

A Declarative PCG Tool for Casual Users

Ian Horswill
Department of Computer Science, Northwestern University, Evanston IL

ian@northwestern.edu

Abstract
Declarative programming allows designers to create proce-
dural content generators by providing descriptions of de-
sired artifacts rather than bespoke algorithms to generate
them. Unfortunately, these systems are notoriously inacces-
sible, requiring considerable sophistication with formal sys-
tems, and detailed understanding of the impact of equivalent
formalizations on the system performance.
 Imaginarium is a declarative PCG system for tabletop
role playing games (TTRPGs). Following Compton’s work
on casual creators, it trades expressiveness for accessibility.
As with Nelson’s Inform 7, its source language is a highly
structured subset of English. A single sentence, such as
children are parented by at least one adult
can be used to simultaneously introduce the predicates
child, adult, and parent, along with a cardinality constraint
over the parent relation. We describe the system, its
knowledge representation language, and the issues in their
design. Together, they allow users with minimal STEM
background to engage in playful experimentation.

Introduction
Procedural content generation (PCG) systems create ran-
domized objects for use in games or other media. Systems
have been developed to create 3D models (IDV 2009),
dungeon levels (Toy et al., 1980) and even galaxies
(Wright et al., 2008). They can be built using bespoke
algorithms (Adams and Adams 2006), machine learning
(Summerville, et al., 2018), or declarative methods (G.
Smith et al., 2011), among others. These methods require
considerable expertise; while a number of systems have
been developed targeting end-users for specific problems,
such as Mario level generation (G. Smith et al., 2011),
broad coverage, end-user systems are difficult to develop.
 Imaginarium is a declarative PCG tool for tabletop role-
playing. It allows players to build constraint-based proce-
dural generators for in-game entities such as characters and
items, or networks of entities connected by relationships.

Copyright © 2020, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

 In Imaginarium, a generator is a declarative program
that specifies an ontology for some desired set of entities,
written in a highly restricted subset of English. It gener-
ates inventions, each containing one or more logical indi-
viduals (entities) with specified attributes and/or relation-
ships.
 The command, imagine a character, directs the
system to create an invention containing one individual of
the kind character. The command, imagine 10 pen-
guin clerics, directs the system to make an invention
containing 10 individuals that are both penguins and
clerics.
 The system compiles the subset of the ontology required
for the requested invention into a Satisfaction Modulo
Theories (SMT) problem,1 uses an off-the-shelf solver
(Horswill 2018a) to generate a random model, then con-
verts it back into natural language.
 Imaginarium is heavily influenced by Compton’s
work on casual creators (Compton and Mateas 2015) and
Nelson’s work on Inform 7 (Nelson 2006b, 2006a). While
ultimately a declarative programming language, it seeks to
leverage the affordances of natural language to allow non-
programmers to use it without first learning the subtleties
of first-order logic formalization or the deeper subtleties of
answer-set programming (A. M. Smith et al., 2012).
 In this paper, we describe Imaginarium’s design com-
mitments, knowledge representation and implementation.
A less technical description of an early version may be
found in (Horswill 2018b).

Example
Suppose we want to generate random cats.2 The command
imagine a cat tells the system to generate a random
object of the kind cat. It implicitly tells the system that

1 SMT is a mechanism for embedding non-Boolean variables into SAT
problems. For this paper, SMT can be safely treated as a synonym for
SAT.
2 There are in fact many cat-based TTRPGs, including Hanson’s recent
second edition of Magical Kitties Save the Day!

Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

81

cat is a kind, membership in which is indicated in English
using the noun cat. Since, this is all the system knows
about cats, it can respond only with: the cat is a cat.
 If we now tell it: a cat is large or small, it now
knows cats come in two flavors, large and small, the
distinction being indicated using the adjectives large and
small. The system now respond either with the cat is
a large cat or the cat is a small cat, those
being the only two possible cats. If we want to allow the
cats to be neither large nor small, we can change is to can
be: Cats can be large or small. This allows a cat
with unmarked size; however, there are still only three pos-
sible cats.
 If we add: Persian, tabby, and Siamese are
kinds of cat, the system will know Persian, tabby, and
Siamese are all nouns denoting subkinds of the kind cat.
We can type more statements to tell it about more kinds of
cats. When generating a cat, it will always be of one of the
specified subkinds. We might also tell the system:
Cats are longhaired or shorthaired.
Cats are grey, white, black, or ginger.
A cat can be haughty, cuddly, crazy, or
Nietzschean.

Which define two mandatory properties, color and coat
length, and one optional personality property. We can now
generate cats such as:
The cat is a large, shorthaired, white
Persian.
The cat is a longhaired, ginger, cuddly
tabby.

However, the first of these is problematic, since Persians
are longhaired by definition. We can prevent this by add-
ing constraints such as:
Persians are longhaired.
Siamese are shorthaired.
Siamese are grey.

Finally, we name our cats and let them have ages:
 Cats have a name from cat names.
 Cats have an age between 1 and 20.
The first of these tells the system that all cats have a string-
valued property, name, drawn randomly from the list in the
file: cat names.txt. It also tells the system to describe
the cat using her name rather than the generic identifier
the cat. We now get outputs like:

Puck is a Nietzschean, ginger tabby, age 12
Mr. Muffins is a large, grey, Siamese, age
2
Rover is a small, white, crazy manx, age 9

Finally, we say: cats can love other cats, which
introduces a verb love that represents an anti-reflexive,
binary relation. If we now say: imagine five cats, the
system will display a set of five random cats, together with

an interactive visualization of the loves relation as a di-
rected graph.

Comparison with Traditional Logic Programming
The foregoing 10 commands are roughly equivalent to the
16-line AnsProlog (Baral and Baral 2009) program:

entity(1..5).
cat(X) :- entity(X).
cat(X) :- persian(X).
cat(X) :- tabby(X).
cat(X) :- siamese(X).
1 { persian(X) ; tabby(X); siamese(X) } 1
 :- cat(X).
1 { age(X, 1..20) } 1 :- cat(X).
1 { name(Cat, Name) : cat_name(Name) } 1
 :- cat(Cat).
0 { large(X) ; small(X) } :- cat(X).
1 { long_haired(X) ; short_haired(X) } 1
 :- cat(X).
1 { black(X) ; white(X) ; grey(X) ;
 ginger(X) } 1 :- cat(X).
0 { cuddly(X) ; haughty(X) ; crazy(X) ;
 nietzschen(X) } 1 :- cat(X).
long_haired(X) :- persian(X).
short_haired(X) :- siamese(X).
grey(X) :- siamese(X).
{ loves(X, Y) } :- cat(X), cat(Y).

Using Clingo (Gebser et al. 2010) produces the output:

entity(1) entity(2) entity(3) entity(4)
entity(5) cat(1) cat(2) cat(3) cat(4)
cat(5) long_haired(2) persian(2)
long_haired(3) long_haired(5) persian(5)
short_haired(1) siamese(1) short_haired(4)
grey(1) grey(4) tabby(3) tabby(4) large(1)
small(1) small(2) large(3) large(4)
large(5) small(5) ginger(2) black(3)
ginger(5) cuddly(1) crazy(2) cuddly(3)
crazy(5) loves(1,1) loves(3,1) loves(4,1)
loves(5,1) loves(1,2) loves(3,2) loves(5,2)
loves(3,3) loves(4,3) loves(1,4) loves(3,4)
loves(5,4) loves(1,5) loves(3,5) loves(4,5)
loves(5,5)

While far less expressive than AnsProlog, Imaginarium
compares favorably in both conciseness and readability
within its domain of competence.
 Moreover, Imaginarium can infer most of the rules for
translating a model into natural language directly from the
syntactic structure of the program text. Other languages
would require additional declarations. These properties,

82

together with the system’s interactive design, make it much
more novice-friendly.

Design Commitments
Imaginarium commits to a number of design decisions that
have knock-on effects for other parts of the design.
 Implicit Declaration. Users can introduce new terms
without a separate “this is a noun” declaration. The system
detects new terms and infers their syntactic categories from
context. Users can write: people can know each
other, without having to first teach the system that peo-
ple is a noun or that know is a verb.
 Phrasal Lexicon. Users can designate nearly any se-
quence of words as a noun, verb, or adjective. Interna-
tional conspiracy can be used as if it were an atomic
noun without first formalizing the separate concepts con-
spiracy and international.
 Unmodified First Use. Phrasal items introduce ambi-
guity: international conspiracy could be intended
as a single phrasal noun, or as an adjective modifying a
noun; this ambiguity conflicts with implicit declaration.
Therefore, the first use of a term must be in unmodified
form. If conspiracy is to be a kind, the source text must
use it without adjectives before using it with adjectives.
 Regular Grammar with Closed-Class Words as Pars-
ing Anchors. Again, to reduce ambiguity and aid recogni-
tion of new terms, user-defined terms are separated in the
grammar by fixed tokens to ensure their boundaries are
unambiguous. Rather than allowing constructions like
adults parent children, we use adults can par-
ent many children. The fixed tokens can and many
explicitly delimit the boundaries of adult, child, and
parent. The only exception to this rule is that adjective
may modify nouns. These are disambiguated by the un-
modified first use rule.
 Individuals are Known at Compile Time. Compiling
SMT problems involves grounding first-order axioms into
propositional logic. This requires knowing the potential
extensions of predicates (the individuals to which terms
like person and parent could potentially apply). The
system must therefore know the set of individuals that exist
in the models being made, even though it will not yet know
their exact kinds and properties.
 Monotone Semantics. Unlike AnsProlog, Imaginarium
generators obey the laws of monotonic classical logic. The
models of a set of sentences are the intersection of the
models of the individual sentences. This eases debugging
at the cost of reducing expressiveness.

Knowledge Representation Language
Imaginarium’s KR language is patterned on English.

Monadic Concepts
Monadic (unary) predicates are surfaced either as (com-
mon-) nouns or as adjectives. Nouns are used to define
taxonomies of object kinds (aka classes or types). Every
individual is required to have at least one kind. Attributes
attach to kinds and are inherited by subkinds.
 Adjectives define binary and enumerated attributes of
kinds. The sentence, a person can be melancholic
adds the binary attribute melancholic to the kind per-
son. The constraint, poets are melancholic, requires
it to hold of all poets in all models. Enumerated attributes
are introduced using an “or” construction. Cars are
two door, four door, or hatchback, introduces
three new adjectives, two door, four door, and
hatchback and makes them mutually exclusive.

Relations
Dyadic predicates are surfaced as verbs. Relations can be
marked as (anti)symmetric and/or (anti)reflexive. For ex-
ample, people can’t employ themselves, marks
the verb employ as being an anti-reflexive relation be-
tween people, while children must be parented by
at least one responsible adult defines the verb
parent as a relation between adults who are also re-
sponsible and children. It also adds the axiom:

.
 Note that relations cannot be tagged as transitive (in the
logical sense) since transitivity is not first-order definable.

Properties
Properties are attributes, also attached to kinds, whose val-
ues are not surfaced through adjectives. They are currently
restricted to numeric-valued attributes, such as age, and
string-valued attributes, such as a character’s name. They
are implemented using SMT variables. For example, the
construction people have an age between 1 and
70 attaches a numeric-valued property to the person kind.

Parts
Parts are attributes whose value is another individual with-
in the underlying logic. The construction, people have
an animal called their pet, attaches a new attrib-
ute, pet, to the person kind and specifies that its value
must be a newly generated individual of the animal kind.

Individuals
Most individuals in an invention are defined by the imag-
ine command; imagine 10 characters forces the in-
vention to include 10 individuals of the character kind.
However, the user can also add specific individuals to the
ontology that must exist in all inventions. For example,

83

The Big Bad is an evil character, forces the
existence of a character individual in all models, called
The Big Bad.

Constraints
Explicit constraints specified by the user take the form of
individual statements that correspond to first-order clauses
or their generalization, pseudo-Boolean constraints. The
statement, taken from a class assignment, flying mon-
sters are winged, maps to the first-order clause:

or, in disjunctive form:

A cardinality constraint such as the following encoding of
personalities from The Sims 3:
A character is any two of absent-minded,
artistic, avant-garde, bookworm, can’t
stand art, computer whiz, eccentric, ex-
citable, gatherer, genius, green thumb,
handy, insane, natural cook, neurotic,
nurturing, perceptive, photographer’s
eye, savvy sculptor, or virtuoso.

would compile to a single pseudo-Boolean constraint:

This states that for all individuals , the number of person-
ality properties holding of , plus 2 when is not a charac-
ter, must always be 2. The system does not currently allow
an adjective to appear in two different cardinality con-
straints.

Taxonomic Relations
Finally, nouns and verbs (kinds and binary relations) can
be arranged in taxonomies, with children inheriting the
attributes of their parents. Any instance of the parent must
also be an instance of exactly one of its children. If we say
bird, reptile, and mammal are kinds of land
animal, then the system knows that bird implies land
animal and that all land animals must also be birds,
reptiles or mammals, but never more than one at once.
 Verb taxonomies provide a way of specifying an abstract
relation than can be instantiated by multiple concrete rela-
tions. For example, in Fiasco (Morningstar 2009), every
player character must have relationships with two other
players, but the specific relationships vary based on dice
and player selection. This can be encoded with something
like the following:

Characters can relate to each other.
Characters relate to 2 other charac-
ters.
Loving is a kind of relating to.
Hating is a kind of relating to.
etc.

The first statement marks relate to as a symmetric rela-
tion on characters. The second says that all characters
relate to exactly 2 characters and not themselves (the rela-
tion is anti-reflexive). And the subsequent statements give
possible verbs that constitute relating to.
 The kinds and relations each form a lattice, although
their top and bottom elements are not explicitly represent-
ed.

Development Tools
Imaginarium includes a number of quality of life features
to ease development:

 Interactive graph visualizations for the ontology
and the generated relations.

 A unit test rig allowing generators to specify sen-
tences that should/shouldn’t be satisfiable.

 Syntax highlighting for sublime text.
 Support for git clone and fetch under Windows

to make sharing dissemination of generators easi-
er.

 The ability to add buttons to the UI.
 An autograder for running batches of class as-

signments against benchmark tests.

Implementation
Imaginarium’s parser is very simple and is implemented as
a set of discrete sentence patterns.
 When generating models in response to an imagine
command, the system first compiles the relevant parts of
the ontology into a SMT problem, then uses an off-the-
shelf SMT solver to find a model, and finally converts the
model back to English.

Compilation
The compilation process works in three phases. First, the
system determines the set of logical individuals to appear
in the models. Then it generates propositions and clauses
for all monadic predicates (nouns and adjectives) by walk-
ing the lattice of kinds relevant to a given individual. Fi-
nally, it generates propositions and clauses for the verbs.
 Definitions. In the following, we will use to denote
the ordering the relation for the lattices of kinds and rela-
tions. So means is a specialization of and a
generalization of . We will use to indicate that A
is an immediate descendant of , i.e.

.
 For each individual , we know at least one kind that
it is declared to satisfy, either because it was specified in
the imagine command, or for individuals that are parts of
other individuals, it was specified in the part declaration.

84

For simplicity, we will assume there is only one such de-
clared kind for each individual; generalization is straight-
forward.
 The potential kinds of an individual , the set of all kinds
to which can possibly belong, is

. Conversely, the potential extension of a kind
, the set of individuals that can potentially be of that kind

is:

 Individual Determination. The system determines
which individuals (entities) are to exist in the model by
starting with the individual(s) requested in the imagine
command and recursively adding their parts. For example,
if user gave the command imagine a person, and the
ontology lists persons as having pets, then the system
would add an additional individual for the pet and, recur-
sively, any individuals required for the pet’s parts. Finally,
if there are proper nouns in the ontology, these are also
added regardless of the specific imagine command.
 Clauses for Monadic Predicates (noun and adjectives).
We next generate the clauses formalizing the potential
membership of each individual in each kind . To
formalize that may potentially belong to , we generate
the clauses:

The latter pseudo-Boolean constraint ensures that
holds iff exactly one holds, i.e. individuals of kind
are also of one of its immediate subkinds.
 Finally, alternative sets attached to the kind , such as,

s are , compile to pseudo-Boolean constraints:

This process is performed for every individual and for
every . Finally, the assertion is added, assert-
ing that is always of kind .
 Clauses for verbs. Let and be the declared
kinds for its subject and object positions of a verb .
 For each , and individuals , we
generate the clauses for the constraints on , i.e.
holding of and :

For all ’s immediate generalizations :

If has specializations, we require that if holds,
then one of its immediate specializations must also
hold:

Model Finding
Having generated the propositions and constraints for the
SMT problem, the system calls an off-the-shelf random-
ized solver (Horswill 2018a) to generate a random model

.

Natural Language Generation
Finally, the model is presented to the user. Natural lan-
guage sentences are generated for each individual, and the
relations defined by verbs are presented using a graph vis-
ualization.
 The NL generator is not particularly sophisticated.
Since verb information is displayed in the graph, the NL
system is primarily used to generate a noun phrase present-
ing the monadic predicates (nouns and adjectives) true of
the individual.
 Let the description of the monadic predicates that hold
of in , be . The filtered description
of , , is subset
of not already implied by other predicates in . The
head noun for the NP describing will be whatever spe-
cialization of ’s declared kind appears in . That is, it is
the unique for which . The NP is then simp-
ly the nouns and adjectives , in some arbitrary or-
der, followed by the at the end.
 The NP is then embedded in a statement of the form
“Name is a NP”, where Name is the ’s name. If has
properties, their values are added to the description.
 By default, ’s name is a mechanically generated identi-
fier such as character7. However, if it has a defined
property called name, its value is used instead. Declara-
tions can also be used to change the templates used to gen-
erate names and descriptions for specific kinds.

Future Work
Imaginarium’s KR language has a number of limitations
that present opportunities for further work. Defeasible
rules (rules that can be overridden by other rules) would be
useful. This would allow statements such as, poodles
are usually large, to be overridden by: toy dogs
are small.
 Another important capability would be better control
over a generator’s sampling distribution. While impracti-
cal in the most general case – full control would move us
from an NP-complete problem to a #P-complete one –
there are a number of limited but useful features that could
be added.

85

User Experience
In preparation for a formal user study next year, we used
the system in a course in which STEM and non-STEM
students built generators and games incorporating genera-
tors. While the system was well received, it made clear
that additional work is needed to reduce friction for non-
STEM students.
 One issue is that the system is still, in the end, a pro-
gramming language. While the program itself requires
relatively little knowledge of computing, it still requires
students to install a text editor and navigate to the proper
folder to find a source file. These are intimidating for
some students.
 It would also clearly be helpful for the system to do
more proactive consistency checking to identify likely mis-
takes. Trivial paraphrases, such as the difference between
“work for” and “be working for”, seem equivalent to users
but are treated by the system as distinct, unrelated con-
cepts. Users can waste large amounts of time debugging
seemingly strange behavior if they don’t notice there are
two versions of what they consider to be one concept.

Diversity and Inclusion
One important advantage of TTRPGs over digital games is
that they allow characters to have social identity elements
such as gender, race, and sexual orientation without stand-
ardizing rules for them. When playing a game set in the
1920s (or contemporary) US, players can make an affirma-
tive choice whether to acknowledge the historical inequi-
ties of that period in the design of their characters, or to
make deliberately anachronistic choices that better reflect
their own values. Game rules often explicitly encourage
players to discuss these issues during setup. By contrast,
digital games must fully commit to specific rules for every-
thing they model. As Compton argues (2017), they define
not only possibility spaces , but impossibility spaces. You
can only have dark-skinned elves if the designers explicitly
allowed for dark-skinned elves.
 The importation of procedural content generation into
TTRPGs thus risks the importation of digital games’ prob-
lems with it. PCG systems inevitably embody the assump-
tions and values of the humans who make them (Philips et
al. 2016). While a character generator that presumes het-
erosexuality or binary gender, or that only generates
“white” sounding character names, might match the lived
experience of its author, it could be deeply alienating to
others.
 To combat these problems, more work is needed to al-
low broader, more diverse populations of players and de-
signers to build their own generators. Equally importantly,
we need systems that allow players to easily “mod” gen-
erators designed by others, creating their own “house

rules” for PCG. Both these problems require considerably
more work.

Related Work
A number of designer-facing logic- and rule-based systems
have been developed for games. Perhaps the best known
such system is Nelson’s Inform 7 interactive fiction system
(Nelson 2006a, 2006b), which was a major influence on
this work. Nelson argues that programming languages
based on natural language, while inappropriate for general-
purpose programming, are a good match for tasks like IF
authoring, where the domain itself is natural language text.
 Compton’s work on casual creators (Compton and
Mateas 2015) is another major influence on this work, both
her arguments about trading expressiveness for accessibil-
ity, and her arguments about facilitating a user experience
of exploration and surprise while minimizing the frequency
with which users encounter complete failure. Her system
Tracery (Compton et al. 2014), a tool to allow naïve users
to develop text generators based on context-free grammars,
has literally thousands of users.
 Although uncommon, a number of logic programming
and rule-based systems have been used in video games in
the past. The Sims 3 used a simple forward-chaining pro-
duction system to allow designers to author behavior rules
based on character personality (Evans 2009).
 Prom Week (McCoy et al. 2012), and its underlying en-
gine Comme Il Faut (McCoy et al. 2011) also used a for-
ward-chaining rule-based system to track character re-
sponses to social actions.
 The Versu interactive fiction system (Evans and Short
2013) used an innovative logic programming system based
on exclusion logic. However, it proved extremely difficult
for authors to use, and so Nelson developed Prompter
(Nelson 2013), an Inform 7-like natural language front end
that proved more accessible.
 Most recently, the forthcoming City of Gangsters
(SomaSim 2021), a tycoon game set in the Chicago prohi-
bition era, uses the SMT solver used here to generate
character personalities, as well as a logic programming
system to deduce the social effects of character actions.
 Finally, there are a few examples of designer-facing
constraint-based PCG tools. The first and best known of
these is Tanagra (Smith et al. 2011), a constraint-based
Mario level editor. More recent examples include Gemini,
a game generator that uses ASP to reason about the aes-
thetics of the games it generates (Summerville et al. 2018),
and AutoDread, a backstory generator for IF characters
(Horswill and Robison 2018).

86

Conclusion
Imaginarium is a simple declarative PCG system for tab-
letop role-playing. It allows the playful creation and shar-
ing of generators by non-programmers, without their first
having to learn formal logic or knowledge representation.
While users must still read a tutorial to use it, it is signifi-
cantly more accessible than traditional logic programming
languages. That said, considerable work can be done to
increase both its usability and expressiveness.

Acknowledgements
The author wishes to thank to Ethan Robison, Kate Comp-
ton, Adam Summerville, Gillian Smith, Willie Wilson, the
students and TAs of CS 295/396, and the AIIDE reviewers
for their feedback and patience.

References
Adams, T., and Adams, Z. 2006. Slaves to Armok: God of Blood
Chapter II: Dwarf Fortress.
Baral, C.. 2009. Declarative Problem Solving and Reasoning in
AnsProlog in Knowledge Representation, Reasoning and
Declarative Problem Solving.
Compton, K. 2017. Little Procedural People in PCG Workshop,
Foundations of Digital Games Conference. Hyannis, Mass: ACM
Digital Library.
Compton, K.; Filstrup, B.; and Mateas, M. 2014. Tracery:
Approachable Story Grammar Authoring for Casual Users. In
Papers from the 2014 AIIDE Workshop, Intelligent Narrative
Technologies (7th INT, 2014), 64–67.
Compton, K., and Mateas, M. 2015. Casual Creators. In
Proceedings of the Sixth International Conference on
Computational Creativity June.
Evans, R. 2009. AI Challenges in Sims 3 in Artificial Intelligence
and Interactive Digital Entertainment. Stanford, Calif: AAAI
Press.
Evans, R., and Short, E. 2013. Versu.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.; Schaub,
T.; and Thiele, S. 2010. A User’s Guide to Gringo, Clasp, Clingo,
and Iclingo . Potsdam.
Guzdial, M.; Liao, N.; and Riedl, M.. 2018. Co-Creative Level
Design via Machine Learning in CEUR Workshop Proceedings.
Horswill, I. 2018a. CatSAT: A Practical, Embedded, SAT
Language for Runtime PCG in AIIDE-18. Menlo Park, Calif.:
AAAI Press.
Horswill, I. 2018b. Imaginarium: A Tool for Casual Constraint-
Based PCG in Workshop on Experimental AI in Games, AIIDE
2018. Atlanta, Ga.: AAAI Press.
Horswill, I., and Robison, E. 2018. What’s the Worst Thing
You’ve Ever Done at a Conference? Operationalizing Dread’s
Questionnaire Mechanic in AIIDE-18 Workshop on Experimental
AI in Games (EXAG-18). Edmonton, Canada: AAAI Press.
IDV. 2009. SpeedTree.

McCoy, J.; Treanor, M.; Samuel, B.; and Reed, A. A. 2012. Prom
Week.
McCoy, J.; Treanor, M.; Samuel, B.; Wardrip-Fruin, N.; and
Mateas, M. 2011. Comme Il Faut: A System for Authoring
Playable Social Models in Proceedings of the 7th AI and
Interactive Digital Entertainment, edited by V. Bulitko and M. O.
Riedl. Stanford, Calif.: AAAI Press.
Morningstar, J. 2009. Fiasco. Durham, NC: Bully Pulpit Games.
Nelson, G. 2006a. Inform 7.
Nelson, G. 2006b. Natural Language, Semantic Analysis, and
Interactive Fiction.
Nelson, G. 2013. Writing for Versu. San Francisco, Calif.: Linden
Lab.
Philips, A,; Smith, G.; Cook, M.; and Short, T. 2016. Feminism
and Procedural Content Generation: Toward a Collaborative
Politics of Computational Creativity. Digital Creativity 27(1):
82–97.
Smith, A. M.; Andersen, E.; and Mateas, M. 2012. A Case Study
of Expressively Constrainable Level Design Automation Tools
for a Puzzle Game in International Conference on the
Foundations of Digital Games. Raleigh, NC: ACM Press.
Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra:
Reactive Planning and Constraint Solving for Mixed-Initiative
Level Design. IEEE Transactions on Computational Intelligence,
AI and Computer Games 3(3): 201–215.
SomaSim. 2021. City of Gangsters.
Summerville, A.; Martens, C.; Samuel, B.; Osborn, J.; Wardrip-
fruin, J.; and Mateas, M.. 2018. Gemini: Bidirectional Generation
and Analysis of Games via ASP in Proceedings of the Fourteenth
Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE 2018), 123–229. Edmonton, Canada: AAAI
Press.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgard, C.;
Hoover, A. L.; Isaksen, A.; Nealen, A.; and Togelius, J. 2018.
Procedural Content Generation via Machine Learning (PCGML).
IEEE Transactions on Games.
Toy, M.; Wichman, G.; Arnold, L.; and Lane, J. 1980. Rogue.
Wright, W.; Hutchinson, A.; Chalmers, J.; Gingold, C.; and
Librande, S. 2008. Spore.

87

