
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Evaluating and Comparing Skill
Chains and Rating Systems for Dynamic Difficulty Adjustment

Anurag Sarkar, Seth Cooper
Northeastern University

{sarkar.an, se.cooper}@northeastern.edu

Abstract

Skill chains define how in-game skills build on each other and
the order in which players ideally acquire them during game-
play. This can enable dynamic difficulty adjustment (DDA)
by serving levels based on the skills that players currently
have and those required to solve a given level. Similarly, DDA
can also be achieved by using rating systems to match players
with suitable levels by assigning ratings to players and lev-
els based on ability and difficulty respectively. However, the
relative effects of these two methods remain unclear, particu-
larly in the context of human computation games (HCGs). In
this paper, we present a general model for using skill chains
and rating systems in a combined DDA system along with an
evaluation comparing the two for difficulty balancing within
HCGs, focusing on the relative merits of both methods when
used separately as well as together. We evaluate our meth-
ods using the HCGs Iowa James and Paradox. Our findings
suggest that incorporating skill chains can improve upon pre-
viously shown benefits of using only rating systems for DDA
in HCGs.

Introduction
Dynamic difficulty adjustment (DDA) refers to techniques
for dynamically modifying in-game difficulty in response
to player ability. Much prior work has focused on var-
ious DDA techniques including player modeling (Zook
and Riedl 2012), adjusting level design (Valve Corpora-
tion 2008), parameter tuning (Hunicke 2005) and machine
learning (Jennings-Teats, Smith, and Wardrip-Fruin 2010).
However, implementing DDA in human computation games
(HCGs) poses a unique challenge. HCGs seek to harness
collective player ability to help solve computationally com-
plex tasks by representing them as game levels and have
been used in various domains such as image labeling (von
Ahn and Dabbish 2004) and protein design (Koepnick et
al. 2019). However, since levels represent real problems,
they can’t be readily modified for DDA without potentially
compromising how well the problems are modeled. Previ-
ous works have tried overcoming this by framing difficulty-
based level ordering as a player-versus-level matchmaking
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Iowa James Paradox

Figure 1: Screenshots from the two games used in this work.

problem i.e. using rating systems like Elo (Elo 1978) and
Glicko-2 (Glickman 2001) to match players of a certain abil-
ity with levels of comparable difficulty. Since it balances
difficulty by adjusting level ordering rather than modifying
levels themselves, this ratings-based approach is useful for
DDA in HCGs (Cooper, Deterding, and Tsapakos 2016).

However, though prior work has shown the effectiveness
of rating systems for DDA and player engagement in HCGs
(Sarkar et al. 2017), such systems are not informed about
the skills that players acquire during gameplay, nor about
the skills needed to complete any given level. Here, ‘skills’
refers to the discrete mechanics of a game. Thus, the order
of skill acquisition is often used by designers to help de-
fine difficulty progressions. In doing so, designers leverage
the game’s skill chain which defines how complex in-game
skills build on simpler ones during gameplay. Hence, the
skillset required to solve easier levels is a subset of that re-
quired to solve harder ones. In this way, based on the skills
needed to complete levels, designers can tailor in-game dif-
ficulty in accordance with the skills acquired by the player.

Thus, recent work (Sarkar and Cooper 2019b) applied a
hybrid model that incorporated skill chains into the ratings-
based DDA approach for HCGs. Here, the game’s skill chain
was used to define different hierarchies of levels based on the
skills needed to solve them and ratings were then used to de-
cide which level in a selected hierarchy to serve to the player.
The combined model was effective in demonstrating that
DDA systems for HCGs can leverage both skill chains and
rating systems. However, the model focused on HCGs where
game mechanics and tasks required separate sets of abilities
and tracked player ability for these independently. Thus, the
use of skill chains for DDA in HCGs in general, where me-
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chanics and tasks are more interdependent, remains unex-
plored, as does the particular effects of the interaction be-
tween skill chains and rating systems in a combined model.
Therefore, in this work, we use two different HCGs—the
puzzle game Paradox and the platformer Iowa James, shown
in Figure 1—to study variations of this DDA model that use
skill chains and rating systems separately as well as taken
together in order to evaluate the relative effects and interac-
tions of the two components. This work contributes a gen-
eral approach for combining skill chains and rating systems
for DDA in HCGs and a comparative study evaluating the
relative merits of each of these two components.

Background
Skill Chains and Rating Systems Skill chains (Cook
2007) define the order in which players acquire skills during
gameplay. They consist of skill atoms which represent indi-
vidual skills with simpler atoms feeding into more complex
ones in the chain. Such skill chains can be seen as directed
graphs where nodes and edges represent skills and skill de-
pendencies respectively. An ordering of such a graph thus
defines a sequence by which players can acquire skills and
can thus help in the design of level progressions. Skill chains
can also be incorporated into existing games to improve their
progression as shown by Echeverria et al. (2012) who re-
designed a physics educational game using this approach.
In HCGs, Horn et al. (2018) used skill chains to design AI
agents of varying abilities to analyze difficulty progressions
in the puzzle HCG Foldit.

Like skill chains, rating systems can also help define
level progressions by being reformulated as Player-vs-Level
(PvL) rather than Player-vs-Player (PvP) as in chess and
MOBAs. This allows ratings to represent ability for player
and difficulty for levels and are computed using PvL out-
comes during gameplay. In turn, players are served levels
compatible with their current abilities, thus enabling DDA.
Prior work (Sarkar et al. 2017) has shown the effectiveness
of such systems, like Glicko-2 (Glickman 2001), in defin-
ing level progressions for DDA in HCGs. However, while
effective in improving engagement, such systems do not let
designers control level ordering without changing the for-
mulation for determining a good match between player and
level (Sarkar and Cooper 2019a). Designers may wish that
players learn skills and/or concepts in a certain order while
still being able to reap the DDA benefits afforded by ratings.
To this end, more recent work (Sarkar and Cooper 2019b)
introduced a unified skill model that combined skill chains
with rating systems; using the former to define hierarchies of
levels requiring the same skillset and using the latter to de-
termine which level in a given hierarchy is the most suitable
match given the player’s current ability. This model enables
players to acquire skills in a desired order while still serving
them levels dynamically as determined by the rating system.
Joint and Disjoint Design in HCGs The combined DDA
model from Sarkar and Cooper (2019b) that we adapt is
originally applicable to HCGs with a disjoint design i.e.
game mechanics are unrelated to the underlying task. Such
games include OnToGalaxy (Krause et al. 2010), a space
shooter for populating ontologies; the Landspotting games

(Sturn et al. 2013) about labeling land cover data, spanning
strategy, tagging and tower defense mechanics; and Gwario
(Siu, Guzdial, and Riedl 2017), a Super Mario Bros.-style
(Nintendo 1985) platformer for item collection. Since such
games decouple game and task mechanics, a model that sep-
arately tracks player ability in performing game mechan-
ics and executing tasks is necessary for proper DDA along
both dimensions. However, such a model is not applicable
to HCGs where level design centers around the underlying
problem to be solved, causing game mechanics to be tightly
coupled with the modeled task. For the hybrid skill chain
and ratings-based model to be applicable to such HCGs, we
simplify the previously disjoint model in this work.
Learner Models and Progression Design Learner mod-
els of skill and knowledge have long been applied in edu-
cational software and games (Desmarais and Baker 2012;
Khenissi et al. 2015; Harpstead and Aleven 2015). Tech-
niques include Bayesian Knowledge Tracing (Baker, Cor-
bett, and Aleven 2008; Yudelson, Koedinger, and Gordon
2013), which attempts to probabilistically model learner
acquisition of skills, and Item Response Theory (Baker
and Kim 2004), a psychometric approach to testing. Many
learner models incorporate hierarchical representations to
relate concepts along with performance evaluation (Millán
and Pérez-de-la Cruz 2002; Guzmán, Conejo, and Pérez-de-
la Cruz 2007). While such models have long been applied in
education, our work applies variations of related models to
dynamic difficulty in the human computation domain.

In particular, the model of skill chain-based level progres-
sion and ratings-based DDA used in our work is similar to
the system of Mu et al. (2018) that combines curriculum
generation and adaptive problem selection, with the former
and latter being analogous to progression generation and
DDA respectively. Their work builds on that by Wang, He,
and Andersen (2017) which describes a framework for pro-
gression design and knowledge assessment. These works are
similar to our model but focus on foreign language learning
rather than HCGs and utilize execution traces and reinforce-
ment learning rather than skill chains and rating systems.

Games
We used two HCGs: Iowa James: Hunter Collector Gath-
erer, used to evaluate the disjoint skill model in Sarkar and
Cooper (2019b), and Paradox, an HCG that has been used
in much prior work involving rating-system based DDA but
not used to test skill chains. They are described below.
Iowa James Iowa James is a 2D platformer HCG where
players have to collect items while traversing the levels of
the game, similar to the HCG Gwario (Siu, Guzdial, and
Riedl 2017). The game used 75 levels with each level con-
sists of hazards, collectible items and a treasure chest at the
end. Items in a level are associated with a specific scenario
as indicated by a banner on the top right. To progress to the
next level, players have to unlock the treasure chest by col-
lecting items relevant to the given scenario and then reach
the chest by navigating the layout of the level and avoiding
the hazards. Players have three lives for each level and lose
a life each time they collect an irrelevant item or come into
contact with a hazard. If the player is killed by a hazard, they
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respawn at the beginning of the level. For matchmaking pur-
poses, the player’s score for a level was proportional to the
number of lives they had upon moving to the next level. The
skills in the game are based on typical platformer mechanics
and are described below:

• navigating (N): standard running and jumping-based
movement in platformers

• hazard-static (HS), hazard-moving (HM): jumping over
stationary and moving hazards respectively

• platforming (P): traversing across platforms
• platforming-hazard (PH): traversing across platforms

containing hazards
• timed-one (T1), timed-two (T2): crossing timed hazards

spanning shorter and longer distances respectively
Paradox Paradox is a 2D puzzle HCG where levels con-
sist of graph-like structures representing Boolean MAX-
SAT problems with nodes and edges corresponding to vari-
ables and constraints respectively. Player score is based on
the percentage of constraints of the underlying problem that
players are able to satisfy. This is done by assigning Boolean
values to variables using various tools. A player wins a level
by reaching its target score. For this work, we used a new
Unity version of the game based on a version used in prior
research (Sarkar et al. 2017). Past versions used a fixed order
for tutorial levels and a dynamic order for non-tutorial chal-
lenge levels. In this version, tutorial levels are also served
dynamically. Game mechanics involve using two brushes—
white (W) and black (B)—to assign true and false values
to a single variable node as well as an advanced star (S)
brush that assigns values to groups of nodes by running a
MAX-SAT solver. We added a fourth challenge (C) skill to
all non-tutorial levels so that in progressions using the skill
chain, players would first encounter the star skill in the tu-
torial. Although the challenge skill may be somewhat arti-
ficial, it does demonstrate designers’ ability to help shape
progressions via the skill chain. Paradox used 47 levels, out
of which 40 were non-tutorial challenge levels.

Method
The combined DDA model introduced in Sarkar and
Cooper (2019b) involves 3 stages: 1) defining the game’s
skill chain 2) annotating levels with required skills and as-
signing levels an initial rating and 3) using the skill chain and
assigned ratings to serve levels via matchmaking. In the fol-
lowing sections, we describe how each of these work, how
we modified and extended the model beyond disjoint HCGs,
and how we used it to define the different progressions that
enable comparing skill chains and rating systems for DDA.
Skill Chain Definition The first step is to define the game’s
skill chain. This involves identifying the individual skills
that players acquire during gameplay along with the depen-
dencies between these skills. Conceptually, this takes the
form of a directed graph where nodes and edges represent
skills and dependencies respectively. An edge from skill A
to skill B indicates that skill B is dependent on skill A, i.e.
players must acquire skill A before they can acquire skill B.
In other words, if a player is able to perform skill B, they
can perform A as well. For this work, we manually defined
the skill chain for each game based on our knowledge of
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Iowa James Paradox

Figure 2: Skill chains for each game used in this work.

their gameplay. In this study, we use only one skill chain per
game. For the non-disjoint HCG Paradox, this is straightfor-
ward since mechanics are directly related to the task. For the
disjoint HCG Iowa James, we opted to use the game skill
chain from our prior work since that accounts for greater
variation in gameplay and induces a more distinct sense of
progression (e.g. the skill of platforming building on the skill
of navigating as opposed to the skill of collecting 5 items
building on that of collecting 3 items as was the case with
the task skill chain). The skill chain we used for each game
in this study is shown in Figure 2.
Skill Annotation and Rating Assignment for Levels The
next step is informing the DDA system about the required
skills and difficulty of each level in the game. For match-
making, each level is associated with a list of skills needed
to complete it and a Glicko-2 (Glickman 2001) rating indi-
cating its difficulty. Thus, prior to using the system, we man-
ually annotate each level with the skills required to finish it.
These are taken from the skill chain defined in the previous
step. In this work, each level was assigned a rating based on
previous trials using the two games and the Glicko-2 rating
system. For Iowa James, these ranged from 1496 to 1927
while for Paradox these ranged from 439 to 1783. These
ratings are indicative of the difficulty of each level and were
kept fixed over the course of gameplay while player ratings
were updated.
Skill and Ratings-based Matchmaking Once the levels
have been annotated and initialized with their required skills
and Glicko-2 ratings, they can be used for matchmaking.
Each player is assigned a starting rating of 1500 and an ini-
tial empty set of skills. To serve a level to a player, the sys-
tem first determines the set of eligible levels based on the
player’s acquired skills, chooses which among those to serve
based on the player’s rating and then updates the player’s
skills and ratings based on the match outcome.

To determine the levels eligible to be served, we first filter
out levels that the player has already beaten and the previous
level that the player encountered. Among the remaining lev-
els, we mark as eligible all levels that require one or fewer
additional skills not yet acquired by the player. If such a level
is not found, the system looks for levels with two or fewer
additional skills and so on until an eligible level is found. If
the player has acquired all the skills but there are still un-
played levels, all such levels are eligible to be served.

From the eligible levels, the specific level to serve is cho-
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sen using the current player rating. Since ratings correspond
to competence and difficulty for player and level respec-
tively, comparing them gives an estimate of how hard that
level will be for that player. Using the player’s rating, we
compute their desired loss rate (DLR) which is the desired
probability of losing that we want them to have based on
their current rating. As the player’s rating goes up, so does
their DLR and hence they are matched with harder levels,
thus achieving DDA. From among the eligible levels de-
termined using the player’s skills, we serve the one against
which the player’s loss probability is closest to their DLR.
This loss probability is computed using the Glicko-2 expec-
tation function (Glickman 2001). The DLR is given by the
equation DLR(r) ≈ 1/(1 + e0.00628(1850−r)), which gives
starting players a low 10% chance of losing. More details
of this method are given in (Sarkar and Cooper 2019a). Fi-
nally, the player plays the chosen level. Each such instance is
treated as a plaver-vs-level match and the results are used to
update the player skills and ratings. If the player completes
the level, their list of acquired skills is updated with the new
skill(s) required by that level. Additionally, the player’s rat-
ing is updated based on their score on that level.
Progressions To evaluate the relative merits of skill chains
and rating systems, we defined four level progressions. In all
cases, previously beaten levels and the immediately preced-
ing level played are not eligible for serving.

• SKILL RAT: use skill chains to determine eligible lev-
els and choose the level to serve using the rating system

• SKILL ONLY: use skill chains to determine eligible lev-
els but then randomly choose the level to serve rather
than using ratings

• RAT ONLY: use only ratings to pick level to serve, rather
than determine eligible levels using skill chains

• RANDOM: randomly pick level from among all eligible
levels, thus ignoring both skill chains and rating systems

The progressions thus respectively use both skill chains and
ratings, only skill chains, only ratings and neither.

Evaluation and Discussion
We ran a Human Intelligence Task (HIT) on Amazon Me-
chanical Turk for each game. The HITs paid $1 but payment
was upfront and playing the game was completely optional.
This was motivated by past work (Sarkar and Cooper 2018)
to give players flexibility in how long they played. We re-
cruited approximately 330 players for each game. After fil-
tering for errors in data and players who accepted payment
but didn’t play, we had data for 293 players for Iowa James
and 230 for Paradox. In each game, each player was ran-
domly assigned to one of the four progressions described
above, leading to 76, 97, 68 and 52 players in SKILL RAT,
RAT ONLY, SKILL ONLY and RANDOM respectively for
Iowa James and 52, 81, 54 and 43 respectively for Paradox.

For each progression, we looked at:
• Play Time: the time in seconds that a player in that pro-

gression played the game
• Final Player Rating: the Glicko-2 rating that a player

ended up with after finishing playing

Variable SKILL RATSKILL ONLYRAT ONLYRANDOM
Play Time (p = .29) 355 489 419 269

Final Player Rating (p = .19) 1406 1401 1353 1358
Max Level Rating† (p < .001) 1669a 1839b 1662a 1517a

Levels Completed† (p < .001) 3a 2b 3ab 1c

Levels Failed (p = .1) 2.5 4 3 4
Max Skillset Size (p = .14) 2 2 2 1

Table 1: Analysis for Iowa James showing median values.
Variables with daggers† had significant differences in om-
nibus tests. Values with shared letter superscriptsabc were
not found to be different in pairwise post-hoc comparisons.

Variable SKILL RATSKILL ONLYRAT ONLYRANDOM
Play Time (p = .81) 443 481 466 395

Final Player Rating (p = .09) 1069 1122 1075 1395
Max Level Rating† (p < .001) 758a 758a 602b 0b

Levels Completed† (p < .001) 3ab 3a 2b 0c

Levels Failed† (p = .03) 1a 2ab 4b 2ab

Max Skillset Size† (p < .001) 2ab 3a 2bc 0c

Table 2: Analysis for Paradox showing median values. Vari-
ables with daggers† had significant differences in omnibus
tests. Values with shared letter superscriptsabc were not
found to be different in pairwise post-hoc comparisons.

• Max Level Rating: the Glicko-2 rating of the most diffi-
cult level that a player was able to complete

• Levels Completed: number of levels completed by the
player

• Levels Failed: number of levels attempted but not com-
pleted by the player

• Max Skillset Size: highest number of skills in the skill
chain of any level that the player managed to complete

For each metric, we ran an omnibus Kruskal-Wallis test
across progressions. If significant, we ran pairwise post-hoc
Wilcoxon Rank-Sum tests with the Holm correction com-
paring all pairs of progressions. For Iowa James, we found
significant omnibus differences across progressions for Max
Level Rating and Levels Completed while for Paradox, in ad-
dition to these metrics, Levels Failed and Max Skillset Size
were also significantly different across progressions. Signifi-
cant post-hoc differences were also observed for each of the
above metrics. Results of all statistical analyses are shown
for Iowa James and Paradox in Tables 1 and 2 respectively.
Quantity and Difficulty of Completed Levels The goal
for DDA in HCGs is optimizing both the quantity and dif-
ficulty of completed levels since harder levels correspond
to the harder underlying problems which would most bene-
fit from HCG modeling. Thus high values for Levels Com-
pleted and Max Level Rating are preferred.

For Iowa James, the progression SKILL ONLY does best
in terms of completing more difficult levels. The number of
levels completed is more nuanced, with SKILL RAT com-
pleting more than SKILL ONLY, but RAT ONLY not found
different from either. Though not significant, players on
average failed more levels under SKILL ONLY than both
SKILL RAT and RAT ONLY, with players failing the fewest
levels in SKILL RAT. This may be due to serving levels ran-
domly from a given skill-based hierarchy rather than using
ratings. It is possible for levels requiring the same skillset
to vary in difficulty. Foregoing ratings to randomly select
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Figure 3: (left) Number of completions and failures for the 11 unique skillsets in Iowa James, for each progression. Number
of levels for each skillset were: N - 3, HS - 12, HM - 9, T1 - 12, P - 12, T2 - 3, HM;T1 - 3, HM;T2 - 6, PH - 6, HM;P;T1 - 6,
PH;T1 - 3. Letters refer to skills as defined previously. (right) Number of completions and failures for the 5 unique skillsets in
Paradox, for each progression. Number of levels for each skillset were: W - 1, B - 1, W;B - 3, S - 2, C - 40. Letters refer to
skills as defined previously.

which skill-based eligible level to serve probably resulted in
players playing levels too hard for them even if they had all
the required skills, leading to more failed attempts at levels,
but also potentially a chance of completing a level with a
higher rating. Thus, incorporating ratings addresses this as
shown by the results for SKILL RAT albeit at the cost of
lower values for Max Level Rating (similar to RAT ONLY).
We see that when using a skill chain, incorporating or ex-
cluding ratings may allow a trade-off between a higher num-
ber of level completions and a higher difficulty of levels
completed, respectively.

For Paradox, incorporating skill chains seems more ben-
eficial with either SKILL RAT or SKILL ONLY in the best
group in terms of Max Level Rating, Levels Completed, Lev-
els Failed and Max Skillset Size. We don’t notice the trade-
offs between SKILL RAT and SKILL ONLY as we did for
Iowa James and these conditions did not exhibit significant
post-hoc differences for any variable.

Overall, these results demonstrate the potential benefits of
incorporating skill chains into DDA systems for HCGs with
the impact of additionally using the rating system varying by
game. Also, as expected RANDOM does worst for most mea-
sures across progressions for both games and is in the worst
group of all statistical comparisons, validating the need for
using either skill chains or rating systems, or both, for DDA.
Level Skillsets We also looked at how the progressions
varied in terms of the types of levels played. We differ-
entiate types of levels based on the set of skills needed to
solve them. Thus, each unique skillset defines a level type.
A skillset is defined as a set of one or more skill nodes that
are not dependent on another in the skill chain. For each
skillset, we looked at the number of times players failed and
completed levels requiring that set, in each progression. Re-
sults are shown in Figure 3. The chart for each game consists
of four clusters of histograms representing the four progres-
sions with the skillsets for each progression in increasing
order of difficulty from left to right. The number of comple-
tions and failures for each progression was normalized by

the number of players in that progression. These figures con-
firm the previous findings and reveal some points of interest.
For Iowa James, RAT ONLY does better than RANDOM in
serving players levels that they can complete but worse than
the two skill-based progressions. The high failure values for
the harder HM;T2 skillset suggests that RAT ONLY served
levels requiring this skillset, based solely on ratings, multi-
ple times to players that hadn’t acquired some of the eas-
ier skills as evidenced by the values for these being much
lower for RAT ONLY. Without acquiring dependent skills,
players failed to complete levels that required this partic-
ular skillset. Both the skill-based progressions show more
desirable player behavior. As stated before, players under
SKILL ONLY played harder levels but lost a lot more than
players under SKILL RAT. Most of this also holds true for
Paradox with the differences less stark due to the game hav-
ing fewer unique skillsets.
Skill Acquisition Finally, we examined the percentage of
players in each progression that acquired the different skills,
shown in Tables 3 and 4. For both games, the differences in
these percentages were statistically significant across pro-
gressions based on an omnibus chi-square test. For Iowa
James, the percentage of players acquiring the two easiest
skills is similar for all progressions except RANDOM. The
medium difficulty skills show higher percentages for skill-
based progressions though both RANDOM and RAT ONLY do
better for hazard moving which may be due to few play-
ers in the SKILL RAT progression playing levels requir-
ing that skill. This may also explain the higher numbers
for RAT ONLY and RANDOM for the two hardest skills. The
skill-based progressions served levels requiring these skills
only if players had acquired all of the previous skills while
the other two progressions served them regardless of this fact
so more players are likely to have attempted levels requiring
the hardest skills. For Paradox however, the trends are more
straightforward with both skill progressions having higher
percentages than the other progressions for all skills except
the hardest where again RANDOM has the highest percent-
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Skill SKILL RATSKILL ONLYRAT ONLYRANDOM
navigating 96 91 97 58

hazard static 57.9 55.7 52.9 46.2
hazard moving 4 18.6 19.1 21.2

timed one 34.2 13.4 20.6 19.2
platforming 38.2 19.6 17.7 21.2
timed two 2.6 4.1 19.1 7.7

platforming hazard 1.3 3.1 4.4 5.8

Table 3: Percentage of players that acquired the given skill
in Iowa James (χ2(12) = 34.5, p < .001).

Skill SKILL RATSKILL ONLYRAT ONLYRANDOM
white 86.5 93.8 79.6 46.5
black 88.5 87.7 61.1 46.5
star 48.1 50.6 42.6 30.2

challenge 9.6 17.3 3.7 20.9

Table 4: Percentage of players that acquired the given skill
in Paradox (χ2(5) = 25.9, p = .002).

Skill SKILL RATSKILL ONLYRAT ONLYRANDOM
navigating 1 2 1 3

hazard static 4 4 4 3.5
hazard moving 15 6.5 5 5

timed one 5.5 8 5 5
platforming 5 5 6.5 4
timed two 36.5 24.5 5 7

platforming hazard 67 19 13 14

Table 5: Median number of matches to acquire each skill in
Iowa James, using only players who acquired the skills.

age. RANDOM may thus be useful if the main goal is to get as
many people as possible to play the hardest levels and other
learning and DDA goals need not be optimized. Lastly, we
looked at the median number of matches neede dby players
to acquire different skills. These are given in Tables 5 and 6.
Notably, less than around half the Paradox players acquired
the star skill, which is effectively the end of its tutorial. This
may indicate that most players didn’t learn the skills needed
to effectively complete the challenge levels, which is where
the bulk of the Paradox levels were, and where we expect
ratings would be the most useful based on previous work.

Conclusion and Future Work
We studied how a DDA model’s two components—skill
chains and rating systems—affect difficulty balancing and
player behavior both separately and taken together, in two
different HCGs. We found that skill chains could be useful
for getting players to solve both a higher number of tasks as
well as tasks of greater difficulty than when using only rat-
ing systems as in prior work. Moreover, in certain cases, in-
troducing rating systems to a skill chain-only model helped
better balance the difficulty of the game.

There are several avenues for future work. Currently, skill
chains were defined manually but in the future, they could
be derived from playtesting analysis (Horn, Cooper, and De-
terding 2017), or inferred automatically. Future work could
also explore automatically annotating levels with the skills

Skill SKILL RATSKILL ONLYRAT ONLYRANDOM
white 2 1 2 2
black 1 2 3 2
star 5 5 5 2

challenge 9 7.5 6 2

Table 6: Median number of matches to acquire each skill in
Paradox, using only players who acquired the skills.

needed to complete them. A limitation of our work is how
skills are acquired. Once players complete a level, they are
considered to have acquired all skills required by that level.
However, it is possible that some skills are more instrumen-
tal to level completion and players may not have used each
listed skill to finish the level. Thus, it may be helpful to treat
skill acquisition more granularly and update skill mastery
relative to individual skills rather than skillsets. Moreover,
skill mastery in the current model is binary—either players
have a skill or they do not. In the future, we could incor-
porate Bayesian Knowledge Tracing (Baker, Corbett, and
Aleven 2008; Yudelson, Koedinger, and Gordon 2013), used
in educational data mining, to facilitate more nuanced mas-
tery tracking and inform the confidence we have in players
to exercise skills rather than treat it as a binary. A final lim-
itation is that currently, once players acquire a skill, they
cannot lose mastery of it even if they never use it again or
go on to do so incorrectly. For this, it could be useful to in-
corporate a forgetting mechanism, perhaps inspired by the
curve of Ebbinghaus (2013) as used by Wang et al. (2019).
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