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Abstract

This paper presents a simple and intuitive technique to accel-
erate the convergence of first-order optimization algorithms.
The proposed solution modifies the update rule, based on the
variation of the direction of the gradient and the previous step
taken during training. Results after tests show that the tech-
nique has the potential to significantly improve the perfor-
mance of existing first-order optimization algorithms.

Introduction

Optimization algorithms in machine learning (especially in
neural networks) aim at minimizing a loss function. This
function represents the difference between the predicted data
and the expected values. We propose a new technique aim-
ing at improving the empirical performance of any first-
order optimization algorithm, while preserving their prop-
erties. We will refer to the solution when applied to an ex-
isting algorithm A as AA for (Accelerated Algorithm). For
example, for AMSGrad (Reddi, Kale, and Kumar 2018) and
Adam (Kingma and Ba 2014), the modified versions will be
mentioned as AAMSGrad and AAdam. The proposed solu-
tion improves the convergence of the original algorithm and
finds a better minimum faster. Our solution is based on the
variation of the direction of the gradient with respect to the
direction of the previous update. We conducted several ex-
periments on problems where the shape of the loss is simple
(has a convex form) like Logistic regression, but also with
non-trivial neural network architectures such as Multi-layer
perceptron, deep Convolutional Neural Networks and Long
Short-Term Memory. We used MNIST 1, CIFAR-10 2 and
IMDB movie reviews (Maas et al. 2011) datasets to validate
our solution. It should be mentioned that although our exper-
iments are limited to SGD, AdaGrad, Adam and AMSGrad,
the proposed solution could be applied to other first order
algorithms.
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1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/ kriz/cifar.html

Intuition and Pseudo-code

The pseudo-code of our proposed method applied to the
generic adaptive method setup proposed by (Reddi, Kale,
and Kumar 2018) is illustrated in Algorithm 1, .

Algorithm 1 Accelerated - Generic Adaptive Method Setup
Input: x1 ∈ F, step size (αt > 0)Tt=1, sequence of func-
tions (ϕt, ψt)

T
t=1

t← 1
S ← threshold
repeat
gt = ∇ft(xt)
mt = ϕt(g1, ..., gt)
Vt = ψt(g1, ..., gt)
if gt ·mt > 0 and | mt − gt |> S then

gmt = gt +mt

mt = ϕt(gm1, ..., gmt)

x̂t+1 = xt − αtmtV
−1/2
t

xt+1 =
∏

F,
√
Vt
(x̂t+1)

t← t + 1
until t > T

Let’s take the famous example of the ball rolling down
a hill. If we consider that our objective is to bring that ball
(parameters of our model) to the lowest possible elevation
of the hill (cost function), what the method does is to push
the ball with a force higher than the one produced by any
optimizer, if the ball is still rolling in the same direction.
This is done by adding the sum between the current com-
puted gradient (gt) and the previous gradient (gt−1) or the
previous moment (mt−1) to the step currently being com-
puted instead of only gt. The ball will gain more speed as
it continues to go in the same direction, and lose its cur-
rent speed as soon as it will pass over a minimum. We gain
d = −η · gt−1 (η is the learning rate) for each step at time t
where the direction of the gradient did not change. To avoid
the oscillation of the ball over a minimum, a constraint was
added concerning the difference between the past gradient
and the current one. This difference should be more than a
threshold (S <| gt−1 − gt |) in order for the acceleration to
be effective when updates became smaller.

13935



Figure 1: Logistic regression training negative log likelihood
on MNIST images (left). MLP on MNIST images (right).
Loss on training step.

Figure 2: CNN on cifar10. Training cost over 20 epochs.
CIFAR-10 with c32-c64-c128-c128 architecture.

We will focus on the case where the gradient gt is replaced
by gt +mt−1 or gt + gt−1 when computing mt in AAdam
and AAmsGrad or gt in other optimizers (SGD and AdaGrad
for example) if the direction does not change. Note that gt
could also be replaced by gt + vt−1 when computing Vt.

Experiments and results

In order to evaluate the proposed solution empirically, we in-
vestigated different models: Logistic Regression, Multilayer
perceptron (MLP), Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM). We used the same
parameter initialization for all of the above models. β1 was
set to 0.9 and β2 was set to 0.999 as recommended for Adam
and the learning rate was set to 0.001 for Adam, AAdam,
AMSGrad, AAMSGrad and 0.01 for the remaining optimiz-
ers. The algorithms were implemented using Keras 3 and the
experiments were performed using the built-in Keras mod-
els, making only small edits to the default settings. For each
model, all the optimizers started with the same initial val-
ues of weights. For the accelerated versions AAdam and
AMSGrad, we will only show the variant where the value of
mt was changed according to algorithm 1. The value of vt
stayed unchanged. The experiments were repeated 10 times
and we calculated the mean of the estimated mean model
skill. Thus, each point in the following figures represents the
average result after 10 trainings on one epoch (one pass over
the entire dataset). The choice of the parameter S is very im-

3https://keras.io/

Figure 3: LSTM training negative log likelihood on IMDB
movie reviews. Loss on training step. No threshold was set
when training the LSTM model.

portant to ensure the effectiveness of the approach. When the
value is too small, the accelerated versions converge faster
at the beginning but fail to reach a better minimum. The
full code for this project is available on the Github 4 of the
first author. As shown on figures 1,2 and 3 the accelerated
versions largely outperformed the original algorithms. Dur-
ing all our experiments, we noted that Adam outperformed
AMSGrad. In fact, the performance of an optimizer depends
on the data, the starting points etc. Hence the solution could
be applied to improve any optimizer, as the best optimizer
will always depend on the task at hand.

Conclusion

The proposed solution has the potential to speed up the con-
vergence of any first-order optimizer based on the variation
of the direction of the gradient or the first moment (mt). The
only drawback of this contribution is that it requires slightly
more computation than the standard approach, and implies
to specify a new parameter S. However, we found that the
extra time taken by the technique was compensated by the
better minimum reached. Future work will aim at analysing
the technique on sparse data, determine best empirical value
of S for each context, or optimize the technique by making
sure that the test stops once the threshold has been reached).
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4https://github.com/angetato/Custom-Optimizer-on-Keras
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