
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Dynamic Guard Patrol in Stealth Games

Wael Al Enezi, Clark Verbrugge
McGill University
Montréal, Canada

wael.alenezi@mail.mcgill.ca, clump@mcgill.ca

Abstract

Guard patrols are common in stealth games, both for a sense
of realism and to form a basic challenge to acting out covert
behaviour. Automated patrol route construction, however, is
difficult, as simple approaches based on randomized move-
ment or goal selection tend to result in unrealistic and overly
repetitive guarding motion, and poor area coverage. In this
work we introduce an approach based on modelling location
“staleness” in a manner similar to occupancy maps, but ap-
plied to both a grid representation and a dynamically con-
structed coverage-visibility mesh. The latter provides a con-
tinuous abstraction of the game environment which can be
efficiently used and maintained for real-time decision mak-
ing. We use Unity3D and multiple game levels to compare
our grid and mesh-based results, showing the advantages of
the visibility mesh over the grid-based approach.

Introduction

A basic challenge in stealth games requires players avoid
detection by enemy agents (guards). The choice of guard
motion depends on context, but guards are often expected
to patrol, or continually traverse a given area in search of
enemy (in this case player) agents. The guard behavior can
be hard-coded by the designers for the game level, but craft-
ing such routes to guarantee coverage represents is a design
concern, and in the case of procedurally generated levels, a
hard-coded patrol design may be impossible. Dynamically
constructing patrol routes is thus desirable, reducing design
effort and allowing even hard-coded game levels to have
novel guard behavior in each replay.

Patrol route construction can be formalized in terms of
“staleness.” Given a game-level partitioned into n regions or
points, we associate a “staleness” value si with each region.
Staleness increases over time, and is reset when the region
is observed by a patrolling agent. The quantified goal then,
is to create a patrol route that minimizes overall staleness.

In this work we examine two approaches to automated pa-
trol route construction. Our design attempts to give guard
AI a simplified representation of the world by modelling
relative staleness of locations, encoded in either a typical,

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

discrete grid-based context, similar to the use of occupancy
maps in approaches to exploration problems (Moravec 1989;
Isla 2005; Campbell and Verbrugge 2019), or in a continu-
ous, mesh-based spatial decomposition. The latter has the
advantage of eliminating discretization artefacts and provid-
ing generally better performance, but introduces complex-
ity in mesh construction and in maintaining staleness during
mesh transformations or recomputations.

We evaluate our approaches experimentally, testing dif-
ferent pathing decision processes with both world represen-
tations over multiple game levels modelled in Unity3D. Our
results show that both approaches have similar behavioural
properties, although the mesh-based approach (or VisMesh)
has significantly better runtime performance, and has bet-
ter motion characteristics with fewer artefacts. These results
demonstrate that full-level, dynamic patrol construction can
be efficiently realized in a game context.

The major contributions of this work consist of:

• We describe two approaches to dynamic, runtime patrol
route construction, using either a simple grid-based model
or a more flexible space decomposition1. Our techniques
are applicable to both defining patrol routes for good level
coverage, as well as for solving exhaustive exploration
problems.

• We experimentally evaluate and compare these ap-
proaches using multiple (greedy) decision heuristics ap-
plied to multiple game maps. Implementation within
Unity3D shows both approaches are effective, and that a
mesh-based approach can be efficiently realized in a real-
time game environment.

Related Work

Computing patrol routes is a problem related to area cover-
age. This problem has been had relatively little investigation
from a games perspective, but has received attention in terms
of algorithm complexity and in the context of robotics.

Theoretical Work

Perhaps the most well known theoretical work in area cov-
erage is the Art Gallery Problem (AGP) (O’Rourke 1987),

1A real-time video example of the result can be viewed at https:
//streamable.com/bmsr00

160



where Chvátal showed that �n/3� cameras with 360◦ infi-
nite field of view are sufficient, and sometimes necessary
to cover an n-vertex simple polygon (Chvátal 1975). Mo-
bile guards have been considered as an extension to this
base problem, and is sometimes referred to as the Watchmen
Route Problem (WRP). The goal is to calculate the short-
est path in a polygon such that the whole polygon can be
covered from any point on that path. Optimally solving this
problem is proven to be NP-hard (Chin and Ntafos 1986),
although for the general case of being able to start from any
point in the polygon there is a O(n5) solution (Tan 2001).

Literature also shows a variety of multi-agent scenar-
ios that apply to the coverage problem (Laguna and Bhat-
tacharya 2019; Ashok and Reddy 2019). Guards in these
studies are also assumed to have unlimited range and a 360◦
view angle. More applicable to most games are the class
of “lawnmower problems,” which assume a more restricted
field of view (Arkin, Fekete, and Mitchell 2000), and address
coverage as a problem similar to finding the shortest route
for a lawnmower to cut all grass in a field. Game guards
with limited field of view can then be considered similar to
lawnmowers. Efficient solutions to these problems, however,
tend to result in a dense, zig-zag patterns (Falaki et al. 2020),
which while good for coverage are not realistic for guards
simulating human observation, even with a limited field of
view.

Robotics Work

A common representation used for coverage in robotics
research is a grid-based world representation—the space
is decomposed into a grid of uniformly distributed nodes
(Moravec and Elfes 1985). In this representation, cover-
age is accomplished by traversing all reachable nodes, de-
terministically or probabilistically (Elfes 1987). Grid-based
approaches are necessarily resolution-dependent, with com-
pleteness relying on the granularity of the grid. Although
one of the simplest approaches to problems based on space
decomposition, for larger spaces, this method becomes com-
putationally expensive (Thrun 1998).

Using grid-based representation in robotics allowed for
the emergence of a common algorithm for exploring an en-
vironment (Moravec 1989). Occupancy map algorithms, for
example, utilize the existing grid representation of the envi-
ronment, associating each node with a probability that the
corresponding location is occupied, or has other properties,
such as explored, traversable, etc. (Moravec and Elfes 1985).

Games Work

The use of occupancy maps in pursuit and patrol expands to
the field of games as well. A study used this method to pre-
dict opponent position in Counter-Strike: Source. It showed
a human-like behaviour even in the mistakes it committed in
the prediction task (Hladky and Bulitko 2008).

Occupancy maps were also used as a core mechanic in the
AI of a commercial game as well. Third Eye Crime is a game
that introduced an interesting method that incorporates occu-
pancy maps to create an improved knowledge representation
for agents to create a more realistic pursuit and search behav-
ior in stealth scenarios (Isla 2013). In Third Eye Crime, after

the intruder is discovered and the line of sight has broken, a
probability distribution is diffused to the nearby locations.
The probability represents the likelihood of the intruder to
be in that location (Isla 2005). This resulted in an intelli-
gent guard behavior, however, the algorithm implementation
was limited to take place after an intruder has been detected.
Before that, guards were either static or patrolling in a pre-
scripted pattern, and did not have intelligent patrol logic to
cover the game world.

Occupancy maps were also used to create dynamic, ex-
ploratory behavior for an NPC in NetHack, a turn-based
roguelike game (Campbell and Verbrugge 2019). Since the
game’s representation is already a grid-based, the algorithm
utilized that information and created an occupancy map to
guide the exploration to unseen areas by following a sim-
ple greedy approach. Another grid-based approach to explo-
ration used potential fields to guide an NPC in navigating an
open real-time strategy (RTS) game space while consider-
ing the fog of war (Hagelback and Johansson 2008). Occu-
pancy maps and related systems provide a simple yet power-
ful architecture for the task of coverage and patrol. A major
drawback, however, is in relying on simple discretizations
of the game world. This method can be costly in larger and
obstacle-rich game worlds, where more fine-grained grids
are required to give flexibility in movement choices and to
best conform to the level geometry.

Very little research has been directed specifically at gen-
erating guard patrols in games. Work by Xu, Tremblay, and
Verbrugge aimed at guard movement and patrol patterns,
using a generated roadmap in the game level and adding
a grammar-based route and behaviour construction (2014).
This approach produced visually interesting results, but of-
fered only relatively simple, short guard paths, with no at-
tempt to ensure overall coverage. Other work by the same re-
search group showed an approach to exhaustive exploration,
a companion problem to patrol, based on constructing a tour
of camera locations generated by solving the AGP (Chowd-
hury and Verbrugge 2016).

However, this approach is not designed to handle agents
with partial field of view. A recent study by Seiref heuristi-
cally solved WRP on a grid-based environments, however, it
does not address real-time scenarios which is a requirement
in most commercial games (Seiref et al. 2020).

Methodology
Our method aims to provide guards with a more sophis-
ticated knowledge representation that adjusts to different
game scenario parameters, such as the guard’s field of view’s
radius or angle, so that even when used with a very simple
decision making AI it produces more intelligent behavior.

The main idea behind this representation is to associate
game areas with a measure of how often they were covered
by the guards’ vision. In stealth games, the guard’s vision
is usually depicted in the form of a cone of a fixed radius
and angle, which is referred to as the field of view (FoV).
In our implementation, to keep track of the covered region,
we geometrically union the area seen by the guard at a time
step t with the FoV at time step t + 1. We refer to this as
the covered region. Figure 1 shows an example of how the

161



covered region expands. The game space is explored once
the covered region equals the map region.

Figure 1: The progression of the covered region in a patrol
route

In our study we consider two variations on this idea
based on two world representations: grid-based and space
decomposition-based, which we refer to as the VisMesh
approach. For navigation, both representations use the
NavMesh.

Grid-Based

In this approach, the space is discretized into a grid of nodes,
and each node is either walkable or non-walkable. We build
on this by associating each node with a “staleness” value
representing how long it has been since that area (node) was
last seen. At the beginning of the patrol shift, the staleness of
each node is set to 0. Then, at a fixed time-step, the staleness
increases for each node by a fixed rate until it reaches a max
value.

Once a node is in the covered region, its staleness value is
reset and as long as that node remains in the covered region
its staleness is fixed to 0.

Space Decomposition-Based (VisMesh)

In this approach, the world is modelled by a polygonal mesh.
To create the VisMesh, we consider the overall space geom-
etry which consists of an outer simple polygon with holes
(obstacles). Then, we incorporate the covered region into the
overall space geometry by taking the geometric difference
between the overall space and the covered region. The result
will be one or more simple polygons with or without holes
in them. The interior of the result is the uncovered region.
Figure 2 further explains this step.

Figure 2: The covered region (blue) is subtracted from the
overall space geometry (green) and result in the uncovered
regions (red)

After that, we partition the covered and uncovered regions
into a mesh of convex polygons. For the decomposition, any
convex decomposition algorithm will work, however, for our
implementation we used Hertel-Mehlhorn (1985). The result
is a mesh of convex polygons that are either contained in the

covered region, referred to as seen polygons; or which lies
outside the covered region, the unseen polygons. Convexity
is not strictly required in our design, but it simplifies the
construction and allows us to build on existing algorithms.

After building the mesh, we associate each convex poly-
gon with a staleness value. In seen polygons, the staleness
is set to 0, and in unseen polygons, the staleness is calcu-
lated by the weighted staleness sum of the intersecting poly-
gons from the VisMesh of the previous time step. This will
be further explained in the next section. Lastly, the unseen
polygons staleness is incremented by a fixed rate.

The process of reconstructing the VisMesh and incre-
menting the staleness of the unseen polygons is potentially
expensive if done every frame. In our implementation we
compute it at every waypoint in the guard’s generated path.
An alternative approach would be to compute it over a fixed
number of frames, which allows one to scale the approach
by trading accuracy for performance.

Updating Knowledge Representation

The update is straightforward for the grid-based approach.
We increase the staleness of the nodes outside the covered
region at the defined rate per time unit, and we set the stale-
ness of the nodes inside the covered region to be 0.

As for the VisMesh approach, when the guard moves we
repartition the space from scratch. This results in a new
VisMesh that contains seen polygons and unseen polygons.
Staleness of seen polygons is trivially set to 0; however, for
the unseen polygons, we need to map the staleness values in
the previous mesh decomposition to the new mesh. Staleness
is thus calculated from the weighted staleness of intersect-
ing polygons from the previous VisMesh, then the staleness
of the unseen polygons is increased by the defined rate. Al-
gorithm 1 further explains the Staleness calculation for the
VisMesh.

Algorithm 1 VisMesh staleness calculation

Require: Vprevious, the previous VisMesh.
Require: Vcurrent, the current VisMesh.

1: for each vc ∈ Vcurrent do
2: Stale(vc)← 0
3: if IsUnseenPolygon(vc) then
4: for each vp ∈ Vprevious do
5: if DoIntersect(vc, vp) then
6: aDiff← intersectArea(vc, vp)/Area(vc)
7: Stale(vc)← Stale(vc)+Stale(vp)∗aDiff
8: end if
9: end for

10: end if
11: end for

As the guard patrols the area, the covered region expands.
Once the covered area equals the overall area the guard has
explored the whole map. However, the task of the guard is
to continue patrolling the area, not just to explore it. To do
that, the covered area must be reset in some fashion so sub-
areas can again become stale. The condition of resetting the
covered region can result in two patrol modes.

162



Patrol Modes

We defined two main patrol modes, differing in how often
the covered area is reset. The first is an explorative patrol;
the covered region is reset when it equals the overall area.
The second is a simplified patrol; in it, the covered region is
reset when it crosses a fixed percentage of the overall space
area.

Our goal of creating two modes is to explore various pos-
sible patrol behaviors. For example, In the case of the explo-
rative patrol, the guards are guaranteed to cover the over-
all space at least once during a patrol shift. This is because
the covered space will be reset once the overall area is ex-
plored, and thus the unseen area will be precisely calcu-
lated. Once the overall space is covered, the guards will re-
explore the space until it is covered again and so on. While
this method guarantees complete coverage. It might be more
suited for exploration scenarios where the agent is searching
for a static object.

In the simplified patrol, the covered area is reset more of-
ten. This will restrict the guard’s covered space not to exceed
a fixed percentage of the overall space, which in turn will
allow the unseen area to be diffused when re-decomposed.
When the vision mesh is updated, recently seen polygons
might be merged with unseen polygons with high staleness.
This diffuses the corresponding sub-space and distributes
the staleness over it. We refer to this as staleness diffu-
sion. Figure 3 shows an example of how staleness is diffused
when updating the VisMesh. In our setup, we considered the
reset threshold to be 25%. We expect this value to provide a
good balance of the staleness diffusion in the map.

Figure 3: Example of how staleness is diffused after updat-
ing the VisMesh. The darker the region the staler it is (solid
black for obstacles).

After updating the knowledge representation, whether it
is the grid-based or the VisMesh, the guard plans a path to
investigate a certain location.

Decision-Making

One of the major advantages of our approach is that it al-
lows the implementation of various decision-making strate-
gies in constructing patrol routes. Qualitatively, we observe
that even the most basic behavior of simply finding the path
to (the centroid of) the stalest polygon in the space already
demonstrates a very believable patrol behaviour, better than
simple randomized approaches, and without the cost and
complexity of manual scripting.

We expect that the guard’s performance can be further
enhanced by implementing more sophisticated decision-
making techniques like behavior trees, GOAP, or HTNs.

Experimental Context

To test our approach, we recreated, using Unity3D, a sim-
plified top-down representation of several maps from com-
mercial stealth games, as well as some synthetic tests (not
all of which we can show here). Each scenario involves a
fixed-time for a patrol simulation, beginning with the guard
located randomly in the game space and tasked with pa-
trolling the game space according to our different represen-
tations, patrol modes, and decision strategies. In our setup,
we tested multiple episodes for each combination of the fol-
lowing variables:

• World Representation: Grid-based or VisMesh.

• Patrol Mode: Explorative or Simplified.

• Strategy: This is the strategy the guard used to patrol the
game space. It greedily chooses the next map unit and
pathfinds to it using a navigation mesh; In VisMesh, it will
go to the centroid of the target polygon. In grid-based, it
will go to the position of the node. We consider two vari-
ants, one based on absolute staleness, and one weighting
distance and staleness:

– Stalest Unit: The guard goes to the map unit with the
highest staleness.

– Weighted Distance Stalest Unit (WDS): In this strat-
egy the guard considers both staleness and (Euclidean)
distance. We assess each unit (node or polygon-
centroid) with the fitness value shown in equation 1.

WDS(x) =
1

D(x)
+ Stale(x) ∗ c (1)

Where WDS(x) is the fitness value for the map unit x,
D(x) is the unit’s Euclidean distance from the guard,
Stale(x) is the staleness value of x, and c is a coeffi-
cient to reduce the weight of staleness compared to the
distance. To give more weight to the distance, and as-
suming fairly large Stale values, we set c to be 0.01.

– Random: We consider this as a baseline strategy. The
agent randomly chooses a polygon in the NavMesh in-
dependent of staleness, and plans a path to a random
point in that polygon.

• Game Map: We chose several maps to use in testing.
Most are derived from stealth-based commercial games.
Figure 4 shows the layouts of these maps. For larger
maps we selected a representative excerpt to reduce test-
ing time. The maps are:

(a) The “Docks” level from Metal Gear Solid 1.
(b) A map created by Damián Isla in his GDC’09 Demo

(Isla 2014 accessed June 11 2020).
(c) An excerpt of the “San Cristobal Medical Facility: Ba-

sic care unit” from Alien: Isolation.
(d) An excerpt of of the “Arkham mansion” from Batman:

Arkham Asylum.

163



(a) Metal Gear Solid:
Docks

(b) Damián Isla
GDC’09 Demo Level

(c) Alien: Isolation (d) Batman: Arkham Asylum

Figure 4: Game Maps

Results
For evaluating the performance of our methods, we ran 60
episodes of each parameter combination on each map, con-
sidering different measures of overall patrol quality. For all
maps we find common observations on the performance, and
thus shown only a selection of results here.

Average Staleness

The staleness of a location indicates the degree of how often
it is surveyed, and thust the goal of the guard is to keep the
staleness of an area as low as possible. To measure that, we
consider the average staleness of the unseen region; a low
average staleness represents a well-covered area.

Figure 5: Average Staleness progress for the explorative
patrol in Alien: Isolation. Orange represents VisMesh, and
blue grid-based, with dotted lines for the Stalest strategy and
solid lines for WDS. Shaded area represent two standard de-
viations. The performance of Random is excluded, as it is
unable to explore exhaustively.

Figure 5 shows results for the explorative mode. Grid-
based and the VisMesh WDS strategy have similar perfor-
mance, with a see-sawing average staleness as exploration
episodes are reset. The VisMesh Stalest unit strategy per-
forms notably worse—as the guard patrols, they sometimes

leave small shards of unseen polygons, and the relative uni-
formity of staleness values with a lack of a distance factor
in target selection means these are overlooked as the guard
moves to other unseen polygons.

Figure 6 shows the simplified patrol performance. The
drawback of VisMesh guard using Stalest unit strategy is
overcome, since staleness is diffused which results in larger
polygons with a higher difference in the staleness between
them. Eventually, this creates a larger difference between the
staleness and distances to the centroids between polygons.
The random guard, performed the worst since it left several
areas unseen.

Figure 6: Average Staleness progress for the simplified pa-
trol in Alien: Isolation

Treasure Hunt

A patrol route should also be effective at finding objects (or
other agents) hidden in the space. To evaluate this, at the be-
ginning of each patrol shift, we randomly distribute 50 “pel-
lets” in the walkable area. The guard does not know of their
locations or count. Each time a pellet lies inside the guard’s
FoV, it is considered to be found and will be removed, and
randomly relocated to any walkable location outside the cur-
rent FoV. This setup provides a quantitative measure of how
good the guard is at continually investigating unseen areas.

Figure 7 shows the results, measuring number of pellets
found over real-time. We focus on Simplfied patrol results.
Here we observe the VisMesh guard finds pellets at a faster
rate than other combinations. In VisMesh, the guard is en-
couraged to spend more time traversing to different loca-
tions, while in the other modes the guard focuses more on
covering the surrounding area and spends a longer portion
of the patrol shift rotating to cover the nearby locations. This
results in the guard moving a smaller distance. This is further
confirmed in figure 8, where we replace time with distance
travelled on the x-axis, showing the VisMesh and Random
guards travelled longer distances.

Scalability of World Representation

Performance is a major concern in games, and it is important
to evaluate the scalability of our model, which we measure
in terms of of memory cost and frames per second (FPS) in
relation to map size.

164



Figure 7: Found pellet progress over time for the strategies
and World Representation for Batman: AA map using Sim-
plified patrol.

Figure 8: Found pellet progress over distance on Batman:
AA map using Simplified patrol.

Figure 9 shows results in relation to grid-based approach
on the MGS: Docks map, collected using Unity3D’s profiler.

As the map scales higher, VisMesh gains both in a rela-
tively better frame-rate, and a reduction in memory require-
ments. The latter is unsurprising, as the grid-based imple-
mentation grows based on the number of grid points, which
depends on the size of the map. Coarser grid resolutions are
cheaper, albeit at the cost of increasing discretization con-
cerns. VisMesh relies only on map geometry—memory is
the same as long as the overall level shape stays the same.

Patrol HeatMaps

Qualitatively, we compared the performance of Simplified
patrol between a Random guard and the two methods. Fig-
ure 10 shows heatmaps of a single patrol for VisMesh and
Random guard patrol, with brightness indicating the rela-
tive amount of time an area is observed. We can see a more
uniform coverage in VisMesh method, while the Random
mainly covered a limited region.

Figure 9: Effect of a scaling the map size on performance.
The y-axis represents the average relative percentage of
VisMesh to the grid-based representation, and the x-axis is
the scale of the map. Grid-based performance for the default
map size is 45 FPS, 12 MB and for the scale of 5 it is 34
FPS, 31 MB.

(a) VisMesh (b) Random

Figure 10: HeatMaps for Simplified patrol in Alien: Isola-
tion

Conclusions & Future Work

Guards are an intrinsic element in stealth games. Realis-
tic and effective guarding behaviour has value, in offering
greater challenge to a stealth problem, and for improving
the sense of immersion.

The goal of our work is to enable efficient and ef-
fective dynamic guard patrol. We consider a grid-based
model and a continuous, space-decomposition based ap-
proach (VisMesh). Both variations can produce appropriate
behaviour, although the VisMesh method tends to have bet-
ter patrol results in terms of being effective at searching and
limiting staleness, at least with a suitable decision strategy.
It also has the notable advantage of much better memory ef-
ficiency, and is thus much more appropriate for larger maps.

For our future work, we are interested in implement-
ing more sophisticated decision-making techniques to work
with our world representations. We are also expanding this
work to multi-guard patrol scenarios, where multiple guards
cooperate, sharing their updates to a global VisMesh in order
to partition the patrol space effectively. Player experience
is also a concern for real applications of course, and user
studies would be useful in determining the extent to which
players note and are impacted by different, improved patrol
behaviours.

165



Acknowledgments

This work supported by the COHESA project, through
NSERC Strategic Networks grant NETGP485577-15.

References

Arkin, E. M.; Fekete, S. P.; and Mitchell, J. S. 2000. Ap-
proximation algorithms for lawn mowing and milling. Com-
putational Geometry 17(1-2):25–50.
Ashok, P., and Reddy, M. M. 2019. Efficient guarding of
polygons and terrains. In International Workshop on Fron-
tiers in Algorithmics, 26–37. Springer.
Campbell, J., and Verbrugge, C. 2019. Exploration in
NetHack with secret discovery. IEEE Transactions on
Games 11(4):363–373.
Chin, W.-p., and Ntafos, S. 1986. Optimum watchman
routes. In Proceedings of the second annual symposium on
Computational geometry, 24–33.
Chowdhury, M., and Verbrugge, C. 2016. Exhaustive explo-
ration strategies for NPCs. In Proceedings of the 1st Interna-
tional Joint Conference of DiGRA and FDG: 7th Workshop
on Procedural Content Generation.
Chvátal, V. 1975. A combinatorial theorem in plane geom-
etry. Combin. Theory Ser. B 18:39–41.
Elfes, A. 1987. Sonar-based real-world mapping and naviga-
tion. IEEE Journal on Robotics and Automation 3(3):249–
265.
Falaki, P. M. M.; Padman, A.; Nair, V. G.; and Guruprasad,
K. 2020. Simultaneous exploration and coverage by a mo-
bile robot. In Control Instrumentation Systems. Springer.
33–41.
Hagelback, J., and Johansson, S. J. 2008. Dealing with
fog of war in a real time strategy game environment. In
2008 IEEE Symposium On Computational Intelligence and
Games, 55–62.
Hertel, S., and Mehlhorn, K. 1985. Fast triangulation of
the plane with respect to simple polygons. Information and
control 64(1-3):52–76.
Hladky, S., and Bulitko, V. 2008. An evaluation of mod-
els for predicting opponent positions in first-person shooter
video games. In 2008 IEEE Symposium On Computational
Intelligence and Games, 39–46.
Isla, D. 2005. Probabilistic target-tracking and search us-
ing occupancy maps. In AI Game Programming Wisdom 3.
Charles River Media.
Isla, D. 2013. Third Eye Crime: Building a stealth game
around occupancy maps. In Ninth Artificial Intelligence and
Interactive Digital Entertainment Conference.
Isla, D. 2014 (accessed June 11, 2020). GDC ’09: Intro to
Knowledge Representation, Occupancy Map Demo.
Laguna, G. J., and Bhattacharya, S. 2019. Adaptive tar-
get tracking with a mixed team of static and mobile guards:
deployment and activation strategies. Autonomous Robots
1–13.
Moravec, H., and Elfes, A. 1985. High resolution maps from
wide angle sonar. In Proceedings. 1985 IEEE International

Conference on Robotics and Automation, volume 2, 116–
121.
Moravec, H. P. 1989. Sensor fusion in certainty grids for
mobile robots. In Sensor devices and systems for robotics.
Springer. 253–276.
O’Rourke, J. 1987. Art gallery theorems and algorithms.
Oxford University Press Oxford.
Seiref, S.; Jaffey, T.; Lopatin, M.; and Felner, A. 2020. Solv-
ing the watchman route problem on a grid with heuristic
search. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 30, 249–257.
Tan, X. 2001. Fast computation of shortest watchman
routes in simple polygons. Information Processing Letters
77(1):27–33.
Thrun, S. 1998. Learning metric-topological maps for
indoor mobile robot navigation. Artificial Intelligence
99(1):21–71.
Xu, Q.; Tremblay, J.; and Verbrugge, C. 2014. Generative
methods for guard and camera placement in stealth games.
In Tenth Artificial Intelligence and Interactive Digital Enter-
tainment Conference.

166


