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Abstract 
Generative adversarial networks (GANs) are showing 
significant promise for procedural content generation (PCG) 
of game levels. GAN models generate game levels by 
mapping a low dimensional latent space to game levels in 
the game space. An intriguing challenge in GAN-based 
PCG is enabling GANs to produce game levels for multiple 
distinct games with similar gameplay characteristics using a 
common underlying low-dimensional representation. In this 
paper, we present a method for training a novel GAN-based 
PCG architecture that generates levels in multiple distinct 
games, starting from a common gameplay action sequence. 
We evaluate the solvability of the generated games using an 
automated playing agent and show how the generated game 
levels are separate representations of the same gameplay by 
quantifying the similarity between the solution action 
sequences for the game levels. By probing the common 
latent space, we show how our approach provides control 
over the levels generated in distinct games for the presence 
of desired gameplay patterns in the generated game levels. 
Results also demonstrate that the GAN-based PCG 
approach creates novel game levels in multiple distinct 
games, as indicated by the distance between the action 
sequences required to solve the game levels.  

Introduction   
Procedural content generation (PCG) holds significant 
promise for algorithmically creating game content. PCG 
can be utilized to generate game rules, game levels, and 
textures for a game’s graphical elements. Early work in 
PCG used search-based and solver-based techniques to 
generate content, but more recently, machine learning 
techniques such as deep neural networks have been used to 
generate game content (Shaker, Togelius, and Nelson 
2016). This approach is referred to as Procedural Content 
Generation via Machine Learning (PCGML) (Summerville 
et al. 2018; Justesen et al. 2019; Guzdial et al. 2018).  
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A variety of deep neural network architectures have 
been used in PCGML to model and generate game content. 
Game levels in some genres of games such as platformers 
can be expressed as a sequence of obstacles that players 
experience as they progress through the game, inspiring the 
use of Recurrent Neural Networks (RNN) and Long Short-
Term Memory (LSTM) networks, which can encode 
sequential patterns, to generate new game levels 
(Summerville et al. 2016; Summerville and Mateas 2016). 
Generative Adversarial Networks (GAN) are another type 
of deep neural network that have also gained popularity as 
a promising content generation technique (Torrado et al. 
2019; Volz et al. 2018), driven by the fact that GANs can 
be trained in an unsupervised fashion given sufficient 
training examples. However, deep neural networks require 
a large number of training examples for a model to 
accurately capture patterns. GANs have sometimes been 
used to address      this requirement by taking a limited set 
of existing examples to bootstrap a game level training 
corpus and create more training examples by using their 
ability to reproduce patterns inherent in training examples 
when used as a generator (Torrado et al. 2019; Park et al. 
2019).  However, this approach could lead to overfitting as 
GANs are learning from a limited set of examples. 

A key feature of GANs is the ability to capture game-
level patterns in a low dimensional latent representation. 
Can a single common latent space capture the patterns of 
game levels from multiple games?      In other words, are 
there underlying shared patterns belonging to multiple 
distinct games with similar gameplay? We answer this 
question in the affirmative and explore the implications of 
the common latent space. 

We believe that there is an underlying commonality in 
game-levels across multiple games despite apparent 
variability. By capturing the commonality in a novel GAN 
based model, we create levels in multiple games with 
similar gameplay from a single common seed.      In our 
work, we use a novel technique to build up the training 
corpus using an approach similar to the progressive 
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generation of game levels using action timelines (Shaker et 
al. 2015). Using this technique that starts from a player’s 
gameplay, we are able to generate sets of game levels in 
multiple games with similar gameplay and build a sizable 
training corpus for our GANs. We investigate the 
implications of a single latent space that captures the 
combined patterns of multiple distinct games by exploring 
the relationship between control over the generated levels 
and the need to build novel solvable game levels. We 
propose metrics that quantify the novelty of the levels 
generated by our generator.  

Related Work 
Over the years there have been many approaches to 
capturing a common representation for multiple games. 
Bentley and Osborn (2019) labeled affordances of sprite 
patterns in multiple games from the players’ point of view, 
to show commonality between games. Snodgrass et al. 
(Snodgrass et al. 2016) captured statistical regularities in 
different platformer game levels. They build the generator 
using multi-dimensional Markov chains to represent the 
transition states. Guzdial and Riedl (Guzdial and Riedl 
2016; Guzdial and Riedl 2018a; Guzdial and Riedl 2018b; 
Guzdial, Liao, and Riedl 2018) demonstrate different 
techniques to combine game concepts and levels to form 
novel levels, including conceptual expansion, 
combinatorial creativity and co-creation. Sarkar et al. 
(Sarkar and Cooper 2018; Sarkar, Yang, and Cooper 2019) 
have used deep learning models like LSTMs and 
variational autoencoders to capture the commonality of 
distinct games in a single latent representation. However, 
they generate game level snippets      instead of playable 
game levels. In our work, we use the ability of Generative 
Adversarial Nets (GAN) to capture a low dimensional 
common representation of game levels from multiple 
games.  

 GANs first introduced by Goodfellow et al. (2014), are 
a way to learn generative models that reproduce examples 
from a training set by an adversarial process between a 
generator and a discriminator, both modeled by deep 
neural networks. The training process produces a generator 
that can take a random sample from low dimensional latent 
space and generate an example that is indistinguishable 
from the training set. This ability to generate more 
examples given a training set has been used in the PCG 
community to bootstrap training sets. Volz et al. (Volz et 
al. 2018) trained a GAN generator and explored the low 
dimensional latent space using an evolutionary search 
algorithm to find novel levels. Giacomello et al. 
(Giacomello, Lanzi, and Loiacono 2018; Giacomello, 
Lanzi, and Loiacono 2019) followed a similar approach of 
latent space exploration to generate novel DOOM levels. 

GANs, by definition, are trained to mimic training 
examples. We will show how variety in the training set 
impacts the novelty of the game levels generated. 

 One approach to increasing the training set size is to use 
GANs themselves to generate new training data. Torrado et 
al. (Torrado et al. 2019) have used a conditional 
embedding self-attention GAN (CESAGAN) to capture 
long distance dependencies in game levels. After each 
epoch of training, the generated playable levels are added 
to the training corpus to increase the number of examples. 
Park et al. (Park et al. 2019) used GANs to capture the 
patterns from a small set of examples to generate a larger 
batch of solvable training examples using multi-stage 
generation in the context of educational games. GANs 
capture what they see in the training examples, so working 
with a small training set might restrict the variety of game 
levels expressed by the generator. In this work, we propose 
a novel method to increase the training set to overcome this 
problem, which will be discussed in the next section.  

In PCG as game levels are generated procedurally one 
needs fitness or evaluation metrics to determine the merit 
of each approach and identify desirable levels (Shaker, 
Togelius, and Nelson 2016; Shaker, Smith, and 
Yannakakis 2016). To simulate human evaluation, 
automated agents are used to play the games (Silva et al. 
2018; Volz et al. 2018). Volz et al. evaluated level 
solvability using an agent to play the level, and they 
quantified difficulty based on the configuration of tiles in 
the level generated. We also use agents to play our levels 
to determine if a level is solvable. Novelty is typically 
defined as a distance measure between nearest neighbors 
(Lehman and Stanley 2011). In our work, we consider a 
level to be novel if it requires a unique sequence of actions 
to solve. We will define novelty based on distance between 
gameplay solutions as detailed in the later sections. 

It is desirable to generate a solvable game level that is 
novel. It is also desirable that the generator can be 
controlled to generate levels that are interesting to play. 
Snodgrass and Ontañón (2016), in their work on PCG 
using multi-dimensional Markov chains, introduced 
constraints on the game elements in the levels generated, 
such as the existence of a specific number of difficult tile 
combinations. Khalifa et al. (Khalifa et al. 2019) evaluated 
game levels based on how an agent plays the game and the 
type of actions the agent performs like high jumps, long 
jumps, stomp kills, etc. Zhu et al. (Zhu, Wang, and Zyda 
2018) evaluated the similarity between games based on a 
game event analysis of human’s gameplay. In our 
generator, we also consider gameplay to evaluate our 
generated models. Snodgrass et al. (Snodgrass, 
Summerville, and Ontañón 2017) defined a plagiarism 
metric to see how much of the training levels was captured 
in the generated levels. We use a similar metric based on 
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gameplay to evaluate the amount of variety captured from 
training to generated levels. 

Approach 
In this research we trained a GAN to generate game levels 
with the same gameplay in four distinct games, from a 
single random seed. We selected games that have similar 
game physics and game actions. In this section, we 
describe the game selection rationale, training set creation, 
and the GAN architecture. 

Games and Level Representation 
The General Video Game Artificial Intelligence (GVGAI) 
framework and Video Game Description Language 
(VGDL) together provide a generic solution that can be 
used to represent and realize common 2D video games 
(Perez-Liebana et al. 2019). VGDL is a text-based 
description language that can be used to represent two-
dimensional arcade games with grid-level physics. The 
language allows for the definition of individual sprites with 
custom properties including directional speed, interactions 
with other sprites, movement, scoring and determining 
termination conditions. The GVGAI framework provides a 
large set of predefined games in VGDL. The framework 
also provides agents that can play the games based on 
various heuristics. In this work we use both the framework 
to represent the games and the agents to test solvability of 
the generated game levels. 

The set of four games selected from GVGAI 
(Boulderdash, Link, Zelda and Roguelike) follow grid 
physics and have similar actions available to the player. 
Interaction of the player’s avatar with dynamic elements in 
the games like the monsters, moving tanks, and falling 
boulders, create distinction between the games. Falling 
boulders, which obey gravity is unique to Boulderdash. In 
Roguelike and Link there are solid walls with locked doors 
or breakable walls that require the player to first pick up a 
key or pickaxe to pass. In Zelda the layout of walls creates 
narrow pathways for the avatar to negotiate. These 
differences result in a variety of sprite patterns. One cannot 
just replace sprites in the level of one game with sprites 
from another game to generate levels in the other games. 
The ability of enemies in the games are also unique. 

Training Corpus Generation 
As described above, the training corpus is a list of samples 
where each sample is a set of four game levels from      
Boulderdash, Link, Zelda, and Roguelike. The games were 
selected to have similar gameplay. By similar gameplay, 
we imply that following an equivalent action sequence in 
all the games will typically complete the level successfully. 
The training sets are created using an approach comparable 

to Shaker et al. (Shaker et al. 2015), who used abstract 
game timelines (sequence of actions in a game along with 
time deltas between actions) to generate game levels. The 
objective is to place obstacles that complement the actions 
at the right time and location such that the player action in 
the game timeline is necessary to move forward in a game. 

As outlined in the algorithm (Algorithm 1), a training 
example creation starts with a set of grid points on an 
empty grid. The starting point is usually chosen on the top 
left quadrant and the goal point is chosen on the bottom 
right. A sequence of actions is selected that will take the 
player’s avatar from one grid point to the next. This action 
sequence (e.g., jump, break a wall, pick a sword) is carried 
out through the grid as sprites like walls and locks are 
placed in the way to match the corresponding action. The 
action sequences are varied by changing the order of 
actions or permuting the combinations of actions 
randomly. Multiple combinations of actions that take the 
player’s avatar from the start to the goal state are 
considered. The same action sequence is used in all the 
games considered, but the specific game’s dynamics 
requires the placing of different obstacles to match the 
action. For example, in Boulderdash one has to avoid 
falling boulders and in Roguelike one needs to first pick up 
a key before passing a locked gate. The approach is generic 
and can be used to generate levels for multiple games 
starting from a common action sequence and path through 
the grid. 

Branched Generative Adversarial Network Model 
We used deep convolutional GANs to model game levels 
in multiple games by using an innovative branched 
generator matched with individual game specific 
discriminators.  
 

 
Algorithm 1: Training level generation algorithm.  
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A GAN typically consists of two types of deep networks: a 
single generator and a single discriminator. In our novel 
architecture we have constructed a generator that starts 
from a random seed like a typical GAN but branches into 
four different outputs as seen in Figure 2. Each of the 
outputs corresponds to game-levels in four different games 
in the training set. We have as many discriminators as 
there are branches in the generator. Each discriminator is 
tied to a single game and distinguishes between generated 
examples and training examples. The intuition is that the 
latent space and unbranched layers capture the 
commonality across the games while the branched layers 
capture the differences. Independent GANs, would not 
learn any common patterns as the only common element, 
the random input from the latent space, cannot be trained.      

Each training sample is a multi-channel binary matrix, 
with each channel representing one type of sprite in the 
game and each grid point being a binary representation of 
the presence of the corresponding sprite at that grid point. 
The discriminators train independent of one another. 
Binary cross entropy loss from the discriminators is added 
to conditional loss from the generator. The generator loss is 
the sum of the binary cross entropy between the training 
sample and the generated image along with conditional 
loss if the number of sprites does not match the training 
level. The generators use batch normalization between 
convolution layers and LeakyReLU activation along with a 
final sigmoid activation to generate game level output. 
Each of the discriminators use a dropout of 30% to reduce 
overfitting. 

The generator generates four grid physics games 
(Boulderdash, Link, Zelda and Roguelike) of size 16x16 
from an initial input of 128 normally distributed random 
numbers. The training sample and generated game levels 
are represented as a tensor with nine channels, one each for 
each type of sprite (avatar, exit, floor, gold/health, key, 
lock, monster, wall and weapon). Unused channels are set 
to zero. The GANs were trained on a single GPU using 
5000 examples in the training set. The training epochs 
ranged from 600 to 1200 with a batch size of 64.  

Evaluation 
We use multiple evaluation metrics to quantify the quality 
of the generated levels. We check for solvability, the 
similarity of the gameplay between the different games, 
and novelty. Path similarity quantifies gameplay parity 
across games, while novelty measures variety in gameplay 
within levels of a single game. The details of the 
evaluation method are elaborated in this section. 

Solvability 
Solvability is determined using automated agents available 
in the GVGAI framework. If a level can be solved at least  

 

 
Figure 2: The GAN architecture consists of a branched generator 
and multiple parallel discriminators one for each game. 

once in 5 attempts by the automated agent, we consider the 
level to be solvable.   

Ideal Game Path Similarity 
A shortest path is calculated from the avatar’s initial 
position to the goal position with the stops along the way 
to pick up the necessary items to complete the level.  The 
shortest path does not measure solvability because it does 
not take into account the dynamic aspects of the game. 
However, the shortest path is used to evaluate other metrics 
discussed in the subsequent sections. We determine an 
ideal path for the avatar in the level based on Dijkstra’s 
shortest path algorithm (Dijkstra et al. 1959). 

A path similarity measure is calculated between the 
shortest paths game levels of distinct games generated 
together. This path similarity distance is used to verify that 
the GAN model has captured the similarity between the 
games. The path similarity distance is the Manhattan 
distance between the grid locations in the path. The 
formula of the distance calculation is given by the formula, 

 

 
Path similarity distance d is given as a sum over all the 

steps in the solution, where (xb, yb) and (xz, yz) correspond to 
the grid position of the avatar in two distinct games, 
respectively. The shorter path is extended using copies of 
the goal location to match path lengths. For each generated 
set of games, the average path distance is calculated, 
between all pairwise combinations of games. Path 
similarity distance distribution across the sets of generated 
levels is compared to the path similarity distance 
distribution in the training set. If the GAN captures the 
gameplay similarity between distinct games, the 
distribution of path similarity distance should be the same 
between the training set and generated sets. 
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Figure 3: Two set of four games starting on the left Boulderdash, 
Link, Zelda and Roguelike from the training set. 

Novelty 
The path similarity distance discussed in the earlier section 
was about similarity between distinct games, novelty is a 
measure of similarity within a game. Novelty is a binary 
relational property between two game levels of the same 
game. A level is novel with respect to another if the path 
taken by the avatar, represented by the sequence of actions 
is different. Thus, if a level requires a completely new 
sequence of actions to complete, then it would be 
considered novel. To evaluate novelty, we use the 
Levenshtein distance (Levenshtein 1966) between two 
ideal path action sequences. If the Levenshtein distance is 
large between two levels of a game, then we can claim that 
the gameplay will be different to a player. For example, if 
the solution action sequence for two Zelda levels is (right, 
right, pick key, up, right, right) and (right, up, pick key, up, 
right), the distance would be two as the number of edits to 
go from one sequence to the other is two. 

Results and Discussion 
Figure 3 shows two sets of training game levels and 
Figure 4 shows four sets of generated game levels from the 
GAN generator. It is interesting to notice that the GAN 
learns to place boulders in Boulderdash above the 
diamonds. One can also see that in Zelda, the generator 
sometimes confines monsters behind walls. To get a 
glimpse into what the generator is really learning, we take 
two random latent vectors and their corresponding levels 
for one game. We then generate a third level from the 
vector sum of the first two latent vectors. Figure 5 shows 
an example from Boulderdash. We can see that the vector 
sum captures monster locations from the first level and 
some of the diamond locations from the second level into 
the third level. As expected, the GAN is encoding relative 
positional patterns of sprites from the training set into the 
latent space and is encoding the relative positions of sprites 
in the four different games into a single common latent 
representation. 

We see from the examples in Figure 4 that the layout of 
sprites for monsters, keys, gold and health are similar 
across game levels in the different games. This 
correspondence is seen across all generated levels. 

 
Figure 4: Four sets of generated levels using the GAN generator 
starting on the left Boulderdash, Link, Zelda, and Roguelike. 

To validate and quantify the similarity of gameplay across 
games for generated game-level sets, we plot the average 
similarity distance between the ideal path for the avatar to 
reach the end state from the start state, picking up the 
necessary items and avoiding monsters. Figure 6 shows 
how the average path similarity distance is distributed in 
the baseline, training set and the generated set. The 
baseline represents sets of four game levels chosen 
randomly without considering gameplay similarity. The 
distance between the distributions can be quantified using 
the Wasserstein distribution distance.  One can see that the 
generated sets of four levels have path similarity 
distribution closer (Wasserstein distance 161) to the 
training sets and further away from the baseline 
(Wasserstein distance 283). One could say the GAN has 
captured aspects of gameplay similarity across the four 
games.           

Training sets are generated explicitly with the same 
action sequence for all four game levels resulting in similar 
gameplay for all four levels. The training levels have the 
gameplay flowing from the top left to the bottom right and 
one can see this captured by the GAN. GAN generator loss 
for the set of four games are averaged together in the 
gradient calculation with no other explicit constraint to 
match gameplay across games. The indirect constraint 
through loss results in some increase in gameplay variation 
in the generated levels as seen in Figure 6 as expected. 

 

 
Figure 5: The third Boulderdash level generated from the vector 
sum of the latent seed vectors of the first two.  
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Figure 6: Distribution of average path similarity distance between 
distinct games in a training set and generated set. 

We evaluate solvability of the generated levels by taking 
a set (50 levels for each game) of GAN generated levels 
and running an automated agent provided by the GVGAI 
framework. The agent is run up to five times to see if the 
level can be solved in allotted time of 2000 ticks. Figure 7 
shows the relative solvability of the four different games. 
Boulderdash has a higher solvability (70%) over all the 
other games because it does not have any dependency 
between actions. For example, the need to pick up a key 
before being able to open a lock which is present in the 
other games. The reason Zelda has the lowest solvability 
among the generated levels (40%) might be due the need 
for the GAN to reproduce narrow paths between walls to 
go from the starting point to the goal and the need to have 
access to a key to finish the level. 

The next evaluation metric we consider is novelty. 
Figure 8 shows how novelty of the generated levels 
compares with the novelty in the training levels of each 
game. We take 100 training and 100 generated levels for 
each game and calculate the distribution of pairwise 
Levenshtein distance between the ideal action sequence for 
the levels in the two sets. Distance is calculated between 
every level for a game with every other level in that set for 
that game. One can see that the variety or relative novelty 
of levels in the training set is captured by the GAN as the 
generated set has a similar distribution of values for the 
Levenshtein distance. By definition GANs are trying to 
mimic samples in the training sets, having a distribution of 
levels that are just as varied in the generated set as the 
original set implies that the generator has captured most of 
the complexity in the training set in its model.  

 

 
Figure 7: Generated levels solvable by an agent.  

  

 
Figure 8: Pairwise Levenshtein distance distribution as a measure 
of novelty in generated levels vs training levels. 

Conclusion 
GAN-based PCG often focuses on generating levels in 
individual games. There is an underlying commonality in 
how many games operate despite apparent variability on 
initial inspection, and we have shown that one can build a 
game-independent representation to capture that 
commonality of multiple games. Commonalities captured 
in a low dimensional latent space can then be explored to 
generate new interesting game levels, and possibly, new 
games. In this work we trained a novel branched GAN that 
can take a single random seed vector to generate parallel 
levels in four distinct games with similar gameplay, while 
capturing the variability seen in the training levels.  

We have presented a novel approach to building the 
training corpus starting from a prescribed gameplay action 
sequence. By using gameplay, one is starting from a 
player’s experience of the game. Building the training 
corpus based on the gameplay action sequence also 
guarantees that the paired levels generated have similar 
gameplay characteristics. We are currently using a simple 
rule-based algorithm but using answer-set programming 
techniques similar to the work done by Smith and Mateas 
(2011) could make this process more extensible. 

A promising direction for future work is to formalize 
specific game characteristics of a broad selection of games 
that can be represented in a single common representation. 
It will also be instructive to determine if there are classes 
of games that can be grouped based on specific aspects of 
gameplay and game rules. Further, exploring the 
possibility of capturing the temporal elements of games in 
the latent space may lead to more powerful PCG 
frameworks for broad classes of games. 

114



References 
Bentley, G. R., and Osborn, J. C. 2019. The videogame 
affordances corpus. In Proceedings of AIIDE Workshop on 
Experimental AI in Games. 
Dijkstra, E. W. 1959. A note on two problems in connexion with 
graphs. Numerische Mathematik 1(1):269–271. 
Giacomello, E.; Lanzi, P. L.; and Loiacono, D. 2018. Doom level 
generation using generative adversarial networks. In 2018 IEEE 
Games, Entertainment, Media Conference (GEM), 316–323. 
IEEE. 
Giacomello, E.; Lanzi, P. L.; and Loiacono, D. 2019. Searching 
the latent space of a generative adversarial network to generate 
Doom levels. In 2019 IEEE Conference on Games (CoG), 1–8. 
IEEE. 
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. 
Generative adversarial nets. In Advances in Neural Information 
Processing Systems, 2672–2680. 
Guzdial, M., and Riedl, M. 2016. Learning to blend computer 
game levels. In Proceedings of the Seventh International 
Conference on Computational Creativity. 
Guzdial, M., and Riedl, M. 2018a. Automated game design via 
conceptual expansion. In Proceedings of Fourteenth Artificial 
Intelligence and Interactive Digital Entertainment Conference. 
Guzdial, M. J., and Riedl, M. O. 2018b. Combinatorial creativity 
for procedural content generation via machine learning. In 
Workshops at the Thirty-Second AAAI Conference on Artificial 
Intelligence. 
Guzdial, M.; Reno, J.; Chen, J.; Smith, G.; and Riedl, M. 2018. 
Explainable PCGML via game design patterns. In Proceedings of 
AIIDE Workshop on Experimental AI in Games.  
Guzdial, M.; Liao, N.; and Riedl, M.  2018.  Co-creative level 
design via machine learning. In Proceedings of AIIDE Workshop 
on Experimental AI in Games. 
Justesen, N.; Bontrager, P.; Togelius, J.; and Risi, S. 2019. Deep 
learning for video game playing. IEEE Transactions on Games 
12(1):1-20. 
Khalifa, A.; Green, M. C.; Barros, G.; and Togelius, J. 2019. 
Intentional computational level design. In Proceedings of The 
Genetic and Evolutionary Computation Conference, 796–803. 
Lehman, J., and Stanley, K. O. 2011. Abandoning objectives: 
Evolution through the search for novelty alone. Evolutionary 
computation 19(2):189–223. 
Levenshtein, V. I. 1966. Binary codes capable of correcting 
deletions, insertions, and reversals. In Soviet Physics Doklady, 
volume 10, 707–710. 
Park, K.; Mott, B. W.; Min, W.; Boyer, K. E.; Wiebe, E. N.; and 
Lester, J. C. 2019. Generating educational game levels with 
multistep deep convolutional generative adversarial networks. In 
2019 IEEE Conference on Games (CoG), 1–8. IEEE. 
Perez-Liebana, D.; Liu, J.; Khalifa, A.; Gaina, R. D.; Togelius, J.; 
and Lucas, S. M. 2019. General video game AI: A multitrack 
framework for evaluating agents, games, and content generation 
algorithms. IEEE Transactions on Games 11(3):195–214. 
Sarkar, A., and Cooper, S. 2018. Blending levels from different 
games using LSTMs. In Proceedings of AIIDE Workshop on 
Experimental AI in Games. 

Sarkar, A.; Yang, Z.; and Cooper, S. 2019. Controllable level 
blending between games using variational autoencoders. In 
Proceedings of AIIDE Workshop on Experimental AI in Games. 
Shaker, M.; Shaker, N.; Togelius, J.; and Abou-Zleikha, M. 2015. 
A progressive approach to content generation. In European 
Conference on the Applications of Evolutionary Computation, 
381–393. Springer. 
Shaker, N.; Smith, G.; and Yannakakis, G. N. 2016. Evaluating 
content generators. In Procedural Content Generation in Games. 
Springer. 215–224. 
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural 
Content Generation in Games. Springer. 
Silva, F. D. M.; Borovikov, I.; Kolen, J.; Aghdaie, N.; and 
Zaman, K. 2018. Exploring gameplay with AI agents. In 
Proceedings of Fourteenth Artificial Intelligence and Interactive 
Digital Entertainment Conference. 
Smith, A. M., and Mateas, M. 2011. Answer set programming for 
procedural content generation: A design space approach. IEEE 
Transactions on Computational Intelligence and AI in Games 
3(3):187–200. 
Snodgrass, S., and Ontañón, S. 2016a. An approach to domain 
transfer in procedural content generation of two- dimensional 
videogame levels. In Proceedings of Twelfth Artificial 
Intelligence and Interactive Digital Entertainment Conference. 
Snodgrass, S., and Ontañón, S. 2016b. Controllable procedural 
content generation via constrained multi-dimensional Markov 
chain sampling. In IJCAI, 780–786. 
Snodgrass, S.; Summerville, A.; and Ontañón, S. 2017. Studying 
the effects of training data on machine learning-based procedural 
content generation. In Proceedings of Thirteenth Artificial 
Intelligence and Interactive Digital Entertainment Conference. 
Summerville, A., and Mateas, M.  2016.  Super Mario as a string: 
Platformer level generation via LSTMs.   In Proceedings of the 
First International Joint Conference of DiGRA and FDG. 
Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M. O. 
2016. Learning player tailored content from observation: 
Platformer level generation from video traces using LSTMs. In 
Proceedings of Twelfth Artificial Intelligence and Interactive 
Digital Entertainment Conference. 
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.; 
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J. 2018. 
Procedural content generation via machine learning (PCGML). 
IEEE Transactions on Games 10(3):257–270. 
Torrado, R. R.; Khalifa, A.; Green, M. C.; Justesen, N.; Risi, S.; 
and Togelius, J. 2019. Bootstrapping conditional GANs for video 
game level generation. arXiv preprint arXiv:1910.01603. 
Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A.; and Risi, S. 
2018. Evolving Mario levels in the latent space of a deep 
convolutional generative adversarial network. In Proceedings of 
the Genetic and Evolutionary Computation Conference, 221–228. 
ACM 
Zhu, T.; Wang, B.; and Zyda, M. 2018. Exploring the similarity 
between game events for game level analysis and generation. In 
Proceedings of the 13th International Conference on the 
Foundations of Digital Games, 1–7. 
 
 

115




