
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Are Strong Policies Also Good Playout
Policies? Playout Policy Optimization for RTS Games

Zuozhi Yang,1 Santiago Ontañón1,2

1Drexel University, Philadelphia, USA
2Google Research, Mountain View, USA

zy337@drexel.edu, santiontanon@google.com

Abstract

Monte Carlo Tree Search has been successfully applied to
complex domains such as computer Go. However, despite its
success in building game-playing agents, there is little under-
standing of general principles to design or learn its playout
policy. Many systems, such as AlphaGo, use a policy opti-
mized to mimic human expert as the playout policy. But are
strong policies good playout policies? In this paper, we take
a case study in real-time strategy games. We use bandit algo-
rithms to optimize stochastic policies as both gameplay poli-
cies and playout policies for MCTS in the context of RTS
games. Our results show that strong policies do not make the
best playout policies, and that policies that maximize MCTS
performance as playout policies are actually weak in terms of
gameplay strength.

Introduction

Monte Carlo Tree Search (MCTS) tends to outperform sys-
tematic search in domains with large branching factors. The
most prominent success of MCTS is in the domain of Com-
puter Go, where an agent, AlphaGo, built using a combina-
tion of MCTS and neural networks achieved super-human
performance (Silver et al. 2016). In AlphaGo, a policy op-
timized to mimic human expert is used as the playout pol-
icy of MCTS. However, previous work has shown that hav-
ing good gameplay strength but non-optimal might not re-
sult in a good playout policy (Silver and Tesauro 2009;
Huang, Coulom, and Lin 2010; Graf and Platzner 2016).

Motivated by the question of what makes a good play-
out policy, in this paper, we empirically study the effect
of optimizing playout policies with different objectives for
MCTS in the domain of real-time strategy (RTS) games.
In almost all variations of MCTS, playout policies, also
called simulation policies, are used to select actions for
both players during the forward simulation phase of the
search process. Since the quality of the playout policy has
a great impact on the overall performance of MCTS, pre-
vious work has covered various methods to generate these
policies such as handcrafted patterns (Munos and Teytaud
2006), supervised learning (Coulom 2007), reinforcement
learning (Gelly and Silver 2007), simulation balancing (Sil-
ver and Tesauro 2009; Huang, Coulom, and Lin 2010;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Graf and Platzner 2016), and online adaptation (Silver, Sut-
ton, and Müller 2012; Baier and Drake 2010). However,
there is little generalizable understanding about how to de-
sign or learn good playout policies in systematic ways. Op-
timizing directly on the gameplay strength of the playout
policy often yields decreased performance (Gelly and Sil-
ver 2007) (an effect we also observed in preliminary exper-
iments, and which partially motivated this work). In recent
Go research, playout policies is some times abandoned and
replaced by refined evaluation functions (Silver et al. 2017;
2018).

Specifically, in this paper we evaluate the difference in be-
havior of game-playing policies when optimized for game-
play strength and when optimized for playout policy perfor-
mance. Since our goal is just to understand what makes a
good playout policy, we employ very simple policies, and
use bandit algorithms for the optimization process. μRTS 1

is used as the testbed, as it offers a minimalistic yet com-
plete RTS game environment and a collection of MCTS im-
plementations. We optimize for two objectives: 1) winrate of
the policy directly, and 2) win rate of an MCTS agent when
using the policy as the playout policy.

The rest of the paper is structured as follows. First, we
provide background on RTS games, MCTS, and policy op-
timization. Then we describe our approach for optimizing
both gameplay and playout policies where the resulting poli-
cies are less exploitable. We show examples of both types of
policies, then compare them with each other and with base-
line policies. Finally, we draw conclusions and discuss lines
of future work.

Background

Real-time strategy (RTS) is a sub-genre of strategy games
where players aim to defeat their opponents (destroying
their army and base) by strategically building an economy
(gathering resources and building a base), military power
(training units and researching technologies), and control-
ling those units. The main differences between RTS games
and traditional board games are: they are simultaneous move
games (more than one player can issue actions at the same
time), they have durative actions (actions are not instan-
taneous), they are real-time (each player has a very small

1https://github.com/santiontanon/microrts

144



amount of time to decide the next move), they are partially
observable (players can only see the part of the map that has
been explored, although in this paper we assume full observ-
ability) and they might be non-deterministic.

RTS games have been receiving an increased amount
of attention (Ontañón et al. 2013) as they are more chal-
lenging than games like Go or Chess in at least three dif-
ferent ways: (1) the combinatorial growth of the branch-
ing factor (Ontañón 2017), (2) limited computation budget
between actions due to the real-time nature, and (3) lack
of forward model in most of research environments like
Starcraft. Many research environments and tools, such as
TorchCraft (Synnaeve et al. 2016), SCIILE (Vinyals et al.
2017), μRTS (Ontañón 2013), ELF (Tian et al. 2017), and
Deep RTS (Andersen, Goodwin, and Granmo 2018) have
been developed to promote research in the area. Specifically,
in this paper, we chose μRTS as our experimental domain,
as it offers a forward model for application of Monte Carlo
Tree Search as well as existing implementations of MCTS
and stochastic policies for optimization.

μRTS

μRTS is a simple RTS game designed for testing AI tech-
niques. μRTS provides the essential features that make RTS
games challenging from an AI point of view: simultaneous
and durative actions, combinatorial branching factors and
real-time decision making. The game can be configured to
be partially observable and non-deterministic, but those set-
tings are turned off for all the experiments presented in this
paper. We chose μRTS, since in addition to featuring the
above properties, it does so in a very minimalistic way, by
defining only four unit types and two building types, all of
them occupying one tile, and using only a single resource
type. Additionally, as required by our experiments, μRTS
allows maps of arbitrary sizes and initial configurations.

There is one type of environment unit (minerals) and six
types of units controlled by players, which are:

• Base: can train Workers and accumulate resources

• Barracks: can train attack units

• Worker: collects resources and construct buildings

• Light: low power but fast melee unit

• Heavy: high power but slow melee unit

• Ranged: long range attack unit

Additionally, the environment can have walls to block the
movement of units. A example screenshot of game is shown
in Figure 1. The squared units in green are Minerals with
numbers on them indicating the remaining resources. The
units with blue outline belong to player 1 (which we will call
max) and those with red outline belong to player 2 (which
we will call min). The light grey squared units are Bases
with numbers indicating the amount of resources owned by
the player, while the darker grey squared units are the Bar-
racks. Movable units have round shapes with grey units be-
ing Workers, orange units being Lights, yellow being Heavy
units and blue units being Ranged.

"max" 
player 
units 

"min" 
player 
units 

Figure 1: A Screenshot of μRTS.

Monte Carlo Tree Search in RTS Games

Monte Carlo Tree Search (Browne et al. 2012; Coulom
2006) is a method for sequential decision making in domains
that can be represented by search trees. It has been a suc-
cessful approach to tackle complex games like Go as it takes
random samples in the search space to estimate state value.
Generally, MCTS algorithms can be broken down into the
following four stages (Browne et al. 2012):
1. Selection: Starting at root node, recursively select child

nodes according to a pre-defined tree policy until a leaf
node L is reached.

2. Expansion: If the selected node L is a not a terminal node
then add a child node C of L to the tree (also using the
tree policy).

3. Simulation: Run a simulation from C according to a play-
out policy until a terminal state is reached.

4. Backpropagation: Update the statistics of the current
move sequence with the simulation result.
Most of the classic tree policies of MCTS, e.g. UCT (Koc-

sis and Szepesvári 2006), do not scale up well to RTS
games due to the combinatorial growth of branching fac-
tor with respect to the number of units. Sampling tech-
niques for combinatorial branching factors such as Naı̈ve
Sampling (Ontañón 2017) or LSI (Shleyfman, Komenda,
and Domshlak 2014) were proposed to improve the explo-
ration of MCTS exploiting combinatorial multi-armed ban-
dits (CMABs). There have been many other enhancement
techniques of the tree policy. But since our focus in on the
playout (a.k.a. simulation) policy, we employ MCTS with
Naı̈ve Sampling in this paper for simplicity (Naı̈veMCTS).

Playout Policies in MCTS

If we had the optimal policy available, playout according
to this policy would produce accurate evaluations of states.
However, having such optimal policy is not possible in many
situations. If a policy is not one of the optimal ones, no mat-
ter how good the policy is, some error is introduced into the
evaluation and accumulated in the playout sequences. If the

145



error is unbalanced (canceled in the long run), even a strong
policy can result in a very inaccurate state evaluation. Previ-
ous work on simulation balancing (Silver and Tesauro 2009;
Huang, Coulom, and Lin 2010; Graf and Platzner 2016) ap-
proach this problem by not optimizing policy strength but
optimizing policy balance. In that way, the errors are can-
celed out in the long run.

Although the general principles to generate good playout
policies are not yet fully understood, in practice, when learn-
ing a playout policy, the policy is trained to mimic a simu-
lation balanced agent. This can be either an expert that can
evaluate states accurately or a strong agent that can anal-
yse the positions deeply. In the work of Silver and Tesauro
(2009), the expert agent is used, and in other work (Huang,
Coulom, and Lin 2010; Graf and Platzner 2016) apprentice-
ship learning of deep MCTS is shown to be effective. How-
ever, it isn’t clear that simulation balancing is the only factor
to take into account when designing playout policies. Thus,
in this paper, we take a different approach, and optimize
playout policies to maximize MCTS performance directly.

Policy Optimization in μRTS

In order to study the differences between policies optimized
for gameplay and those optimized as playout policies, we
define a very simple parametrized policy, and use an opti-
mization process to optimize these parameters.

Policy Parameterization

We employ a simple stochastic parameterization of the pol-
icy, where we define a weight vector w = (w1, ..., w6),
where each of the six weights wi ∈ [0, 1] corresponds to
each of the six types of actions in the game:

• NONE: no action.
• MOVE: move to an adjacent position.
• HARVEST: harvest a resource in an adjacent position.
• RETURN: return a resource to a nearby base.
• PRODUCE: produce a new unit (only bases and barracks

can produce units, and only workers can produce new
buildings).
• ATTACK: attack an enemy unit that is within range.

A policy is totally represented by the vector w. During
gameplay, the action for each unit is selected proportionally
to this weight vector. To choose the action for a given unit,
the following procedure is used: given all the available ac-
tions for a unit, a probability distribution is formed by as-
signing each of these actions the corresponding weight in
w, and then normalizing to turn the resulting vector into a
probability distribution. If the weights of all the available
actions are 0, then an action is chosen uniformly at random.
Notice that this defines a very simple space of policies, but
as we will see below, it is surprisingly expressive, and in-
cludes policies that are stronger than it might initially seem.

The goal of keeping the policy space simple is to be able
to find near-optimal policies (within the policy space), in a
computationally inexpensive way. The same ideas presented
here would apply to more expressive policies, parametrized

by larger parameter vectors, such as those represented by
a neural network (with more complex parameterization and
differentiable object function), for example.

Policy Optimization

Given the parameterization, we can optimize the policy for
many purposes using different optimization algorithms. In
this paper, we use Fictitious play (Brown 1951). Fictitious
play is one of the earliest learning algorithms in games that
is able to compute a Nash Equilibrium. This is interesting
since, if a policy is optimized to maximize win rates against
a single other agent, cycles might be created, where we have
three policies A, B, and C, and A beats B, B beats C, and
C beats A. To avoid these cycles and compute the least ex-
ploitable agent, we need to approximate the Nash Equilib-
rium. In each iteration of fictitious play, the best-response
against our current belief of the optimal strategy needs to be
computed. Many algorithms can be used to compute the best
response in each iteration of fictitious play.

In this paper, we used multi-armed bandit algorithms for
optimization, which, given the large amount of uncertainty
in the domain, and the small size of the parameter space,
converged faster in our experiments than other optimization
techniques such as reinforcement learning or genetic algo-
rithms. We discretized the search space for optimization, al-
lowing each weight to take values in {0, 1, 2, 3, 4, 5}. More-
over, notice that if we multiply a weight vector by a scalar
strictly larger than zero, the resulting policy is identical in
behavior. Internally, when interpreting the weight vectors as
policy, the vector will be normalized to a probability distri-
bution (that sums up to one).

To optimize a policy, we use a multi-armed bandit as fol-
lows: given an opponent policy πo, and a map, we consider
a multi-armed bandit with 66 = 46656 arms (one per possi-
ble value combination, as we have 6 parameters in w with 6
possible values each). We pull one arm from the bandit, that
represents a policy, and play one game of μRTS. After the
game, we obtain rewards of 0, 0.5 or 1 for a loss, a tie or a
win respectively. We keep iterating this process, pulling one
arm from the bandit for each game, until the bandit eventu-
ally converges to the optimal policy.

Since we have a policy with 6 parameters, the problem
has a combinatorial structure in the search space, i.e., each
of the 66 arms is a macro arm that can be seen as pulling one
arm from six different local MABs (corresponding to each of
the 6 parameters to optimize), and each local MABs has six
possible values to choose from. Thus, we can use the model
of combinatorial multi-armed bandits (CMAB) (Ontañón
2017), or combinatorial bandits for short. Specifically, we
use Naı̈ve Sampling, as it is already implemented in μRTS.

Naı̈ve Sampling is a sampling strategy for CMAB prob-
lems, where it is assumed we have a collection of n dis-
crete variables, and we need to find a value assignment (a
macro-arm) to each of them that maximizes some unknown
and stochastic reward function. As usual, Naı̈ve Sampling
decomposes this problem into exploration and exploitation.
During exploration, Naı̈ve Sampling assumes that the re-
ward of the macro-arm can be decomposed as the sum of the
expected rewards for each of the individual variables. With

146



Algorithm 1: Naı̈ve Sampling Fictitious Play(m)

Initialize the set of the Nash Equilibrium strategy N as
a set with one policy at random from the space of
policies.

for k = 1, 2, 3, . . . , T do
CMAB = new Naı̈veSampling() bandit
for k = 1, 2, 3, . . . ,K do

Randomly pick one opponent policy πo ∈ N
Choose arm πk = CMAB.sample()
r = play a game πk vs πo in map m
CMAB.observeReward(πk, r)

a∗ = CMAB.bestMacroArm()
N ← N ∪ {a∗}

this assumption, we can decompose the CMAB problem
into n child MAB problem, denoted as MAB1, . . . ,MABn.
During exploitation, this assumption is not needed, and a
global MAB, denoted as MABg is used to find the best
macro-arm amongst all the ones that were proposed in past
iterations. This global MAB ensures convergence to the op-
timal macro-arm regardless of whether the target reward can
be decomposed into per-variable rewards or not.

Fictitious Play with Bandit Optimization. In order to
find the optimal policy within the space of policies defined
by our 6-parameter vector, we use Naı̈ve Sampling within a
fictitious play framework. Specifically, we use Algorithm 1.
Given a target map m (notice that, in principle, we can use
a set of maps, but for simplicity, we just optimized policies
for specific maps in this paper), we use fictitious play as fol-
lows. We initialize a set of policies N with a single policy
chosen at random, and then execute T iterations of fictitious
play. At each iteration, we optimize a policy a∗ to be the
best response against the policies in N . To do this, we use
K iterations of Naı̈veSampling, after which we add this new
best response policy to N , and iterate again. As we discussed
above, it has been shown that N converges to the Nash Equi-
librium. Finally, since in this paper we just want to select a
single policy at the end, in our experiments, we then ran a
final Naı̈veSampling optimization process with a very large
number of iterations, trying to find the best response pol-
icy against the Nash Equilibrium N . We do this, in order to
obtain a policy represented just as a vector of 6 numbers,
and make results interpretable, so we can compare the result
of optimizing for gameplay strength, versus optimizing for
playout strength.

In order to optimize a policy for being a strong playout
policy, rather than a strong gameplay policy, we use the same
exact procedure, except that when playing a game between
πo and πk, we use MCTS agents where πo and πk are used
as the playout policies.

Experiments and Results

In this section, we describe the experiment set up and results.
Specifically, we report three experiments:
• Optimizing policies for gameplay strength,
• Optimizing policies for being good playouts,

• Comparing the resulting policies of the two previous ex-
periments, to gain insights into what makes a good play-
out policy.

Three different maps are used to test the generalizability
of our comparison. The maps (shown in Figure 2) are:

• Map 1: 8x8/basesWorkers8x8A.xml: In this map of size
8 by 8, each player starts with one base and one worker.
Games are cut-off at 3000 cycles.

• Map 2: 8x8/FourBasesWorkers8x8.xml: In this map of
size 8 by 8, each player starts with four bases and four
worker. Games are cut-off at 3000 cycles.

• Map 3: NoWhereToRun9x8.xml: In this map of size nine
by eight, each player starts with one base and the players
are initially separated by a wall of resources, that needs to
be mined through in order to reach each other. Games are
cut-off at 3000 cycles.

Bandit Optimization for Gameplay Strength

In the first experiment, we optimize directly for gameplay
strength of the policy for each map. For gameplay policy
optimization, we run T = 500 iterations of fictitious play.
And during each iteration of fictitious play, we run a bandit
optimization of K = 2000 iterations. The final policy is
obtained by optimizing against the final Nash Equilibrium
N of fictitious play for 50000 iterations of Naı̈veSampling.
To reduce variance, instead of running a single game, we
run 20 games in parallel and use the average as the actual
reward.

Figure 3 shows the gameplay strength of the optimized
policies in each of the three maps against two baseline
policies: Rnd and RndBiased which correspond to two
base agents included in μRTS (RandomAI and Random-
BiasedAI), and against the policies optimized as playouts
(which we will describe in the next section). Rnd is a ran-
dom agent with uniform weight vector and RndBiased is a
biased random agent where HARVEST, RETURN, and AT-
TACK has five times the weights than other action types (ap-
proximate weight vector [0.06, 0.06, 0.28, 0.28, 0.06, 0.28]).
We report the win-rate in a round-robin tournament repeated
200 times. So in each optimization and each map, each pol-
icy plays 600 games.

The gameplay-optimized policies achieved 0.997, 1.00,
and 0.862 winrate respectively in the three maps, showing
that when compared against the other policies in the policy
space, these are, as expected very strong policies compared
to the baselines. These results provide a starting point for
comparison.

Bandit Optimization for Playouts

For playout policy optimization, due to the fact that it is ex-
tremely slow with MCTS in the loop, we only run T = 20
iterations of fictious play and K = 1000 iterations of ban-
dit optimization. The final policy is obtained by optimizing
against the final Nash Equilibrium N of fictitious play for
10000 iterations of Naı̈veSampling. To reduce variance, in-
stead of running a single game, we run 20 games in parallel
and use the average as the actual reward.

147



Figure 2: The three maps used in our experiments

0.0

0.2

0.4

0.6

0.8

1.0

Map1 Map2 Map3

Rnd RndBiased Opt. for gameplay Opt. for playout

Figure 3: Round-robin Winrate Comparison of Optimized
Policies as Gameplay Policies

During gameplay, we severely limit the computation bud-
get of MCTS in order to reduce computational cost, and only
allow the agents 100 iterations of MCTS per move (which
is very low). The playout policy simulates forward for 100
game cycles and returns the state evaluation from the pre-
defined evaluation function in the standard implementation
of Naı̈veMCTS in μRTS.

Looking again at Figure 3, which shows a comparison
of the gameplay strength of all the optimized policies. We
see that policies optimized as playout policies are very weak
when it comes to playing the game. For example, in map2,
the policy that was optimized for playouts, won 0% of the
games. It was not even able to win a single game against the
Rnd agent, which just selects actions at random.

The picture looks very different when we look at Figure
4, which shows the overall winrate of a similar round-robin
experiment, but this time when used as playout policies of
a Naı̈veMCTS agent. What we can see is that RndBiased
(the default playout policy of Naı̈veMCTS in μRTS) is a bet-
ter playout policy than Rnd. The policy optimized for game-
play strength is a much better policy still, but the policy op-
timized for playout even stronger. This is very interesting,
as it shows that there are policies that are very weak when
used as gameplay policies result in very strong performance
when used as playout policies. For example, pair-wise win
rates in these round-robin tournaments are reported in Tables
1 and 2, where we can see that Naı̈veMCTS using a pol-
icy optimized for playouts defeated standard Naı̈veMCTS

0.0

0.2

0.4

0.6

0.8

1.0

Map1 Map2 Map3

Rnd RndBiased Opt. for gameplay Opt. for playout

Figure 4: Round-robin Winrate Comparison of MCTS
Agents using Optimized Policies as Playout Policies

(which uses RndBiased as the playout policy), 96%, 97%
and 99% of the times in the three maps respectively!

Comparing Gameplay Policies vs. Playout Policies

We have now seen that policies optimized as gameplay poli-
cies achieve very strong gameplay, and are better than ran-
dom policies for playouts, but we can get even stronger
playout policies by directly optimizing for this. Let us com-
pare the actual policies that resulted of our optimization pro-
cesses to gain insights into the types of policies that are good
for each task.

The Left-hand side of Figure 5 shows a visualization of
the three resulting policies for gameplay strength optimiza-
tion, which correspond to the following three policies:

• In Map 1: [0.00, 0.00, 0.20, 0.20, 0.30, 0.30]

• In Map 2: [0.00, 0.00, 0.00, 0.25, 0.00, 0.75]

• In Map 3: [0.00, 0.00, 0.07, 0.29, 0.29, 0.35]

The middle three policies of Figure 5 represent the three
playout optimized policies for each of the maps, correspond-
ing to the following three policies:

• In Map 1: [0.11, 0.00, 0.00, 0.11, 0.22, 0.56]

• In Map 2: [0.67, 0.00, 0.00, 0.17, 0.17, 0.00]

• In Map 3: [0.06, 0.06, 0.28, 0.28, 0.06, 0.28]

Finally, the right-hand side shows Rnd and RndBiased.

148



Table 1: Pairwise gameplay winrate comparisons for maps
1, 2, and 3.

Rnd RndBiased Gameplay Playout
Rnd - 0.05 0.00 0.58

RndBiased 0.95 - 0.01 0.97
Gameplay 1.00 0.99 - 1.00

Playout 0.42 0.03 0.00 -
Rnd RndBiased Gameplay Playout

Rnd - 0.00 0.00 1.00
RndBiased 1.00 - 0.00 1.00
Gameplay 1.00 1.00 - 1.00

Playout 0.00 0.00 0.00 -
Rnd RndBiased Gameplay Playout

Rnd - 0.36 0.10 0.50
RndBiased 0.64 - 0.19 0.70
Gameplay 0.90 0.81 - 0.88

Playout 0.50 0.30 0.12 -

Table 2: Pairwise winrate comparisons for maps 1, 2 and 3,
when using the policies as playout policies for Naı̈veMCTS.

Rnd RndBiased Gameplay Playout
Rnd - 0.34 0.06 0.04

RndBiased 0.66 - 0.12 0.04
Gameplay 0.94 0.88 - 0.29

Playout 0.96 0.96 0.71 -
Rnd RndBiased Gameplay Playout

Rnd - 0.37 0.15 0.00
RndBiased 0.63 - 0.17 0.03
Gameplay 0.85 0.83 - 0.12

Playout 1.00 0.97 0.88 -
Rnd RndBiased Gameplay Playout

Rnd - 0.20 0.02 0.04
RndBiased 0.80 - 0.07 0.01
Gameplay 0.98 0.93 - 0.26

Playout 0.96 0.99 0.74 -

An interesting thing to note is that the weight for the
NONE and MOVE actions in policies optimized for game-
play is always 0. Which basically means that what the opti-
mization process has found is that if there is any other action
that is available, that should be preferable to either MOVE
or NONE. And an extreme policy is the optimal policy for
map2, where, since the agents already start with 4 workers,
which is enough to attack, full priority is given to attack, and
weight 0 is given to even harvesting new resources. How-
ever, when optimizing for playout, 0 weight is given to AT-
TACK in map2, and NONE has the highest weight instead.
Moreover, both for gameplay nor playouts, no policy set a
weight different than 0 for the MOVE action, which means
that moving units is only done if none of the other actions
with weight higher than 0 are available.

Map2 is interesting. It is the most “chaotic” map of the
three we used, as players start very close to each other.
We hypothesize, thus that there is a high degree of uncer-
tainty in playout evaluations in this map, as combat results
from stochastic playouts can vary wildly. Thus, in this map,
the optimization process has opted for a playout policy that

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Map1 Map2 Map3 Map1 Map2 Map3

Opt. for Gameplay Opt. for Playout Rnd RndBiased

NONE MOVE HARVEST RETURN PRODUCE ATTACK

Figure 5: Resulting Weight Vectors for Each Map from Both
Optimization Process

mostly keeps units standing still (executing the NONE ac-
tion, which makes units just wait doing nothing). In this way,
attacks are minimized during playouts, making the evalua-
tion function be applied to a state that is more similar to
the state right before the playout started, which might result
in a more stable evaluation. In maps that are less “chaotic”,
such as map1 and map3, however, playout policies include a
strong weight for attack.

Another interesting result is that policies optimized for
different maps are very different, and thus, subsequent stud-
ies should look into generalized policies for groups of maps.

Conclusions

The long term goal of this paper is to understand playout
policies in MCTS and thus provide guidance to designing
more effective playout policies. Specifically, we report an
empirical study on optimizing and comparing policies with
two different goals, gameplay strength and playout strength
in the domain of RTS games.

By optimizing very simple parametrized policies, our re-
sults suggest that there is a major difference between the
policies that are optimized for different objectives. Fur-
thermore, compared to baseline policies, playout-optimized
policies performs well as playout policy, as expected, but
very poorly as gameplay policy. Also, for our simple policy
parameterization, optimizing policies for gameplay strength
is better than using random policies, but is not as good as
optimizing them directly for playouts. Note that it still needs
to be investigate if the same holds in other domains or more
complex policy parameterization.

For future work, we would like to further investigate the
optimization process of the playout policies, with the long
term goal of obtaining an explicit optimization objective that
a policy should be optimized for in order to be a good play-
out policy (rather than the computationally costly process
used in this paper, of optimizing them using MCTS in the
optimization loop). A potential direction is to adapt simu-
lation balancing into the domain of RTS games where the
action space is combinatorially structured.

149



References

Andersen, P.-A.; Goodwin, M.; and Granmo, O.-C. 2018.
Deep RTS: A game environment for deep reinforcement
learning in real-time strategy games. In 2018 IEEE Confer-
ence on Computational Intelligence and Games (CIG), 1–8.
IEEE.
Baier, H., and Drake, P. D. 2010. The power of forget-
ting: Improving the last-good-reply policy in monte carlo go.
IEEE Transactions on Computational Intelligence and AI in
Games 2(4):303–309.
Brown, G. W. 1951. Iterative solution of games by ficti-
tious play. Activity analysis of production and allocation
13(1):374–376.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.
Coulom, R. 2006. Efficient selectivity and backup operators
in monte-carlo tree search. In International conference on
computers and games, 72–83. Springer.
Coulom, R. 2007. Computing “ELO ratings” of move pat-
terns in the game of go. ICGA journal 30(4):198–208.
Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in UCT. In Proceedings of the 24th international
conference on Machine learning, 273–280.
Graf, T., and Platzner, M. 2016. Monte-Carlo simulation
balancing revisited. In 2016 IEEE Conference on Computa-
tional Intelligence and Games (CIG), 186–192. IEEE.
Huang, S.-C.; Coulom, R.; and Lin, S.-S. 2010. Monte-
Carlo simulation balancing in practice. In International
Conference on Computers and Games, 81–92. Springer.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Munos, S. G. W., and Teytaud, O. 2006. Modification of
UCT with patterns in monte-carlo go. Technical Report RR-
6062 32:30–56.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game AI research and competition in StarCraft.
IEEE Transactions on Computational Intelligence and AI in
games 5(4):293–311.
Ontañón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
Ninth Artificial Intelligence and Interactive Digital Enter-
tainment Conference.
Ontañón, S. 2017. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665–702.
Shleyfman, A.; Komenda, A.; and Domshlak, C. 2014. On
combinatorial actions and CMABs with linear side informa-
tion. In ECAI, 825–830.
Silver, D., and Tesauro, G. 2009. Monte-Carlo simulation

balancing. In Proceedings of the 26th Annual International
Conference on Machine Learning, 945–952.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354–359.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science
362(6419):1140–1144.
Silver, D.; Sutton, R. S.; and Müller, M. 2012. Temporal-
difference search in computer go. Machine learning
87(2):183–219.
Synnaeve, G.; Nardelli, N.; Auvolat, A.; Chintala, S.;
Lacroix, T.; Lin, Z.; Richoux, F.; and Usunier, N. 2016.
Torchcraft: a library for machine learning research on real-
time strategy games. arXiv preprint arXiv:1611.00625.
Tian, Y.; Gong, Q.; Shang, W.; Wu, Y.; and Zitnick, C. L.
2017. Elf: An extensive, lightweight and flexible research
platform for real-time strategy games. Advances in Neural
Information Processing Systems (NIPS).
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezh-
nevets, A. S.; Yeo, M.; Makhzani, A.; Küttler, H.; Aga-
piou, J.; Schrittwieser, J.; et al. 2017. StarCraft II: a
new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782.

150


