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Abstract

Multi-view data has become ubiquitous, especially with
multi-sensor systems like self-driving cars or medical patient-
side monitors. We propose two methods to approach robust
multi-view representation learning with the aim of leveraging
local relationships between views.

The first is an extension of Canonical Correlation Analysis
(CCA) where we consider multiple one-vs-rest CCA prob-
lems, one for each view. We use a group-sparsity penalty to
encourage finding local relationships. The second method is a
straightforward extension of a multi-view AutoEncoder with
view-level drop-out.

We demonstrate the effectiveness of these methods in simple
synthetic experiments. We also describe heuristics and exten-
sions to improve and/or expand on these methods.

Introduction

The structural relationship between different views can pro-
vide useful insight into the nature of multi-modal data. Fur-
ther, multiple views can de-noise each other, making learn-
ing over them more robust. In this abstract, we approach the
problem of robust multi-view representation learning by try-
ing to model and/or utilize local relationships between sub-
sets of views. Beyond just understanding the structure of the
data, we can also potentially estimate the ”usefulness” of
any view within the context of these relationships.

We propose two approaches: the first is closely related
to multi-view extensions of Canonical Correlation Analy-
sis (CCA) while the second is a more straightforward adap-
tation of a multi-view AutoEncoder. We demonstrate their
effectiveness on simple experiments, and also describe po-
tential heuristics and extensions to improve upon them.

Notation: The rows of Xi are the data points for each view
i of K views. We assume that our data is centered.
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Approaches
Multi-view One-vs-Rest CCA
Existing multi-view CCA extensions ((Kakade and Foster
2007), (Rupnik and Shawe-Taylor 2010)) usually find a sin-
gle set of projections for each view which maximize some
overall correlation objective across all views. This forces
projections to primarily recover globally shared structure
while largely ignoring local relationships. To model all pos-
sible local relationships naively, we would need an expo-
nential number of CCA computations for all view-subsets.
Even just considering pair-wise relationships would require
a quadratic number of CCA computations.

Our approach (MOCCA) reduces this to problem to K
one-vs-rest CCA problems, one for each view. In each prob-
lem, we try to learn projections for the remaining views
(henceforth called ”sub-views”) to maximize the correla-
tion with the given main view. In essence, these are 2-view
CCA computations where the sub-views together form the
second ”view”. However, simple concatenation of the sub-
views could disturb the inter and intra-view structure. For
this, we enforce a sub-view group-sparse regularization to
encourage learning projections which respect this structure.

The intuition here is that by penalizing the contribution of
all covariates from a given sub-view together, we allow the
optimization to distinguish between existing inter and intra-
view relationships. Covariates within a sub-view would tend
to either all contribute toward correlation/reconstruction or
all get shut down together. This encourages only using the
most important sub-views to contribute to the projections.

For each view, we minimize the objective:

min
Pij

f(XiPii,
∑

j �=i

XjPji) + λ
∑

j �=i

RG(Pij) (1)

where f(A,B) = −ATB, RG is some sparsity regularizer
(eg. L∞ norm). Pij represents the projections to be learned
from sub-view j to main view i.

For CCA, we include the usual orthogonality constraints
as well and optimize using linearized ADMM as described
in (Suo et al. 2017). We can also substitute f for other er-
ror metrics like reconstruction error, and potentially include
an overall sparsity regularization as well. This objective as-
sumes linear projections but can easily be extended to any
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Figure 1: Redundancy matrices as produced by MOCCA
without (left) and with (right) group-sparse regularization.

class of projection functions Pij(Xj) which are easy to op-
timize (eg. deep neural networks).

While group sparsity does not necessarily uncover all pos-
sible local relationships, it does encourage extracting the
more apparent and prominent ones. If we tweak the group-
sparse penalty, we could tune the number of represented
sub-views in the projections. This would allow us to build a
multi-fidelity ”relationship” graph between views, with the
final ”representation” implicitly embedded in it.

Simple Synthetic Experiment We consider a four-view
problem where any two views are enough to reconstruct the
rest. Our dataset has four underlying feature sets A,B,C,D
(eg. independent sensor measurements), with the four views
being X1 = [BCD], X2 = [ACD], X3 = [ABD] and
X4 = [ABC] with some noise.

We take a ”redundancy matrix” (shown in Figure 1) to
be a block matrix where each row i represents the relation-
ship between main view i and all sub-views; i.e. XiPii vs.∑

j �=i XjPji where the Pijs are given by the blocks and Pii

is taken to be the identity. The figure shows the usefulness
of the group-sparse regularization which allows us to find
a smaller subset of sub-view projections by exploiting local
redundancies and relationships between views.

Heuristic: Greedy Step-wise View Selection Playing
with hyper-parameters to modulate the number of sub-views
can be tricky, since this is usually data-dependent. We could
use a greedy selection method for sub-views to circumvent
this. Such an approach would sequentially select the next
best view to minimize the residual error. Of course, using
this approach to get an ordering over all sub-views is coun-
terproductive, since we wanted to avoid a quadratic number
of computations to begin with. So, such an approach should
only really be used if it is adequate to use only a small subset
of projections from a relatively large number of sub-views.

Robust Multi-view AutoEncoder
Typical Multi-view AutoEncoders ((Ye et al. 2016), (Wang
et al. 2015)) learn a shared representation exploiting the in-
tersection of views. This falls prey to the same pitfalls as
before: local relationships are often ignored.

Our proposed method (RMVAE) has the following frame-
work: Every view has its own encoder network; these en-

codings are then concatenated and fed into a shared encoder
to give the final common representation. This representa-
tion is decoded back to the original views using individual
decoders. For ”robustness” of representation, we use view-
level dropout; every batch, we drop a random input-view
subset while still forcing reconstruction of all views. This
encourages the model to exploit redundancy of information
across the different views.

Experimental results We conducted simple experiments
on similar datasets to the previous approach. Here, we var-
ied the number of available views to reconstruct all out-
put views. The reconstruction error reduces as more views
are available, which is the expected trend. We have omitted
quantitative results in the interest of space.

Generative Modeling Extension We could replace the
common encoder in the RMVAE with a generative equiva-
lent, instead of relying on reconstruction alone. We can fol-
low the overall ideas from flow-based models like RealNVP
(Dinh, Sohl-Dickstein, and Bengio 2016) and TANs (Oliva
et al. 2018) to learn an invertible encoding of the data into a
space where the data distribution is very simple.

Conclusion
In this abstract, we describe two approaches for robust
multi-view representation learning: (i) Multi-view One-vs-
Rest CCA with group-sparse regularization and (ii) Robust
Multi-view AutoEncoder with view-level dropout. These ap-
proaches try to uncover local relationships between views, to
help better understand the underlying structure of the data.
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