

Generating Game Levels for Multiple
Distinct Games with a Common Latent Space

Vikram Kumaran, Bradford W. Mott, James C. Lester
Department of Computer Science, North Carolina State University

{vkumara, bwmott, lester}@ncsu.edu

Abstract
Generative adversarial networks (GANs) are showing
significant promise for procedural content generation (PCG)
of game levels. GAN models generate game levels by
mapping a low dimensional latent space to game levels in
the game space. An intriguing challenge in GAN-based
PCG is enabling GANs to produce game levels for multiple
distinct games with similar gameplay characteristics using a
common underlying low-dimensional representation. In this
paper, we present a method for training a novel GAN-based
PCG architecture that generates levels in multiple distinct
games, starting from a common gameplay action sequence.
We evaluate the solvability of the generated games using an
automated playing agent and show how the generated game
levels are separate representations of the same gameplay by
quantifying the similarity between the solution action
sequences for the game levels. By probing the common
latent space, we show how our approach provides control
over the levels generated in distinct games for the presence
of desired gameplay patterns in the generated game levels.
Results also demonstrate that the GAN-based PCG
approach creates novel game levels in multiple distinct
games, as indicated by the distance between the action
sequences required to solve the game levels.

Introduction
Procedural content generation (PCG) holds significant
promise for algorithmically creating game content. PCG
can be utilized to generate game rules, game levels, and
textures for a game’s graphical elements. Early work in
PCG used search-based and solver-based techniques to
generate content, but more recently, machine learning
techniques such as deep neural networks have been used to
generate game content (Shaker, Togelius, and Nelson
2016). This approach is referred to as Procedural Content
Generation via Machine Learning (PCGML) (Summerville
et al. 2018; Justesen et al. 2019; Guzdial et al. 2018).

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A variety of deep neural network architectures have
been used in PCGML to model and generate game content.
Game levels in some genres of games such as platformers
can be expressed as a sequence of obstacles that players
experience as they progress through the game, inspiring the
use of Recurrent Neural Networks (RNN) and Long Short-
Term Memory (LSTM) networks, which can encode
sequential patterns, to generate new game levels
(Summerville et al. 2016; Summerville and Mateas 2016).
Generative Adversarial Networks (GAN) are another type
of deep neural network that have also gained popularity as
a promising content generation technique (Torrado et al.
2019; Volz et al. 2018), driven by the fact that GANs can
be trained in an unsupervised fashion given sufficient
training examples. However, deep neural networks require
a large number of training examples for a model to
accurately capture patterns. GANs have sometimes been
used to address this requirement by taking a limited set
of existing examples to bootstrap a game level training
corpus and create more training examples by using their
ability to reproduce patterns inherent in training examples
when used as a generator (Torrado et al. 2019; Park et al.
2019). However, this approach could lead to overfitting as
GANs are learning from a limited set of examples.

A key feature of GANs is the ability to capture game-
level patterns in a low dimensional latent representation.
Can a single common latent space capture the patterns of
game levels from multiple games? In other words, are
there underlying shared patterns belonging to multiple
distinct games with similar gameplay? We answer this
question in the affirmative and explore the implications of
the common latent space.

We believe that there is an underlying commonality in
game-levels across multiple games despite apparent
variability. By capturing the commonality in a novel GAN
based model, we create levels in multiple games with
similar gameplay from a single common seed. In our
work, we use a novel technique to build up the training
corpus using an approach similar to the progressive

Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

109

generation of game levels using action timelines (Shaker et
al. 2015). Using this technique that starts from a player’s
gameplay, we are able to generate sets of game levels in
multiple games with similar gameplay and build a sizable
training corpus for our GANs. We investigate the
implications of a single latent space that captures the
combined patterns of multiple distinct games by exploring
the relationship between control over the generated levels
and the need to build novel solvable game levels. We
propose metrics that quantify the novelty of the levels
generated by our generator.

Related Work
Over the years there have been many approaches to
capturing a common representation for multiple games.
Bentley and Osborn (2019) labeled affordances of sprite
patterns in multiple games from the players’ point of view,
to show commonality between games. Snodgrass et al.
(Snodgrass et al. 2016) captured statistical regularities in
different platformer game levels. They build the generator
using multi-dimensional Markov chains to represent the
transition states. Guzdial and Riedl (Guzdial and Riedl
2016; Guzdial and Riedl 2018a; Guzdial and Riedl 2018b;
Guzdial, Liao, and Riedl 2018) demonstrate different
techniques to combine game concepts and levels to form
novel levels, including conceptual expansion,
combinatorial creativity and co-creation. Sarkar et al.
(Sarkar and Cooper 2018; Sarkar, Yang, and Cooper 2019)
have used deep learning models like LSTMs and
variational autoencoders to capture the commonality of
distinct games in a single latent representation. However,
they generate game level snippets instead of playable
game levels. In our work, we use the ability of Generative
Adversarial Nets (GAN) to capture a low dimensional
common representation of game levels from multiple
games.

 GANs first introduced by Goodfellow et al. (2014), are
a way to learn generative models that reproduce examples
from a training set by an adversarial process between a
generator and a discriminator, both modeled by deep
neural networks. The training process produces a generator
that can take a random sample from low dimensional latent
space and generate an example that is indistinguishable
from the training set. This ability to generate more
examples given a training set has been used in the PCG
community to bootstrap training sets. Volz et al. (Volz et
al. 2018) trained a GAN generator and explored the low
dimensional latent space using an evolutionary search
algorithm to find novel levels. Giacomello et al.
(Giacomello, Lanzi, and Loiacono 2018; Giacomello,
Lanzi, and Loiacono 2019) followed a similar approach of
latent space exploration to generate novel DOOM levels.

GANs, by definition, are trained to mimic training
examples. We will show how variety in the training set
impacts the novelty of the game levels generated.

 One approach to increasing the training set size is to use
GANs themselves to generate new training data. Torrado et
al. (Torrado et al. 2019) have used a conditional
embedding self-attention GAN (CESAGAN) to capture
long distance dependencies in game levels. After each
epoch of training, the generated playable levels are added
to the training corpus to increase the number of examples.
Park et al. (Park et al. 2019) used GANs to capture the
patterns from a small set of examples to generate a larger
batch of solvable training examples using multi-stage
generation in the context of educational games. GANs
capture what they see in the training examples, so working
with a small training set might restrict the variety of game
levels expressed by the generator. In this work, we propose
a novel method to increase the training set to overcome this
problem, which will be discussed in the next section.

In PCG as game levels are generated procedurally one
needs fitness or evaluation metrics to determine the merit
of each approach and identify desirable levels (Shaker,
Togelius, and Nelson 2016; Shaker, Smith, and
Yannakakis 2016). To simulate human evaluation,
automated agents are used to play the games (Silva et al.
2018; Volz et al. 2018). Volz et al. evaluated level
solvability using an agent to play the level, and they
quantified difficulty based on the configuration of tiles in
the level generated. We also use agents to play our levels
to determine if a level is solvable. Novelty is typically
defined as a distance measure between nearest neighbors
(Lehman and Stanley 2011). In our work, we consider a
level to be novel if it requires a unique sequence of actions
to solve. We will define novelty based on distance between
gameplay solutions as detailed in the later sections.

It is desirable to generate a solvable game level that is
novel. It is also desirable that the generator can be
controlled to generate levels that are interesting to play.
Snodgrass and Ontañón (2016), in their work on PCG
using multi-dimensional Markov chains, introduced
constraints on the game elements in the levels generated,
such as the existence of a specific number of difficult tile
combinations. Khalifa et al. (Khalifa et al. 2019) evaluated
game levels based on how an agent plays the game and the
type of actions the agent performs like high jumps, long
jumps, stomp kills, etc. Zhu et al. (Zhu, Wang, and Zyda
2018) evaluated the similarity between games based on a
game event analysis of human’s gameplay. In our
generator, we also consider gameplay to evaluate our
generated models. Snodgrass et al. (Snodgrass,
Summerville, and Ontañón 2017) defined a plagiarism
metric to see how much of the training levels was captured
in the generated levels. We use a similar metric based on

110

gameplay to evaluate the amount of variety captured from
training to generated levels.

Approach
In this research we trained a GAN to generate game levels
with the same gameplay in four distinct games, from a
single random seed. We selected games that have similar
game physics and game actions. In this section, we
describe the game selection rationale, training set creation,
and the GAN architecture.

Games and Level Representation
The General Video Game Artificial Intelligence (GVGAI)
framework and Video Game Description Language
(VGDL) together provide a generic solution that can be
used to represent and realize common 2D video games
(Perez-Liebana et al. 2019). VGDL is a text-based
description language that can be used to represent two-
dimensional arcade games with grid-level physics. The
language allows for the definition of individual sprites with
custom properties including directional speed, interactions
with other sprites, movement, scoring and determining
termination conditions. The GVGAI framework provides a
large set of predefined games in VGDL. The framework
also provides agents that can play the games based on
various heuristics. In this work we use both the framework
to represent the games and the agents to test solvability of
the generated game levels.

The set of four games selected from GVGAI
(Boulderdash, Link, Zelda and Roguelike) follow grid
physics and have similar actions available to the player.
Interaction of the player’s avatar with dynamic elements in
the games like the monsters, moving tanks, and falling
boulders, create distinction between the games. Falling
boulders, which obey gravity is unique to Boulderdash. In
Roguelike and Link there are solid walls with locked doors
or breakable walls that require the player to first pick up a
key or pickaxe to pass. In Zelda the layout of walls creates
narrow pathways for the avatar to negotiate. These
differences result in a variety of sprite patterns. One cannot
just replace sprites in the level of one game with sprites
from another game to generate levels in the other games.
The ability of enemies in the games are also unique.

Training Corpus Generation
As described above, the training corpus is a list of samples
where each sample is a set of four game levels from
Boulderdash, Link, Zelda, and Roguelike. The games were
selected to have similar gameplay. By similar gameplay,
we imply that following an equivalent action sequence in
all the games will typically complete the level successfully.
The training sets are created using an approach comparable

to Shaker et al. (Shaker et al. 2015), who used abstract
game timelines (sequence of actions in a game along with
time deltas between actions) to generate game levels. The
objective is to place obstacles that complement the actions
at the right time and location such that the player action in
the game timeline is necessary to move forward in a game.

As outlined in the algorithm (Algorithm 1), a training
example creation starts with a set of grid points on an
empty grid. The starting point is usually chosen on the top
left quadrant and the goal point is chosen on the bottom
right. A sequence of actions is selected that will take the
player’s avatar from one grid point to the next. This action
sequence (e.g., jump, break a wall, pick a sword) is carried
out through the grid as sprites like walls and locks are
placed in the way to match the corresponding action. The
action sequences are varied by changing the order of
actions or permuting the combinations of actions
randomly. Multiple combinations of actions that take the
player’s avatar from the start to the goal state are
considered. The same action sequence is used in all the
games considered, but the specific game’s dynamics
requires the placing of different obstacles to match the
action. For example, in Boulderdash one has to avoid
falling boulders and in Roguelike one needs to first pick up
a key before passing a locked gate. The approach is generic
and can be used to generate levels for multiple games
starting from a common action sequence and path through
the grid.

Branched Generative Adversarial Network Model
We used deep convolutional GANs to model game levels
in multiple games by using an innovative branched
generator matched with individual game specific
discriminators.

Algorithm 1: Training level generation algorithm.

111

A GAN typically consists of two types of deep networks: a
single generator and a single discriminator. In our novel
architecture we have constructed a generator that starts
from a random seed like a typical GAN but branches into
four different outputs as seen in Figure 2. Each of the
outputs corresponds to game-levels in four different games
in the training set. We have as many discriminators as
there are branches in the generator. Each discriminator is
tied to a single game and distinguishes between generated
examples and training examples. The intuition is that the
latent space and unbranched layers capture the
commonality across the games while the branched layers
capture the differences. Independent GANs, would not
learn any common patterns as the only common element,
the random input from the latent space, cannot be trained.

Each training sample is a multi-channel binary matrix,
with each channel representing one type of sprite in the
game and each grid point being a binary representation of
the presence of the corresponding sprite at that grid point.
The discriminators train independent of one another.
Binary cross entropy loss from the discriminators is added
to conditional loss from the generator. The generator loss is
the sum of the binary cross entropy between the training
sample and the generated image along with conditional
loss if the number of sprites does not match the training
level. The generators use batch normalization between
convolution layers and LeakyReLU activation along with a
final sigmoid activation to generate game level output.
Each of the discriminators use a dropout of 30% to reduce
overfitting.

The generator generates four grid physics games
(Boulderdash, Link, Zelda and Roguelike) of size 16x16
from an initial input of 128 normally distributed random
numbers. The training sample and generated game levels
are represented as a tensor with nine channels, one each for
each type of sprite (avatar, exit, floor, gold/health, key,
lock, monster, wall and weapon). Unused channels are set
to zero. The GANs were trained on a single GPU using
5000 examples in the training set. The training epochs
ranged from 600 to 1200 with a batch size of 64.

Evaluation
We use multiple evaluation metrics to quantify the quality
of the generated levels. We check for solvability, the
similarity of the gameplay between the different games,
and novelty. Path similarity quantifies gameplay parity
across games, while novelty measures variety in gameplay
within levels of a single game. The details of the
evaluation method are elaborated in this section.

Solvability
Solvability is determined using automated agents available
in the GVGAI framework. If a level can be solved at least

Figure 2: The GAN architecture consists of a branched generator
and multiple parallel discriminators one for each game.

once in 5 attempts by the automated agent, we consider the
level to be solvable.

Ideal Game Path Similarity
A shortest path is calculated from the avatar’s initial
position to the goal position with the stops along the way
to pick up the necessary items to complete the level. The
shortest path does not measure solvability because it does
not take into account the dynamic aspects of the game.
However, the shortest path is used to evaluate other metrics
discussed in the subsequent sections. We determine an
ideal path for the avatar in the level based on Dijkstra’s
shortest path algorithm (Dijkstra et al. 1959).

A path similarity measure is calculated between the
shortest paths game levels of distinct games generated
together. This path similarity distance is used to verify that
the GAN model has captured the similarity between the
games. The path similarity distance is the Manhattan
distance between the grid locations in the path. The
formula of the distance calculation is given by the formula,

Path similarity distance d is given as a sum over all the

steps in the solution, where (xb, yb) and (xz, yz) correspond to
the grid position of the avatar in two distinct games,
respectively. The shorter path is extended using copies of
the goal location to match path lengths. For each generated
set of games, the average path distance is calculated,
between all pairwise combinations of games. Path
similarity distance distribution across the sets of generated
levels is compared to the path similarity distance
distribution in the training set. If the GAN captures the
gameplay similarity between distinct games, the
distribution of path similarity distance should be the same
between the training set and generated sets.

112

Figure 3: Two set of four games starting on the left Boulderdash,
Link, Zelda and Roguelike from the training set.

Novelty
The path similarity distance discussed in the earlier section
was about similarity between distinct games, novelty is a
measure of similarity within a game. Novelty is a binary
relational property between two game levels of the same
game. A level is novel with respect to another if the path
taken by the avatar, represented by the sequence of actions
is different. Thus, if a level requires a completely new
sequence of actions to complete, then it would be
considered novel. To evaluate novelty, we use the
Levenshtein distance (Levenshtein 1966) between two
ideal path action sequences. If the Levenshtein distance is
large between two levels of a game, then we can claim that
the gameplay will be different to a player. For example, if
the solution action sequence for two Zelda levels is (right,
right, pick key, up, right, right) and (right, up, pick key, up,
right), the distance would be two as the number of edits to
go from one sequence to the other is two.

Results and Discussion
Figure 3 shows two sets of training game levels and
Figure 4 shows four sets of generated game levels from the
GAN generator. It is interesting to notice that the GAN
learns to place boulders in Boulderdash above the
diamonds. One can also see that in Zelda, the generator
sometimes confines monsters behind walls. To get a
glimpse into what the generator is really learning, we take
two random latent vectors and their corresponding levels
for one game. We then generate a third level from the
vector sum of the first two latent vectors. Figure 5 shows
an example from Boulderdash. We can see that the vector
sum captures monster locations from the first level and
some of the diamond locations from the second level into
the third level. As expected, the GAN is encoding relative
positional patterns of sprites from the training set into the
latent space and is encoding the relative positions of sprites
in the four different games into a single common latent
representation.

We see from the examples in Figure 4 that the layout of
sprites for monsters, keys, gold and health are similar
across game levels in the different games. This
correspondence is seen across all generated levels.

Figure 4: Four sets of generated levels using the GAN generator
starting on the left Boulderdash, Link, Zelda, and Roguelike.

To validate and quantify the similarity of gameplay across
games for generated game-level sets, we plot the average
similarity distance between the ideal path for the avatar to
reach the end state from the start state, picking up the
necessary items and avoiding monsters. Figure 6 shows
how the average path similarity distance is distributed in
the baseline, training set and the generated set. The
baseline represents sets of four game levels chosen
randomly without considering gameplay similarity. The
distance between the distributions can be quantified using
the Wasserstein distribution distance. One can see that the
generated sets of four levels have path similarity
distribution closer (Wasserstein distance 161) to the
training sets and further away from the baseline
(Wasserstein distance 283). One could say the GAN has
captured aspects of gameplay similarity across the four
games.

Training sets are generated explicitly with the same
action sequence for all four game levels resulting in similar
gameplay for all four levels. The training levels have the
gameplay flowing from the top left to the bottom right and
one can see this captured by the GAN. GAN generator loss
for the set of four games are averaged together in the
gradient calculation with no other explicit constraint to
match gameplay across games. The indirect constraint
through loss results in some increase in gameplay variation
in the generated levels as seen in Figure 6 as expected.

Figure 5: The third Boulderdash level generated from the vector
sum of the latent seed vectors of the first two.

113

Figure 6: Distribution of average path similarity distance between
distinct games in a training set and generated set.

We evaluate solvability of the generated levels by taking
a set (50 levels for each game) of GAN generated levels
and running an automated agent provided by the GVGAI
framework. The agent is run up to five times to see if the
level can be solved in allotted time of 2000 ticks. Figure 7
shows the relative solvability of the four different games.
Boulderdash has a higher solvability (70%) over all the
other games because it does not have any dependency
between actions. For example, the need to pick up a key
before being able to open a lock which is present in the
other games. The reason Zelda has the lowest solvability
among the generated levels (40%) might be due the need
for the GAN to reproduce narrow paths between walls to
go from the starting point to the goal and the need to have
access to a key to finish the level.

The next evaluation metric we consider is novelty.
Figure 8 shows how novelty of the generated levels
compares with the novelty in the training levels of each
game. We take 100 training and 100 generated levels for
each game and calculate the distribution of pairwise
Levenshtein distance between the ideal action sequence for
the levels in the two sets. Distance is calculated between
every level for a game with every other level in that set for
that game. One can see that the variety or relative novelty
of levels in the training set is captured by the GAN as the
generated set has a similar distribution of values for the
Levenshtein distance. By definition GANs are trying to
mimic samples in the training sets, having a distribution of
levels that are just as varied in the generated set as the
original set implies that the generator has captured most of
the complexity in the training set in its model.

Figure 7: Generated levels solvable by an agent.

Figure 8: Pairwise Levenshtein distance distribution as a measure
of novelty in generated levels vs training levels.

Conclusion
GAN-based PCG often focuses on generating levels in
individual games. There is an underlying commonality in
how many games operate despite apparent variability on
initial inspection, and we have shown that one can build a
game-independent representation to capture that
commonality of multiple games. Commonalities captured
in a low dimensional latent space can then be explored to
generate new interesting game levels, and possibly, new
games. In this work we trained a novel branched GAN that
can take a single random seed vector to generate parallel
levels in four distinct games with similar gameplay, while
capturing the variability seen in the training levels.

We have presented a novel approach to building the
training corpus starting from a prescribed gameplay action
sequence. By using gameplay, one is starting from a
player’s experience of the game. Building the training
corpus based on the gameplay action sequence also
guarantees that the paired levels generated have similar
gameplay characteristics. We are currently using a simple
rule-based algorithm but using answer-set programming
techniques similar to the work done by Smith and Mateas
(2011) could make this process more extensible.

A promising direction for future work is to formalize
specific game characteristics of a broad selection of games
that can be represented in a single common representation.
It will also be instructive to determine if there are classes
of games that can be grouped based on specific aspects of
gameplay and game rules. Further, exploring the
possibility of capturing the temporal elements of games in
the latent space may lead to more powerful PCG
frameworks for broad classes of games.

114

References
Bentley, G. R., and Osborn, J. C. 2019. The videogame
affordances corpus. In Proceedings of AIIDE Workshop on
Experimental AI in Games.
Dijkstra, E. W. 1959. A note on two problems in connexion with
graphs. Numerische Mathematik 1(1):269–271.
Giacomello, E.; Lanzi, P. L.; and Loiacono, D. 2018. Doom level
generation using generative adversarial networks. In 2018 IEEE
Games, Entertainment, Media Conference (GEM), 316–323.
IEEE.
Giacomello, E.; Lanzi, P. L.; and Loiacono, D. 2019. Searching
the latent space of a generative adversarial network to generate
Doom levels. In 2019 IEEE Conference on Games (CoG), 1–8.
IEEE.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014.
Generative adversarial nets. In Advances in Neural Information
Processing Systems, 2672–2680.
Guzdial, M., and Riedl, M. 2016. Learning to blend computer
game levels. In Proceedings of the Seventh International
Conference on Computational Creativity.
Guzdial, M., and Riedl, M. 2018a. Automated game design via
conceptual expansion. In Proceedings of Fourteenth Artificial
Intelligence and Interactive Digital Entertainment Conference.
Guzdial, M. J., and Riedl, M. O. 2018b. Combinatorial creativity
for procedural content generation via machine learning. In
Workshops at the Thirty-Second AAAI Conference on Artificial
Intelligence.
Guzdial, M.; Reno, J.; Chen, J.; Smith, G.; and Riedl, M. 2018.
Explainable PCGML via game design patterns. In Proceedings of
AIIDE Workshop on Experimental AI in Games.
Guzdial, M.; Liao, N.; and Riedl, M. 2018. Co-creative level
design via machine learning. In Proceedings of AIIDE Workshop
on Experimental AI in Games.
Justesen, N.; Bontrager, P.; Togelius, J.; and Risi, S. 2019. Deep
learning for video game playing. IEEE Transactions on Games
12(1):1-20.
Khalifa, A.; Green, M. C.; Barros, G.; and Togelius, J. 2019.
Intentional computational level design. In Proceedings of The
Genetic and Evolutionary Computation Conference, 796–803.
Lehman, J., and Stanley, K. O. 2011. Abandoning objectives:
Evolution through the search for novelty alone. Evolutionary
computation 19(2):189–223.
Levenshtein, V. I. 1966. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet Physics Doklady,
volume 10, 707–710.
Park, K.; Mott, B. W.; Min, W.; Boyer, K. E.; Wiebe, E. N.; and
Lester, J. C. 2019. Generating educational game levels with
multistep deep convolutional generative adversarial networks. In
2019 IEEE Conference on Games (CoG), 1–8. IEEE.
Perez-Liebana, D.; Liu, J.; Khalifa, A.; Gaina, R. D.; Togelius, J.;
and Lucas, S. M. 2019. General video game AI: A multitrack
framework for evaluating agents, games, and content generation
algorithms. IEEE Transactions on Games 11(3):195–214.
Sarkar, A., and Cooper, S. 2018. Blending levels from different
games using LSTMs. In Proceedings of AIIDE Workshop on
Experimental AI in Games.

Sarkar, A.; Yang, Z.; and Cooper, S. 2019. Controllable level
blending between games using variational autoencoders. In
Proceedings of AIIDE Workshop on Experimental AI in Games.
Shaker, M.; Shaker, N.; Togelius, J.; and Abou-Zleikha, M. 2015.
A progressive approach to content generation. In European
Conference on the Applications of Evolutionary Computation,
381–393. Springer.
Shaker, N.; Smith, G.; and Yannakakis, G. N. 2016. Evaluating
content generators. In Procedural Content Generation in Games.
Springer. 215–224.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
Content Generation in Games. Springer.
Silva, F. D. M.; Borovikov, I.; Kolen, J.; Aghdaie, N.; and
Zaman, K. 2018. Exploring gameplay with AI agents. In
Proceedings of Fourteenth Artificial Intelligence and Interactive
Digital Entertainment Conference.
Smith, A. M., and Mateas, M. 2011. Answer set programming for
procedural content generation: A design space approach. IEEE
Transactions on Computational Intelligence and AI in Games
3(3):187–200.
Snodgrass, S., and Ontañón, S. 2016a. An approach to domain
transfer in procedural content generation of two- dimensional
videogame levels. In Proceedings of Twelfth Artificial
Intelligence and Interactive Digital Entertainment Conference.
Snodgrass, S., and Ontañón, S. 2016b. Controllable procedural
content generation via constrained multi-dimensional Markov
chain sampling. In IJCAI, 780–786.
Snodgrass, S.; Summerville, A.; and Ontañón, S. 2017. Studying
the effects of training data on machine learning-based procedural
content generation. In Proceedings of Thirteenth Artificial
Intelligence and Interactive Digital Entertainment Conference.
Summerville, A., and Mateas, M. 2016. Super Mario as a string:
Platformer level generation via LSTMs. In Proceedings of the
First International Joint Conference of DiGRA and FDG.
Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M. O.
2016. Learning player tailored content from observation:
Platformer level generation from video traces using LSTMs. In
Proceedings of Twelfth Artificial Intelligence and Interactive
Digital Entertainment Conference.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J. 2018.
Procedural content generation via machine learning (PCGML).
IEEE Transactions on Games 10(3):257–270.
Torrado, R. R.; Khalifa, A.; Green, M. C.; Justesen, N.; Risi, S.;
and Togelius, J. 2019. Bootstrapping conditional GANs for video
game level generation. arXiv preprint arXiv:1910.01603.
Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A.; and Risi, S.
2018. Evolving Mario levels in the latent space of a deep
convolutional generative adversarial network. In Proceedings of
the Genetic and Evolutionary Computation Conference, 221–228.
ACM
Zhu, T.; Wang, B.; and Zyda, M. 2018. Exploring the similarity
between game events for game level analysis and generation. In
Proceedings of the 13th International Conference on the
Foundations of Digital Games, 1–7.

115

