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Abstract

Hanabi is a multiplayer cooperative card game, where only
your partners know your cards. All players succeed or fail to-
gether. This makes the game an excellent testbed for studying
collaboration. Recently, it has been shown that deep neural
networks can be trained through self-play to play the game
very well. However, such agents generally do not play well
with others. In this paper, we investigate the consequences
of training Rainbow DQN agents with human-inspired rule-
based agents. We analyze with which agents Rainbow agents
learn to play well, and how well playing skill transfers to
agents they were not trained with. We also analyze patterns
of communication between agents to elucidate how collabo-
ration happens. A key finding is that while most agents only
learn to play well with partners seen during training, one par-
ticular agent leads the Rainbow algorithm towards a much
more general policy. The metrics and hypotheses advanced
in this paper can be used for further study of collaborative
agents.

Introduction

Hanabi (Bauza 2010) is a cooperative card game with hid-
den information and a limited communication channel that
has recently been proposed as an ideal testbed for Artifi-
cial Intelligence (Al) agents that are capable of reasoning
about other players’ beliefs and intentions (Osawa 2015;
Walton-Rivers et al. 2017; Bard et al. 2020). Of particular
importance is the ad-hoc teamplay setting, where teams of
agents are required to play with no previous coordination of
strategies (Stone et al. 2010). This is because if coordination
is allowed before the game, players can agree on conven-
tions that encode a set of assumptions on how all participants
should play the game. This allows each player to infer addi-
tional information about hidden aspects of the game state.
Strategies based on human-created conventions such as
hat-guessing (Cox et al. 2015; Wu 2016; Bouzy 2017) can
achieve very high average scores, above 24 out of a maxi-
mum of 25, and a high percentage of perfect games. These
conventions, however, rely on an arbitrary assignment of
meaning to features of the game such as card colors. This
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makes them unsuited for playing with players that did not
agree to the convention, as is the case in ad-hoc teamplay. It
has also been shown that many recent agents based on Deep
Reinforcement Learning such as ACH A (Bard et al. 2020),
BAD (Foerster et al. 2018) and SAD (Hu and Foerster
2019) can “learn” similar conventions with no human guid-
ance when trained in a self-play setting. Thus, these agents
are unsuited for ad-hoc teamplay, including situations where
teams are composed of independently trained instances of
the same model.

While the ad-hoc teamplay problem has been less stud-
ied than self-play, our work builds on the ideas and experi-
ments of our recent workshop paper (Canaan et al. 2020a).
There, we trained versions of a Rainbow DQN agent de-
veloped by (Bard et al. 2020) by pairing them with seven
human-inspired rule-based agents by previous authors (Os-
awa 2015; van den Bergh et al. 2016; Walton-Rivers et al.
2017). Since these rule-based agents do not rely on spe-
cialized conventions like hat-guessing, we believed an agent
trained using one of these partners had the potential to learn
policies that also apply well to unseen rule-based agents.
However, we observed that not only did the policies learned
with one rule-based partner rarely transfer well to playing
with other partners, these strategies were also quite weak
when evaluated in a self-play setting.

In this paper we similarly train Rainbow DQN agents us-
ing six of the seven rule-based agents as partners but also
investigate the fact that some of these partners enable Rain-
bow to learn more general policies than others. We do this
by gathering behavioral metrics such as Communicativeness
and Information Per Play (IPP) defined in (Canaan et al.
2019; 2020b), among others. These metrics help shed light
on game events beyond a simple reporting of scores. They
also help formulate hypotheses about the relationships be-
tween each agent’s behavioral characteristics, their ad-hoc
performance and the performance of reinforcement learn-
ing agents trained using them as partners. Due to additional
training time, some agents’ performances are also remark-
ably different than reported in (Canaan et al. 2020a).

All code for running and visualizing the agents is avail-
able to other researchers in our online repository .

'https://github.com/rocanaan/hanabi-ad-hoc-learning



Hanabi: The Game

Hanabi is a game where a team of 2-5 players attempts to
play cards in a correct sequence. Each card has a numeri-
cal rank from 1 to 5 and one of five colors. Players try to
build five piles, one for each color, in ascending rank order.
However, each player does not see the contents of their own
hands, only those of their partners. Each correctly played
card scores 1 point for the team (up to a maximum of 25), but
each incorrectly played card depletes one of the team’s lives.
If all lives are lost, the team’s score is reduced to zero and
the game ends (using the strict scoring scheme favored in
this paper. In the alternative lenient scheme, the team keeps
whatever score they had leading up to the loss).

Players are allowed to spend an action to provide infor-
mation to other players. This consists on selecting another
player and pointing to all the cards in that player’s hand
with a chosen rank or color. This spends a hint token from
a shared pool. Any other form of communication between
players is disallowed. Players can also spend an action to
discard a card and recover a hint token, but since the num-
ber of cards in the deck is limited, this risks making some
piles impossible to complete. If the draw deck is depleted,
the game ends after one last round of actions by each player.

It is useful to distinguish between grounded information,
provided by the game rules, and non-grounded information
inferred from a belief about other player’s intentions. For ex-
ample, a hint such as “your third card is Red” identifies that
card as red and the remaining cards as non-red on a grounded
level, but may also imply additional information, such as that
it is likely playable, if we assume that our partner is likely to
prioritize hints about playable cards. These assumptions can
improve a team’s performance, but can also backfire if they
are not shared by the whole group.

Related Work

Many of the early Al agents for playing Hanabi could be
defined by a sequence of rules, where each rule takes a con-
dition (e.g. another player has a playable card) and, if that
condition is satisfied, returns a corresponding action (e.g.
hint that card’s rank). In (Walton-Rivers et al. 2017), the
authors propose to evaluate agents based on their ability to
play well with diverse partners, including rule-based agents
first proposed by (Osawa 2015) and (van den Bergh et al.
2016). Later, they organized a competition (Walton-Rivers
et al. 2017) based on this type of evaluation, where in the
Mixed track, participants would be paired with agents that
were kept secret up to the competition. The competition ran
at the 2017 CIG and 2018 CoG conferences and the orga-
nizers provided a Java framework that allowed participants
to use pre-implemented rules to define their own agents. The
rule-based agents used in this paper were originally provided
in the competiton framework as samples.

Another framework for playing Hanabi is the Hanabi
Learning Environment (HLE), by (Bard et al. 2020). HLE
is a Python framework focused on reinforcement learning
(RL), and features the original implementation of the Rain-
bow agent used in this paper, although trained only in a
self-play setting. The authors remarked that Rainbow ap-
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peared to learn compatible policies across different train-
ing runs, whereas another agent introduced in that work,
AC'H A, has better self-play performance but does not per-
form well in that ad-hoc scenario. More recent RL agents
such as BAD (Foerster et al. 2018) and SAD (Hu and Fo-
erster 2019) perform even better at self-play, with similar
problems when paired with independently trained versions
of themselves if trained naively. A combination of SAD
with a multi-agent search protocol proposed by (Lerer et
al. 2019) is the current state-of-the-art in self-play Hanabi,
with average scores of 24.61 in the 2-player version.

The Hanabi Rainbow agent bundled with the HLE frame-
work is a multi-agent Hanabi version of the Rainbow DQN
Atari agent (Hessel et al. 2018) which combines many ex-
tensions to the “vanilla” DQN agent that had been proposed
over time, and evaluates which extensions actually improve
the algorithm through a series of ablation tests. While the
extensions that define Rainbow could in principle be applied
to a variety of neural network architectures, we focus on the
simple feedforward architecture provided by HLE.

This paper builds on a workshop paper (Canaan et al.
2020a), where we re-implemented the rule-based agents
in the HLE and trained Rainbow agents using both self-
play and rule-based agents as partners. Evaluation consisted
on playing with all rule-based agents as well as self-play,
where we observed that performance rarely transfers well
to agents not seen during training. We extend that work
with an investigation on why certain agents, if used as train-
ing partners, lead to the RL agent learning policies that
transfer better or worse to pairings with other agents. This
investigation is based on two behavioral metrics defined
by (Canaan et al. 2020b) for evolving diverse agents using
MAP-Elites (Mouret and Clune 2015), along with newly in-
troduced metrics.

An algorithm called Other Play (Hu et al. 2020) was re-
cently proposed as a solution to the problems of agents
that do not play well with independently trained versions
of themselves, such as SAD. Other Play re-labels game fea-
tures (such card colors) under symmetries of a POMDP dur-
ing training, to avoid the agent leaning on conventions that
violate these symmetries. It is not explicitly designed to play
well with the rule-based agents under consideration in this
paper (which do not use conventions based on color), but
was shown to achieve good scores with human partners.

Methods

All games simulated for this paper, unless otherwise spec-
ified, used the 2-player version of Hanabi, with the strict
scoring scheme, randomizing the starting player.

Selection of Rule-based Agents

We selected six of the seven rule-based agents imple-
mented in the Hanabi Learning Environment by (Canaan
et al. 2020a) to train our Rainbow agents. We excluded
Legal Random from our experiments since it is not an agent
from which any meaningful learning can be expected, es-
pecially using the strict scoring scheme. We provide below
a few details about these agents that we deem relevant for



the purpose of cooperating with them. A full description
of these agents is out of the scope of this paper, but can
be seen at (Walton-Rivers et al. 2017), where the agents
IGGI, Piers and Flawed were also introduced. Internal
and QOuter are originally from (Osawa 2015) and VDB is
from (van den Bergh et al. 2016).

Flawed is a poor agent by design, which gives random
hints and plays cards based on a very low threshold of playa-
bility. However, still attempts to play whatever card has the
highest probability of being playable, so some level of suc-
cess is achievable if its partner gives it abundant information,
but this is unlikely to be achieved by any agent that did not
have Flawed as training partner.

Internal and Outer are simple agents, prioritizing play-
ing cards that are for sure playable and discarding cards that
are no longer useful, followed by giving hints about playable
cards, and then about other cards. The only difference be-
tween them is that Internal has no memory of the hints
other players have received and is liable to give repeated
hints. The only other agent with this property is Flawed.

The rules used by IGGI do not cover all possible game
states and will rarely return a random action. Other than
this edge case, however, /GG is the only agent who will
never give a hint that does not contain at least one playable
card. All other agents have hint rules that activate even if
the receiving player has no playable cards, such as hint-
ing cards that should be discarded for extra hint tokens.
This makes /GG potentially very predictable, as all hints
it gives (except for the mentioned edge case) contain at least
one playable card.

Piers and V D B’s distinguishing feature are their prob-
abilistic play rules: they compute the probability of a card
being playable by eliminating all cards incompatible with
the grounded information received so far. They then play
their most likely playable card if this probability is above
the threshold of 60%.

Finally, the agents, except F'lawed, have hint rules with
deterministic “tiebreakers” in case multiple cards apply:
they usually scan the other players’ cards from oldest to
newest, then find the first applicable (e.g. playable) card.
Internal chooses randomly between hinting that card’s
color or rank, while the others prioritize rank over color.
This also makes these agents more predictable than might
seem at first glance.

Training of Rainbow Agents

The architecture and training procedure we use for this pa-
per are the same (other than the choice of training partner)
as used in (Bard et al. 2020): value distributions are approx-
imated using distributional reinforcement learning (Belle-
mare, Dabney, and Munos 2017) by a 2-layer Multi-Layer
Perceptron with 512 nodes per hidden layer and the action is
selected e-greedily over the expected value of each of the 20
possible actions (although not all actions are necessarily le-
gal at each game state). The input space consists of a binary
vector of size 658 representing the current game state plus
the most recent action. All hyperparameters were the same
as those used in (Bard et al. 2020).
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The game state representation encodes features of the
game that are directly seen by the agent, such as the cards
already played and discarded, the number of hint tokens, life
tokens and cards in the deck, and the rank and color of all
cards in other players’ hand. The representation also keeps
track of hints received by all players, so the agent knows at
all times the possible rank and color of cards in its hand and
also which information is known by other players.

However, the representation doesn’t keep track of game
history beyond the last action, and the neural network used
by the agent is feed-forward with no recurrent connections.
As such, the agent is not expected to learn policies depen-
dent on a long history of actions. Therefore, our inquiry on
how well this agent plays with other teammates is not out of
hope that it is able to identify and adapt to different team-
mates, since it lacks the long-term memory needed for it.
Rather, it is based on the observation that the agent, when
trained through self-play, seems to learn strategies that work
well among independently trained instances of the policy,
which might be a sign that these strategies rely less on ar-
bitrary conventions and more on grounded information, and
thus might play well with the chosen rule-based agents.

We trained agents in nine different regimes: Rrniernals
Routers RFiawed> Rrcgar, Rpiers and Rypp are each
trained with a single rule-based agent as partner. Rgp trains
through pure self-play. R 4;; plays each training game with
a randomly chosen rule-based agent, but plays no training
game in a self-play setting. The report by (Canaan et al.
2020a), however, assigns very poor self-play score to this
agent, and for this reason we add a ninth type of agent,
Rau+sp, which has a 1/7 chance of either playing with a
copy of itself or with a random rule-based agent. For each
regime, we trained four independent instances of the agent.

We allowed each instance to train for a total of 200 mil-
lion game actions. Since the Rainbow agents only perform
updates on their own actions, this corresponds to 100 mil-
lion training steps for the agents trained exclusively with
rule-based partners, the same number of training steps used
in (Bard et al. 2020). This also means our Rgp trained for
twice as many training steps as in (Bard et al. 2020). How-
ever, as seen in the Results section, performance of Rgp did
not improve much after the first half of training. By com-
parison, (Canaan et al. 2020a) were only trained their Rgp
agents for 30 to 60 million game steps, and the remaining
agents for 27.5 million game steps.

We used a Linux machine with a Intel Core 17-5930K
3.5 GHz Processor with six cores and Cuda 9.1 with three
GTX 1080 GPUs. Training time depended on the agent be-
ing trained, ranging from around 200 to 300 game steps per
second, for a total of 8 to 12 days of training per agent, with
up to 9 agents being trained simultaneously.

Collection of Behavioral Metrics

While game scores can tell us which pairs of agents play well
or poorly with each other, they give little insight into why
these agents succeed or fail. For this reason, while we eval-
uate each of the trained Rainbow agents with the six rule-
based agents and self-play (regardless of which agents the
Rainbow agent played with during training), we also collect



a number of behavioral metrics that help shed light on this
problem and formulate hypotheses.

We suspect that most failures to cooperate happen due to
a combination of the Rainbow agent not understanding the
hints given by its partner (and thus committing too many
mistakes or not playing cards that would have been playable)
or, conversely, due to the Rainbow agent giving hints in ways
that its partners do not understand.

For this reason, we collect behavioral metrics relating to
the cards played and hints given by both players. We start
with the metrics of “Communicativeness” and “Information
Per Play”, defined by (Canaan et al. 2020b):

e Communicativeness is defined as the ratio of hints given
by the agent to the number of turns where a hint action
was available.

e Information per Play (IPP) is defined as the average num-
ber of pieces of information (a number between 0 and 2
corresponding to no information, only rank, only color or
both rank and color) known by the agent about each card
it played.

In particular, we expect agents with very low IPP to “over-
fit”: they will learn to infer a lot hidden information from its
training partner’s actions and play cards correctly with little
information, in a way that does not work with other agents.

We go beyond these metrics and also collect the number
of cards correctly played by both players in a match-up, the
number of mistakes made by both players and the number of
games where the group “bombed out” by losing three lives.
We then average these statistics among match-ups that were
seen during training as well as among all match-ups. The
gap between an agent’s correctly played cards and mistakes
when playing with its training partner and unseen partners
can yield similar insights as IPP, and the corresponding num-
ber for the other player might indicate if the Rainbow agent
is giving hints in ways that are helpful to them.

Results

Before training the Rainbow agents, we played 1000 games
between each pair of the 6 rule-based agents for a total of
36 pairings and 36000 games. The score in these match-ups
could signal to differences and incompatibilities between the
strategies used by these agents. Table 1 reports the average
score and standard deviations (SD) of each match-up.

We also highlight the mean self-play score of these agents
in the rightmost column. These values are useful as bench-
marks since, if a Rainbow agent achieves higher scores than
the value of this column for a certain agent, it means it
learned to play at least as well with that partner as the cor-
responding rule-agent plays with itself. On average, the six
rule-based agents have a self-play score of 12.10.

Note that Flawed, as expected, has scores close to zero
across the board, and that most agents’ best scores are not
with themselves, but with “stronger” partners, especially
Piers. The best overall pairing is between Piers and VDB
at over 17 points.

During these games we also collected behavioral metrics
for the rule-based agents, which we make available in our
repository but omit here for space considerations.

34

InternalAgent
OuterAgent
IGGIAgent
FlawedAgent

. PiersAgent

W VanDenBerghAgent

} oo B Self-Play

mm Aggregate

Average Score

0
000 025 050 075 100 125 150 175 200
Steps 1e8

Figure 1: Training curve of the first instance of Rgp, show-
ing evaluation performance with all 6 rule-based agents and
self-play over training time. This example was chosen to ex-
emplify a sharp drop in performance in the last episodes of
training (confirmed in an independent round in evaluation).
This instability means that the final version of each instance
(whose score we report) is not necessarily the best achieved
during training.

Performance of Trained Rainbow Agents

For each of the 9 training regimes described in the pre-
vious section we trained 4 instances of Rainbow agent with
different random seeds, for a total of 36 instances. For each
instance, we performed small evaluation rounds every 1.25
million steps of training, consisting of 100 games paired
with each of the 6 rule-based agents as well as a copy of
itself (for a total of 700 games across 7 match-ups for each
evaluation round during training). Figure 1 shows the result-
ing training curve for the first instance of Rgp. Note that due
to oscillations in this curve, the final checkpoint, reported for
each instance, is not necessarily the one with maximum per-
formance over all training checkpoints.

After training completed, we performed a larger evalua-
tion round of 1000 games per match-up (for a total of 7000
games for each of the 9*4 instances). The mean score and
SD of each match-up (averaged over the 4 different instances
of each Rainbow agent) are shown on table 2. Comparing
this table with table 1, we see that all Rainbow agents that
trained with a single rule-based partner (above the dashed
line in table 2) achieved higher average score with that part-
ner than that partner’s baseline self-play performance (right-
most column of table 1). However, with the exception of
Rinternal, aggregate and self-play performance for most of
these agents was quite poor. Note that although aggregate
performance includes self-play, none of the agents above the
dashed line (except Rinterna;) Would achieve 12.10 aggre-
gate score even discounting self-play.

On the other hand, Rj,ternq; represents an example of
agent trained with a single rule-based partner, but that
achieves good score across the remaining rule-based agents
(above the rule-based agent’s self-play baseline) and a rea-
sonable self-play score of 11.26 which, although not com-
petitive with Rgp or more recent state-of-the-art self-play
agents, is much higher than the corresponding score for
Rainbowrpiernar of 3.91 reported (with fewer training
steps) in our original workshop paper (Canaan et al. 2020a).

On the opposite extreme, R;g¢ also represents an inter-



Internal Outer IGGI Flawed Piers VDB Self-Play
Internal | 10.04 (2.05) 11.84 (2.14) 12.59(1.98) 0.04 (0.60) 13.71 (2.17) 13.37 (2.53) | 10.04 (2.05)
Outer | 11.86(2.20) 13.8(2.15) 15.38(1.85) 0.07(0.84) 15.48(2.00) 14.77(2.92) | 13.8 (2.15)
IGGI 12.64 (2.02) 15.41(1.86) 15.99 (4.61) 0.17(1.30) 16.77 (2.60) 16.48 (3.34) | 15.99 (4.61)
Flawed | 0.04 (0.59) 0.02(0.36) 0.24(1.47) 0.00(0.00) 0.18(1.44)  0.23(1.56) | 0.00 (0.00)
Piers 13.67 (2.31) 15.51(1.95) 16.61(2.91) 0.15(1.10) 16.99(1.97) 17.14 (2.46) | 16.99 (1.97)
VDB 13.32 (2.56) 14.76 (2.99) 16.55(3.47) 0.18 (1.35) 17.18(2.38) 15.81 (4.41) | 15.81 (4.41)
Average | 10.26 (1.95) 11.89(1.91) 12.89(2.72) 0.10(0.87) 13.38(2.09) 12.97 (2.87) | 12.10 (2.53)

Table 1: Mean scores and standard deviations obtained when playing 1000 games for all pairings of the rule-based agents. Values
across the main diagonal correspond to the self-play scores and are repeated in the Self-Play column for ease of visualization.
Values on either side of the main diagonal represent two independent sets of games between the same pairs of agents. The
maximum score in each column is highlighted in bold.

Internal Outer IGGI Flawed Piers VDB Sel f Aggregate
Rinternar | 13.86 (3.6) 14.65(3.9) 1597 (3.3) 0.06(0.8) 15.05(4.4) 14.64(5.4) 11.26(6.4) | 12.21 (4.0)
Router 7.75(6.8) 17.38 (2.6) 162(4.9) 0.00(0.1) 12.71(7.9) 13.36(7.7) 5.03(7.7) | 10.35(5.4)
Ricer 2.10(44) 1.80(4.9 1825(2.9) 0.00(0.0) 7.01(8.8) 7.66(8.7) 0.63(2.9) | 5354.7)
Rrigwea | 4.13(1.6) 5.65(1.8) 4302.2) 411@3.7) 7.52@24) 77427 3242.1) | 52424
Rpiers 337(5.5) 7.14(7.9) 17.09(3.7) 0.01(0.2) 17.68(4.0) 13.26(7.6) 7.52(8.2) | 9.44(5.3)
Rypp 6.06 (5.8) 10.58(6.9) 16.27(3.3) 0.02(0.3) 1391 (7.0)0 18.16(3.5) 4.42(6.2) | 9.92(4.7)
" Rsp | 3.02(26) 506(3.8) 425(2.8) 0.05(0.5 7.43(49) 7.14(55) 19.53(4.8) | 6.64 (3.5)
Ray 13.50 (3.4) 16.03(3.1) 17.452.9) 047(.5) 17.07(3.6) 16.78(3.9) 12.89(6.3) | 13.46 (3.5)
Rayrsp | 13.11 (3.4) 15.64(3.1) 16.85(3.2) 041 (1.5) 16.66(3.7) 16.32(3.9) 1577 (4.7) | 13.54 (3.3)
Average | 7.43(4.1) 1044 (4.2) 14.07(3.2) 0.57(0.1) 12.78(5.2) 12.78(5.4) 892(5.5) | 9.57 (4.1)

Table 2: Mean scores and SD for each match-up. Values are averaged across the 4 different runs of each type of Rainbow agent
per match-up. Each match-up was played 1000 times for each run, so each match-up was played 4000 times in total. Agents
above the dashed line were trained with a single rule-based agent as partner. The maximum score in each column is highlighted
in bold.

Type of Rainbow Agent Rlnternal ROuter RIGGI RFlawed RPiers RVDB ; RSP RAll RAll+SP
Score with partner 13.86 17.38 18.25 4.11 17.68 18.16 1 19.53 13.54 13.55
Aggregate score 12.21 10.35 5.35 5.24 9.44 9.92 ! 6.64 13.54 13.46
Comm with partner 0.60 0.38 0.57 0.21 0.47 048 | 042 043 0.45
Aggregate comm 0.65 0.45 0.46 0.43 0.43 0.54 1 051 0.43 0.46
IPP with partner 0.65 0.91 0.33 0.79 0.54 0.68 { 028  0.64 0.62
Aggregate IPP 0.63 0.56 0.41 0.77 0.54 0.65 | 071  0.64 0.60
Correct plays with partner 7.51 12.13 9.23 1.89 9.97 9.23 11021 7.74 7.87
Correct plays by partner 6.71 5.36 9.18 4.00 8.19 9.19 : 7.67  6.21 6.43
Aggregate correct plays 6.37 7.23 5.29 2.29 6.69 6.06 | 441 7.74 7.80
Correct plays by all partners 6.81 5.48 491 3.31 5.33 5.67 | 328 6.21 6.55
Mistakes with partner 1.77 1.36 1.19 0.27 0.89 1.05 | 071 0.98 1.13
Mistakes by partner 0.00 0.00 0.08 1.64 0.92 054 1+ 055 073 0.67
Aggregate mistakes 1.15 1.39 1.81 0.69 1.43 122 ' 1.28 098 1.11
Mistakes by all partners 0.72 0.72 0.66 0.70 0.73 0.75 : 0.66 0.73 0.73
Games bombed with partner 0.04 0.01 0.01 0.38 0.04 0.02 1+ 0.07 0.15 0.15
Games bombed in aggregate 0.20 0.36 0.66 0.09 0.42 035 ' 030 0.15 0.15

Table 3: Behavioral Evaluation of Rainbow agents. Metrics “with partner” and “Aggregate” always refer to the Rainbow agent’s
own behavior, either with their training partners or across all seven match-ups. “by partner” refers to the behavior of the training
partners of that agent in its match-up with the agent (e.g. the behavior of /GG when playing with R;g¢r). “by all Partners”
refers to the aggregate behavior of the other player across all match-ups (including those with the training partners). Comm is
short for Communicativeness. Data was collected in the same sets games as table 2. The same metrics were also collected for
match-ups involving only rule-based agents and are available in our repository, but are not shown for space considerations.
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esting case. When paired with /GG, it achieves the highest
score of any pairing between a Rainbow agent and a rule-
based agent (18.25), but has the lowest self-play score of any
Rainbow agent and aggregate score comparable to Rrjgwed!

With regards to the agents below the dashed line, Rgp
achieves an average self-play score of 19.53, similar to the
scores reported in (Bard et al. 2020), but with poor aggregate
performance. Independently trained instances of Rgp tend
to play well with each other, as remarked by (Bard et al.
2020) and reproduced in (Canaan et al. 2020a), so we do not
linger on this topic here.

The R4y and R 4j+5p agents achieve good scores with
all partners except Flawed (an aggregate of 13.46 and 14.54
respectively), as well as decent self-play scores (12.89 and
15.77). This differs from the result of (Canaan et al. 2020a)
where the corresponding score for R,;; (with fewer training
steps) was 5.62.

Behavioral Analysis

Before looking at the behavioral data, an examination of
the rules that compose the Internal and IGGI agents can
give us some insight as to why Rjpj,ternal’S Strategy gen-
eralizes well to agents not seen during training and why
Riger’s does not. IGGI is the only of the six rule-based
agents that never gives a hint that does not involve a playable
card (apart from a rare edge case). A good strategy for play-
ing with /GG would probably favor immediately playing
hinted cards, even when lacking information, which might
backfire with other rule-based agents, all of which can give
hints even if their partner lacks a playable card.

Internal, on the other hand, is the only rule-based agent
that does not keep track of past hints and has no bias for hint-
ing at rank over color (or vice-versa) nor at hinting about a
card in a specific slot if it is not playable. Therefore, while
Internal prefers to hint at playable cards, its remaining
hints might seem very random. A good strategy for play-
ing with Internal might thus be more focused on reasoning
about grounded information. This might explain why agents
trained with Internal play so well with others.

While we collected individual behavioral metrics for each
individual match-up, table 3 summarizes the results for the
Rainbow agents. The most surprising result is that all Rain-
bow agents have IPP below 1, which means they often play
cards that were never hinted by their partners. This is much
lower than the IPP of the rule-based agents themselves, be-
tween 1.5 and 2. While we were surprised by the IPP of all
Rainbow agents, Rsp and R;ggr have the lowest values
for this metrics at 0.28 and 0.33, respectively, when playing
with their training partners. This means over half the cards
they play have never been hinted at. While we can not nec-
essarily infer causality, these are also the two agents with the
lowest aggregate scores other than Rpjqwed-

Rraar is also the one that makes the most mistakes in
the aggregate (1.81), which reinforces the hypothesis that it
might be blindly trusting that every card hinted by the other
player is playable. Rgp does not make many mistakes in
the aggregate compared to other Rainbow agents, so it is
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possible that the drop in performance might be simply due
to failing to realize that certain cards are playable.

While low IPP might explain why R;cgr and Rgp have
low aggregate scores, it doesn’t explain why Rr,iernal’s 18
so high, as its IPP is similar to various other Rainbow agents.
A distinguishing characteristic of R, ternqr 18 that it sees the
highest number of correct plays made by all partners out of
all Rainbow agents (6.81). In other words, R,ternql S€EMS
to have learned to give hints that benefit the other player in
all match-ups, not just Internal.

V DB and Piers are the only rule-based agents that use
probabilistic rules to play cards. It should be possible for an
agent to learn to give them hints in a way that they would
play cards very efficiently, and indeed Ry pp and Rpjers
see very high numbers of correct plays by its training part-
ners (9.19 and 8.19 per match, on average). However, this
does not transfer to games with other agents (5.67 and 5.33).

Router also does not see its companions play many cor-
rect cards per game (5.36 with Outer and 5.48 in aggre-
gate), which is curious as both Outer and Internal have the
same “Play” rules. On the other hand, Ro e plays the most
correct cards with outer (12.13) than any Rainbow agent in
their respective training match-ups. Roy e, also has the low-
est communicativeness (0.38) except for Rrjqweqd. What we
suspect is that Outer gives hints in such a helpful manner
that Roqter learns a strategy that focuses more on reacting
to its partners’ hints and playing cards than actually giving
hints. The fact that Internal is a harder partner to decypher,
with its randomized, memory-less hints, might reward the
agent for learning a more balanced strategy between hints
and plays, which would transfer better to other match-ups.

Discussion

While obviously more research is needed, we may allow
ourselves to speculate a little about the implications of these
results for teaching transferably collaborative behavior. It
seems that the right amount of reliability is an important
factor. The contrast between /GG and Internal is instruc-
tive here; agents trained with /GGJ play very well with that
agent but that policy barely transfers at all; in contrast, the
less predictable Internal agent apparently instils a policy
in its partner that transfers well. However, a highly unpre-
dictable agent such as Flawed leads its partner to develop a
policy that doesn’t work well with any partner.

Some ways to continue this line of research involve: (1)
training other types of neural network controllers, includ-
ing recurrent ones such as SAD (Foerster et al. 2018), un-
der similar regimes, (2) creating variants of the rule-based
agents to test hypotheses about what makes an agent a good
partner for learning a general policy, (3) evolving agents or
sets of agents specifically for the purpose of being a good
partner in this sense.
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