the high-
frequency parts of the image, while smooth regions rep-
resent the low-frequency parts of the image. If we change
the low-frequency parts, it is easy to be detected. So many
state-of-the-art algorithms transform the cover image from
spatial domain to frequency domain. Change the tiny part
in high-frequency parts, and transform it back to the spa-
tial domain. Moreover, when we discuss the state-of-the-art
content adaptive steganography and spectral domain water-
marking algorithms, we find the ultimate goal is trying to
embed the secret image into the parts with complex edges
and textures, and avoiding the smooth regions of the cover
images. The behavior of ABDH is very similar to the state-
of-the-art steganography and watermarking algorithms. But
the state-of-the-art algorithms need to design a hand-crafted
distortion function to achieve the goal, while ABDH learns
from the discriminative network which simulates the behav-
iors of the detector. From the learning process, the genera-
tive network in ABDH finds detector are very sensitive to
the low-frequency parts, and not so sensitive to the high-
frequency parts. So the target images generated by ABDH
mainly hide their secret info into marginal and textural parts
to ensure the best imperceptibility.

PSNR and SSIM metrics for extracted ESI versus original
secret images SI are shown in Table 2. (ESI and ST are used
as image x and y for metrics calculation) The results shown



Figure 3: Data hiding performance of ABDH. Row 1: Orig-
inal cover images from Set-5/14 datasets. Row 2: Generated
attention mask. Row 3: Generated target images. Row 4:
Residual difference between cover and target images. Row
5: Extracted secret images. Row 6: Residual difference be-
tween original and extracted secret images. (Because the
differences are inconspicuous, so we multiply the residuals
with constant value 10 to emphasize in Row 4 and 6.)

in Figure 3 and Table. 2 can prove the high secret recovery
quality of ESI in qualitative and quantitative aspects.

Quantitative Comparative Experiments

In this experiment, we evaluate the robustness when re-
covering the secret image from the target image. For LSB
steganography and spatial domain watermarking, we choose
LSB-TLH (Das, Samaddar, and Keserwani 2018). For con-
tent adaptive steganography, we choose WOW (Holub and

Figure 4: Contribution of key features. Column 1: Origi-
nal cover image. Column 2: Target image generated by full
ABDH. Column 3-5: Target image generated by ABDH
without cycle discriminative model, without inconsistent
loss, and without attention model.
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Figure 5: PSNR and SSIM metrics for T1 versus CI with dif-
ferent pixel-ratio and attacks.

Fridrich 2012), HUGO (Pevny, Filler, and Bas 2010) and
S-UNIWARD (Holub, Fridrich, and Denemark 2014). For
spectral domain watermarking methods, we choose DCT-
ICD (Parah et al. 2016) and DWT-DCT (Lu et al. 2015). For
deep learning based steganography and watermarking, we
choose ISGAN (Dong, Zhang, and Liu 2018), SSGAN (Shi
etal. 2017), HiDDeN (Zhu et al. 2018) and DS (Baluja 2017)
for comparation. Benchmark images in Set-5 are used as the
secret images. Benchmark images in Set-14 are used as orig-
inal cover images. PSNR and SSIM metrics for recovered se-
cret images are shown in Table 3 ~ 4. They are the average
values in the Set-5/14 datasets. According to these metrics,
the performance and robustness of ABDH outperforms all
other state-of-the-art watermarking and steganography algo-
rithms in quantitative aspect.

To have a further analysis of the obtained results, we can
find the performance of deep learning based methods is not
as good as expected. For SSGAN, it is focused on generating
the new cover images which are steganalysis-secure. But in
our experiments, the cover images are fixed. For HiDDeN,
bits per pixel that can be hidden is very low, so it is not suit-
able for whole image embedding. For ISGAN, its inherent
limitation is extracted secret image will be lossy when the
target image is attacked by noise. For DS, it does not con-
sider noise attack when training the steganalysis network.
So the performance of deep learning steganography meth-
ods is just at the same level of LSB steganography methods
and is worse than content adaptive steganography methods.

Ablation Experiments

In this experiment, we want to check the contribution of each
component in ABDH to the final data hiding effect. Then
we can have a deep insight into why ABDH can outper-
form state-of-the-art methods. We include three key features
which have the potential big contribution.

e The introduction of cycle discriminative model.
e The introduction of extra inconsistent loss.
e The introduction of attention model.

In the experiments, three extra ABDH models are trained
on COCO training dataset. Each model lacks one of afore-
mentioned feature. We adopt the benchmark images from
Set5 and Setl4 datasets as the secret images and cover im-
ages. We calculate the PSNR and SSIM metrics for generated
target images 71 versus cover images CI, which are shown
in Table 5. To illustrate the influences of these three features



Table 4: SSIM metric for extracted secret images.

Images/Algorithms | LSB-TLH | WOW | HUGO | S-UNIWARD | DCT-ICD | DWT-DCT | ISGAN | SSGAN | HiDDeN | DS | ABDH
Gaussian noise 0.6662 0.6579 | 0.7674 0.7403 0.7542 0.8143 0.5403 | 0.6079 0.7080 | 0.7219 | 0.9278
Possion noise 0.7620 0.7631 | 0.7626 0.7628 0.7619 0.7623 0.7626 | 0.7628 0.7626 | 0.7628 | 0.7637
Salt and Pepper noise 0.6349 0.7492 | 0.8744 0.7563 0.8221 0.8422 0.6774 | 0.7168 0.7537 | 0.7933 | 0.9839
Salt noise 0.9944 0.9950 | 0.9974 0.9968 0.9923 0.9985 0.9939 | 0.9949 0.9959 | 0.9964 | 0.9997
Pepper noise 0.4860 0.5048 | 0.5608 0.6364 0.8441 0.8898 0.4175 | 0.4936 0.5470 | 0.5673 | 0.9554
Speckle noise 0.5847 0.6324 | 0.6828 0.7646 0.7351 0.7521 0.4978 | 0.5310 0.6661 0.6933 | 0.9976
JPEG Compression 0.9876 0.9910 | 0.9909 0.9899 0.9887 0.9873 0.9898 | 0.9898 0.9898 | 0.9876 | 0.9914
Low-pass filter 0.8955 0.9635 | 0.9542 0.9304 0.9623 0.9845 0.9062 | 0.9206 0.9300 | 0.9386 | 0.9836
High-pass filter 0.7147 0.7384 | 0.8096 0.7476 0.7314 0.7323 0.7127 | 0.7156 0.7446 | 0.7521 | 0.8352
Median filter 0.6548 0.6802 | 0.7885 0.7271 0.8298 0.8422 0.6182 | 0.6589 0.6938 | 0.7035 | 0.8772
Random crop 10% 0.8876 0.8878 | 0.8878 0.8877 0.8908 0.8885 0.8874 | 0.8880 0.8876 | 0.8877 | 0.8880
Random crop 20% 0.7338 0.8224 | 0.8220 0.8110 0.7975 0.7898 0.7190 | 0.7584 0.7817 | 0.7936 | 0.8464
Random shift 10% 0.8909 0.9425 | 0.9487 0.9343 0.9302 0.9430 0.9304 | 0.9245 0.9294 | 0.9390 | 0.9538
Random shift 20% 0.8119 0.8295 | 0.8333 0.8780 0.8245 0.8536 0.8100 | 0.8124 0.8325 0.8377 | 0.8941
Table 5: The contribution of key features.

Models Full ABDH ABDH Without Feature 1 ABDH Without Feature 2 ABDH Without Feature 3
Datasets/Metrics PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
Set5 33.504676 | 0.964591 | 28.143444 0.811824 29.188589 0.838838 30.713594 0.868025
Set14 30.429662 | 0.948723 | 24.883460 0.671623 26.160978 0.704831 27.515278 0.749520

on the final generated target images, we use Baboon bench-
mark image from Setl4 in Figure 4. The results shown in
Table. 5 and Figure 4 show us how these three key features
influence the quality and imperceptibility of the target image
in qualitative and quantitative aspects.

Influence of Secret Embedding Amount

To further illustrate the effect of secret info embedding
amount on the robustness and imperceptibility of the tar-
get image, we make the curve plots to show the quantitative
results in Figure 5. We use the pixel-ratio to represent the
amount of embedding secret info. It is defined as the ratio of
pixels amount in secret image versus those in cover image.
We can control the pixel-ratio by changing the size of the
secret image. For example, if the size of the original cover
image is 512x512, the size of the secret image is 256 X256,
then pixel-ratio is 0.25. In this experiment, we make the
statistics in attacked dataset generated from COCO.

From the curve plots shown above, we can see PSNR and
SSIM metrics decline with the increase of pixel-ratio. Under
the noise attack or image compression, metrics are worse
than the situations without attack, and also decline with the
increase of pixel-ratio. It further proves the inherent con-
tradiction between the embedded secret amount and robust-
ness of the target image. So in the real applications, ABDH
should make the trade-off between embedding amount, im-
perceptibility and attack robustness. This curve can tell the
user the largest embedded secret capacity at certain imper-
ceptibility and security level. So it is helpful for the user to
choose the most suitable size of a secret image in real se-
cure information transmission systems. For example, if the
user wants to generate a target image with no less than 25dB
PSNR and 0.97 SSIM versus cover image. Considering the
noise attacks and image compression possibility, the largest
embedded secret pixel-ratio should be less than 0.5.
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Conclusion and Future Works
The good performance of ABDH derives from these factors.

e Discriminative network simulates detector, which helps to
understand the sensitivity to semantic changes.

e Cycle discriminative model and inconsistent loss enhance
the quality of generated target images.

e Mixed training dataset with noisy samples improves the
robustness of ABDH. How to resist the tampering can be
learned from attacked training samples.

e The introduction of the attention model further guides
ABDH to find the inconspicuous areas of cover images,
which is suitable for hiding secret info.

We have some initial results to prove that the introduction
of attention mechanism helps the ABDH to find the rela-
tively consistent and inconspicuous areas in videos. We will
study the effectiveness of ABDH when hiding secret data to
videos.
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