The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Multi-Agent/Robot Deep Reinforcement
Learning with Macro-Actions (Student Abstract)

Yuchen Xiao, Joshua Hoffman, Tian Xia, Christopher Amato
Khoury College of Computer Science, Northeastern University
360 Huntington Ave, Boston, Massachusetts 02115
{xiao.yuch, hoffman.j, xia.tia} @husky.neu.edu, c.amato @northeastern.edu

Abstract

We consider the challenges of learning multi-agent/robot
macro-action-based deep Q-nets including how to properly
update each macro-action value and accurately maintain
macro-action-observation trajectories. We address these chal-
lenges by first proposing two fundamental frameworks for
learning macro-action-value function and joint macro-action-
value function. Furthermore, we present two new approaches
of learning decentralized macro-action-based policies, which
involve a new double Q-update rule that facilitates the learn-
ing of decentralized Q-nets by using a centralized Q-net for
action selection. Our approaches are evaluated both in simu-
lation and on real robots.

Introduction

Performing high-quality collaborative behaviors under
large, stochastic and uncertain environments requires robots
to asynchronously execute high-level actions and simulta-
neously reason about cooperations between teammates. For-
mally, multi-agent asynchronous decision-making under un-
certainty in fully cooperative tasks is modeled as Macro-
Action Decentralized Partially Observable Markov Deci-
sion Processes (MacDec-POMDPs) (Amato, Konidaris, and
Kaelbling 2014). Although several multi-agent deep rein-
forcement learning methods have recently achieved impres-
sive performance under both cooperative and competitive
domains (Omidshafiei et al. 2017, Lowe et al. 2017, Foerster
et al. 2018, Rashid et al. 2018), they all assume synchronous
primitive-action executions over agents. It is not clear how
to incorporate asynchronous macro-actions into these meth-
ods.

In our work (Xiao, Hoffman, and Amato 2019), we bridge
this gap by (a) proposing the first decentralized macro-
action-based learning framework with a new buffer called
Macro-Action Concurrent Experience Replay Trajectories
(Mac-CERTs) that properly maintains the macro-action-
based transitions for each agent; (b) introducing a novel cen-
tralized macro-action-based learning framework that gen-
erates Macro-Action Joint Experience Replay Trajectories
(Mac-JERTSs) to learn a joint macro-action-value function

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

13965

using a conditional target-value prediction method. In other
recent work (Xiao et al. 2019), we improve macro-action-
based decentralized policy learning by presenting Macro-
Action-Based Decentralized Multi-Agent Double Deep Re-
current Q-Net (MacDec-MADDRQN) that enables each
agent’s local Q-net update to consider the effects of other
agents’ macro-actions. MacDec-MADDRQN introduces a
hyper-selection by performing centralized exploration or
decentralized exploration during training. The best choice
is unknown without knowledge of the domain properties.
Therefore, a generalized version of this method, called
Parallel-MacDec-MADDRQN, is also proposed in (Xiao et
al. 2019) that executes centralized and decentralized explo-
rations in two separate environments and optimizes the cen-
tralized Q-net and decentralized Q-nets in parallel.

Approach

In this section, we present an overview of our contributions.

Learned Macro-Action-Based Decentralized Policy

In this framework, during execution, agents collect con-

current macro-action-observation experiences into the Mac-

CERTs buffer, in which each transition is represented as

a tuple (z;,m;,z.,r¢) for each agent i, where r¢
T

r¢ 1S an accumulated reward from the beginning

t=tm,
time-step ¢,,, to the termination step 7 of the macro-
action m;. During training, we combine Decentralized
Hysteretic DRQN (Omidshafiei et al. 2017) with Double
DQN (referred to Dec-HDDRQN) to update each agent’s
individual macro-action-value function Qg,(h;, m;) using
a concurrent mini-batch of sequential experiences sam-
pled from Mac-CERTs, by minimizing the loss: £(6;) =

2
E<zi,mi,z§,rf>~D {(yz - QQi (hu mz)) ] s where Yi
¢ +vQ,- (h}, argmax,,, Qp, (h}, m})) and h; denotes the
macro-action-observation history of agent 7.

Learned Macro-Action-Based Centralized Policy

This framework aims at learning a centralized macro-
action-value function. At each time-step, the Mac-JERTSs
buffer collects a joint macro-action-observation experi-
ence, represented as a tuple (Z,m, 2’ 7¢), where ¢



Z:ztﬁl r¢ is a shared joint accumulated reward for the
agents’ joint macro-action m from its beginning time-step
tz to the ending time-step 7 when any agent terminates
its macro-action. The centralized macro-action-value func-
tion Q4 (h,nt) is then optimized by minimizing the loss:
L(¢) = Eczm 2 fesaD {(y - Q¢(h,m))2}, where y =
7+ Qg (h', argmaxz, Qu(h', 1M’ | m™don)). Here,
mindone js the joint-macro-action over the agents who have
not finished their macro-actions. It considers agents’ asyn-
chronous macro-actions execution status. This method is re-
ferred to as Cen-DDRQN in the results section.

Macro-Action-Based Decentralized Multi-Agent
Double Deep Recurrent Q-Net

This method adopts centralized training decentralized ex-
ecution in deep Q-learning to learn the decentralized
Q-net, (Qy,, for each agent ¢ using the centralized Q-
net, (y. Here, the replay buffer is a merged version
of Mac-CERTs and Mac-JERTS, containing the transi-
tion tuple (z,m,z’ ,r° 7°), where z {20,y 2N}
m {mg,...,mny} and r® {r§,...,m%}. During
training, agents iteratively sample a mini-batch of sequen-
tial experiences to first optimize the centralized macro-
action-value function Q)4 using Cen-DDRQN, and then
train each decentralized macro-action-value function by
performing gradient descent step on the loss: L(6;)

2
Eczm 2 re,fesD [(yz —Qo, (hi, ml)) ] , where y; = ¢ +

7Qq- [h;, [arg max,, Qq(h/,m’ | m““d"“e)]i] . This in-

dicates the decentralized target Q-value is calculated in the
double Q-learning manner, but using the centralized Q-net
for the next macro-action selection of agent ¢ under the
conditional operation that considers teammates’ behaviors
and their asynchronous macro-action executions. Parallel-
MacDec-MADDRQN also applies the above double Q-
update rule for training each decentralized Q-net but purely
based on decentralized experiences, while the centralized Q-
net is trained only using the experiences generated by the
centralized exploration in parallel in another environment.

Experiments and Results

We evaluate our methods in both a benchmark problem (box
pushing) and a warehouse domain. The warehouse task in-
volves a human working on an assembly task in a workshop,
which requires three particular tools for the future steps. A
Fetch robot and two Turtlebots are respectively responsible
for finding the correct tools on a table in the tool room and
delivering the tools in the correct order to the human. The
robots have no prior knowledge of the correct tools the hu-
man needs, so this has to be learned via training.

The simulation results shown in Fig. 1 first demon-
strate that our macro-action-based policy learning frame-
works enable the agents to perform near-optimal behav-
iors under both decentralized and centralized control in
the box pushing domain, and under centralized control in
the warehouse domain. Furthermore, the advantages of our

13966

150
0
-150
VARALAA Ay M
[t
|

— our2

Empirical Return
2
Empirical Return

— our-l
‘ ~—— Dec-HDDRQN
—— Cen-DDRQN

5K 10K 15K
Episode

~—— Dec-HDDRQN
—— Cen-DDRQN
10K 20K 30K 40K
Episode

0K

(a) Box Pushing (20 x 20) (b) Warehouse Tool Delivery

Figure 1: Averaged performance over 40 runs in two do-
mains with optimal discounted returns as dash-dot lines.

(a) Pass tape measure (c) Pass drill

(b) Pass clamp

Figure 2: Robots run the decentralized policies (learned via
Parallel-MacDec-MADDRQN) in the warehouse domain

new approaches MacDec-MADDRQN (Our-1) and Parallel-
MacDec-MADDRQN (Our-2) are validated by achiev-
ing near-centralized performance and outperforming Dec-
HDDRQN. The practical utility of our approach is proved
by allowing real robots to perform reasonable collaborative
behaviors to deliver the correct tools to the human in the
proper order which is shown in Fig. 2 (Xiao et al. 2019).

References

Amato, C.; Konidaris, G. D.; and Kaelbling, L. P. 2014.
Planning with macro-actions in decentralized POMDPs. In
Proceedings of the Conference on Autonomous Agents and
Multiagent Systems.

Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018. Counterfactual multi-agent policy gradi-
ents. In AAAI 2018: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence.

Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; and
Mordatch, 1. 2017. Multi-agent actor-critic for mixed
cooperative-competitive environments. Neural Information
Processing Systems (NIPS).

Omidshafiei, S.; Pazis, J.; Amato, C.; How, J. P.; and Vian, J.
2017. Deep decentralized multi-task multi-agent reinforce-
ment learning under partial observability. In Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, 2681-2690.

Rashid, T.; Samvelyan, M.; de Witt, C. S.; Farquhar, G.;
Foerster, J.; and Whiteson, S. 2018. QMIX: Monotonic
value function factorisation for deep multi-agent reinforce-
ment learning. In ICML 2018: Proceedings of the Thirty-
Fifth International Conference on Machine Learning.

Xiao, Y.; Hoffman, J.; Xia, T.; and Amato, C. 2019. Multi-
robot deep reinforcement learning with macro-actions.
Xiao, Y.; Hoffman, J.; and Amato, C. 2019. Macro-action-
based deep multi-agent reinforcement learning. In 3nd An-
nual Conference on Robot Learning (CoRL).



