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Abstract

We propose an abstraction method for open-world environ-
ments expressed as Factored Markov Decision Processes
(FMDPs) with very large state and action spaces. Our method
prunes state and action variables that are irrelevant to the op-
timal value function on the state subspace the agent would
visit when following any optimal policy from the initial state.
This method thus enables tractable fast planning within large
open-world FMDPs.

Introduction

In large, open-world scenarios, intelligent agents will be
faced with environments described by a prohibitively large
number of state and action variables. However, most of these
variables will be irrelevant to any specific goal. A general-
purpose agent that must solve many different tasks in such
open worlds cannot rely on hand-curated compact models,
but is also unlikely to be able to plan in the presence of large
numbers of irrelevant variables. It must therefore discern the
relevant aspects of the environment on its own.

Factored Markov Decision Processes (FMDPs) offer
a structured formalism to model such large sequential
decision-making problems. Existing algorithms have at-
tempted to exploit this structure in the transition and reward
functions of FMDPs to perform abstraction (Boutilier, Dear-
den, and Goldszmidt 1995) and thus avoid the combinatorial
explosion from planning in large FMDPs. However, even
these methods often fail at open-world scale.

We propose a novel abstraction algorithm called task
scoping for FMDPs augmented with a start condition. Task
scoping abstracts away any state variables that either 1) can-
not affect any state variables mentioned in the reward func-
tion or 2) guaranteed to have the “correct” value throughout
the agent’s trajectory, and so can be ignored.

Our algorithm then returns a ‘scoped” FMDP with state
and action spaces that only contain variables and actions rel-
evant to the current task. The state space size is at most the
same as the original, but in most cases is much smaller. Any
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Figure 1: Our pipeline for a variant of Dietterich (2000)’s
Taxi Domain augmented with irrelevant passengers. The
original FMDP undergoes Task Scoping (TS) to remove all
irrelevant passengers (not in the blue square). A planner per-
forms Planning (P) to compute a policy in the scoped FMDP.
Finally the policy is Transferred (T) to the original FMDP.

FMDP planner can be used to compute a policy in this ab-
stract FMDP, and this policy can then be directly transferred
to the original FMDP.

Methodology

Task scoping (TS in Figure 1, pseudo-code in Algo-
rithm 1) performs a form of temporally-abstracted least
commitment planning (Weld 1994), via goal-regression:
monitoring whether each new sub-goal has a causal-
link from the start condition (PROCESS_CONDITIONS),
and whether each new action threatens existing causal-
links (FIND_THREATS). The intuition being— if a goal is



attainable— there exists some sequence of actions, that either
affects the goal condition directly, or affects preconditions
of actions that affect the goal condition, and so on. Our al-
gorithm alternates between PROCESS_CONDITIONS and
FIND_THREATS, reducing the FMDP state and action
space, without actually planning or rendering the optimal
policy infeasible. The current implementation uses the the-
orem prover z3 to check whether the start condition implies
each condition (De Moura and Bjgrner 2008).

Algorithm 1 All defined variables are taken in as arguments.
1: procedure SCOPE_TASK(sq, g, actions)

2: discovered_conds = g.split_conjuncts()
3: agenda = g.split_conjuncts()
4: used_actions = ||
5: while not agenda.empty() do
6: PROCESS_-CONDITIONS()
7: FIND.-THREATS()
8: relevant_conds = discovered_conds - causal_links
9: relevant_state_vars = | J, ., .icoant_conds C-V0TS
10: return (relevant_state_vars, used_skills)
11: procedure PROCESS_CONDITIONS
12: cond = agenda.pop()
13: if sy = cond then
14: causal_links.push(cond)
15: else
16: for a € actions do
17: if a.target_vars N cond.vars # () then
18: for ¢ € a.prec.split_disj() do
19: if ¢ & discovered_conds then
20: discovered_conds.push(c)
21: agenda.push(c)

22: procedure FIND_THREATS

23: broken_links = []

24: for causal_link € causal_links do

25: for action € used_actions do

26: if action.possibly_ef fected_vars N
causal link.vars # () then

27: broken_links.push(causal_link)

28: for causal_link € broken_links do

29: causal_links.remove(causal link)

Related Work

Dietterich (2000) and others have researched learning a state
abstraction in a reinforcement learning context (Andre and
Russell 2002). We focus on state abstraction in the FMDP
planning context, which enables more effective abstraction.
Boutilier, Dearden, and Goldszmidt (1995) and others re-
searched using the Dynamic Bayes Net (DBN) of an FMDP
to structure the value and policy functions as algebraic deci-
sion diagrams (Hoey et al. 2013). The abstraction in these
works cannot be separated from the planning: they must
check whether each variable is relevant at each iteration.
Helmert (2006) introduced Fast-Downward, a classical
planning algorithm, that ignores trivially irrelevant state
variables, but does not exploit the start condition to prune
non-trivially irrelevant state variables. Additionally, it uses
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a heuristic to break cycles in the causal-graph, while our
approach has no heuristics. Muise, Mcilraith, and Christo-
pher Beck (2012) use Fast-Downward on a determinized
version domain to find a compact state representation.
Squire and desJardins (2016) propose a method to cre-
ate an abstraction of a partially-observable OO-MDP that
ignores irrelevant state variables; however, this performs an
exhaustive enumeration of all possible abstractions, which
would be computationally intractable for large state-spaces.

Conclusion and Future Work

We propose task scoping, which leverages knowledge of an
agent’s initial state, to prune states irrelevant to the optimal
value function from the FMDP. Preliminary experiments on
large multi-passenger taxi-domains indicate that our method
enables state-of-the-art FMDP planners to solve otherwise-
intractable problems. In the future, we hope to test our al-
gorithm on all International Planning Competition domains
and truly ’open-world’ video game or robotics domains ex-
pressed as massive partially-observable FMDPs.
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