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Abstract

While there have been many proposals on making AI algo-
rithms explainable, few have attempted to evaluate the im-
pact of AI-generated explanations on human performance in
conducting human-AI collaborative tasks. To bridge the gap,
we propose a Twenty-Questions style collaborative image re-
trieval game, Explanation-assisted Guess Which (ExAG), as
a method of evaluating the efficacy of explanations (visual ev-
idence or textual justification) in the context of Visual Ques-
tion Answering (VQA). In our proposed ExAG, a human user
needs to guess a secret image picked by the VQA agent by
asking natural language questions to it. We show that over-
all, when AI explains its answers, users succeed more often
in guessing the secret image correctly. Notably, a few cor-
rect explanations can readily improve human performance
when VQA answers are mostly incorrect as compared to no-
explanation games. Furthermore, we also show that while
explanations rated as “helpful” significantly improve human
performance, “incorrect” and “unhelpful” explanations can
degrade performance as compared to no-explanation games.
Our experiments, therefore, demonstrate that ExAG is an ef-
fective means to evaluate the efficacy of AI-generated expla-
nation on a human-AI collaborative task.

Introduction
Deep networks, as black-box models, often suffer from the
lack of interpretability (Zhang and Zhu 2018). In the context
of Visual Question Answering (VQA) (Antol et al. 2015),
various methods for shedding light on the inner workings of
these networks have been proposed — pointing to evidence
in the image and/or question (Lu et al. 2016; Kazemi and
Elqursh 2017; Xu and Saenko 2016; Selvaraju et al. 2016)
and human-interpretable text-based justifications (Park et al.
2018), to mention a few. However, the empirical evidence
that such explanations can actually be helpful for a human-
machine collaborative task is lacking.
To this end, we propose a Twenty-Questions (Lewis 2008)

style human-machine collaborative game, Explanation-
Assisted GuessWhich (ExAG), using VQA (Antol et al.
2015) as the backbone task to evaluate the efficacy of expla-
nations. An explanation, in this context, refers to additional
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Figure 1: We propose the ExAG game, where a human user
needs to guess the secretly picked image by a VQA agent via
asking natural language questions. The VQA agent answers
“5” to the question “How many people?”. Without any ex-
planations, the user finds it difficult to judge the correctness
of the agent’s answer and hence, the first image seems an
obvious choice as the secret image. The explanations (visu-
alizations in bottom row) point out the critical evidence that
the agent probably mistakenly sees five people in the sec-
ond image as well. The user can take this into consideration
while asking follow-up questions.

information output by the VQA that sheds light on the rea-
soning of the VQA agent for generating an answer given a
question-image pair. For example, if the answer to a ques-
tion “what is in the image?” is “car”, an explanation could
be pointing to salient components of cars such as the wheels
and wind-shields. As shown in Figure 1, in ExAG, human
users and a VQA agent collaborate to retrieve a secret im-
age, selected by the agent out of a set of visually similar im-
ages. The role of the agent is to help the human identify the
secret image by answering questions asked by the human.
Since the VQA is noisy in its answer predictions, finding
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the correct secret image requires humans to build a proper
mental model of the VQA agent in order to decide which
answer to trust. This makes ExAG a promising framework
for evaluating the efficacy of explanations. Our hypothesis
is that humans will succeed more often (i.e., winning rate)
and quicker (i.e., using fewer questions) in finding the secret
image when the machine explains its reasoning.
We conducted two sets of ExAG games and collected user

performance as a function of their usage of explanations.
The first set (i.e., the at-will setting) allowed users to choose
the use of explanations at will. This set of experiments pro-
vided preliminary evidence that human users spontaneously
and increasingly prefer explanations even when their usage
is penalized in the final score. The second set was conducted
with a more controlled design to study the efficacy of each
mode of explanations using a tighter metric (i.e., the con-
trolled setting). We collected subjective ratings of explana-
tion helpfulness perceived by the users before the outcome
of the game was revealed (to avoid the influence of game win
or loss on the perceived helpfulness). We also independently
collected subjective ratings of explanation correctness for
better understanding of the relationship between explanation
efficacy and quality.
We show evidence that the ExAG game performance cor-

relates to perceived explanation helpfulness and correctness
ratings, making ExAG a suitable tool for evaluating expla-
nation efficacy and quality. Helpfulness of an explanation
is determined from users who rate how helpful they find
the explanations while playing the game before knowing the
outcome of the game. Correctness is determined by asking
independent humans how relevant and correct the explana-
tions are for the given image, question and answer. Interest-
ingly, we also note that having a few “correct” explanations
can help performance significantly in game rounds where
answers are mostly incorrect.
Practical applications of our proposed ExAG can include

image retrieval using free-form queries. For example, assist-
ing disaster personnel, where a rescuer may have to rely on
audio answers from a VQA machine because he/she is too
busy to look at a video/image feed. It can also help medical
professionals, where a doctor may use visual explanations to
judge the confidence of a certain diagnosis among others.

Related Work
Explainable AI Early work on explainable models in-
volves template-based systems that spanned from medical
systems (Shortliffe and Buchanan 1984) to educational set-
tings (Lane et al. 2005; Van Lent, Fisher, and Mancuso
2004). Recent interest in explaining the inferences of a deep
networks for computer vision applications includes intro-
spective explanations that show the intermediate features of
importance in making a decision (Lu et al. 2016; Park et al.
2018; Xu and Saenko 2016; Fong and Vedaldi 2018; 2017;
Selvaraju et al. 2016; Zeiler and Fergus 2014), as well as
post-hoc rationalization techniques such as justifying tex-
tual explanations (Park et al. 2018) and generating visual
explanations (Hendricks et al. 2016). We focus on using
attention-based visualization of important image regions (Lu
et al. 2016; Xu and Saenko 2016; Kazemi and Elqursh 2017;

Teney et al. 2017), object/scene detection (Szegedy et al.
2017; He et al. 2017) and semantically related question-
answers to the asked question. It has been shown (Das et al.
2017a) that humans and machines look differently at images
when answering questions. Hence, it is not obvious whether
the above mentioned explanations are indeed helpful to hu-
mans. In this paper, we quantify how much explanations can
help in human-machine collaboration performance.

Visual Question Answering We use VQA (Antol et al.
2015) as the backbone task for our human-AI collabora-
tive game. VQA is a vision-language task of answering
natural language questions on images. Most of the effec-
tive approaches to VQA consist of works with attention
on image features (Yu Jiang* et al. 2018; Lu et al. 2016;
Teney et al. 2017; Xu and Saenko 2016; Kazemi and Elqursh
2017) guided by the question in order to answer it. We im-
plement a comparable model that attends to both objects and
free-form spatial regions in the image in a similar manner to
(Yu Jiang* et al. 2018).

20 Questions Game Our choice of the image-guessing
game is a visual version of the popular 20-questions game,
which is more formally, a specific version of the classic
Lewis Signaling Game (Lewis 2008). There have also been
efforts at training AI agents to play such an image-guessing
game with humans/AI’s (de Vries et al. 2016) using rein-
forcement learning- (Das et al. 2017b). Such a game is used
to evaluate the performance of visual conversational agents
(Chattopadhyay et al. 2017). However, to the best of our
knowledge, we are the first to use such a game to evaluate
the effectiveness of explanations on human-machine collab-
orative tasks.

Mental Model of an AI System Along the lines of quanti-
fying explanation efficacy, Chandrasekaran et al. quantified
whether attention-based explanation improves human pre-
diction of VQA performance (Chandrasekaran et al. 2017;
2018). While they show no significant increase in the abil-
ity to predict model outcome using attention-based expla-
nations, we show that a combination of visual and textual
explanations are helpful in a game setting where multiple
rounds of question-answering are involved. It is also shown
that a combination of attention-based and textual expla-
nations is helpful for predicting model performance (Park
et al. 2018). We use related question-answers as a form
of textual explanation and also see similar trends for such
a collaborative question-answering task. There have been
works on evaluating the impact of visualizing model in-
ternals/workings on user trust, mental model understanding
(Poursabzi-Sangdeh et al. 2018) and performance (Nguyen
et al. 2018). While (Poursabzi-Sangdeh et al. 2018) argued
that displaying model internals might harm users ability to
detect when model makes a mistake (Poursabzi-Sangdeh et
al. 2018), we observe that in a collaborative setting with
multiple rounds of interaction, a few correct explanations
help improve performance on the task even when most of
the model predictions in that session were incorrect.
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Game Outline

In ExAG, there are two agents: a near state-of-the-art VQA
deep learning model trained to answer questions about
images (the “VQA agent”), and a human volunteer (the
“player”) who has to guess a secret image picked by the
machine. A secret image is randomly picked from a pool
of 1500 images. We select another N − 1 images from the
same pool using a difficulty measure based on the VGG16
(Simonyan and Zisserman 2014) FC7 distance. The diffi-
culty level is adjusted so that the N images are challeng-
ing enough to where it requires multiple rounds of VQA to
identify the secret image. The player starts with Po points
and is allowed to ask free-form questions to the VQA agent
in order to guess the secret image. The final score is P =

Po −
∑Q
i=1 pi if the correct image is guessed, where Q is

the number of questions asked and pi is the point deduction
for each question. If the incorrect image is guessed, P = 0.
A success is defined as the player correctly selecting the se-
cret image while keeping P > 0. Players are encouraged to
keep P as high as possible.

The VQA Model

Figure 2: Mask-RCNN-based VQAModel with attention on
both global ResNet features (i.e., free-form attention) and
region proposal network (RPN) features (i.e., object atten-
tion). This model is based on (Kazemi and Elqursh 2017)
and (Teney et al. 2017)

As shown in Figure 2, we used a near SOTA VQA model
that comprises both ResNet- (Szegedy et al. 2017) and
Mask-RCNN-based (He et al. 2017) image encoders and an
attention mechanism to weigh the visual features depending
on the question embedding. The question is encoded into an
embedding using an LSTM. The weighted features are fed
into a classifier that predicts an answer from 3000 candi-
dates.

Modes of Explanations

We define explanations as information given by the VQA
agent that provides insight into why the VQA predicted a
certain answer. The insight can be visualizations of the ev-
idence used to infer the answer, such as weights applied to

Figure 3: Explanation mode based on attentions that high-
light the relevant regions and objects in image to support the
machine-generated answers for the given questions.

Figure 4: Explanation mode based on related questions and
answers. The given question is “What is in the image?” and
the machine-generated answer is “skateboarder”.

visual features (i.e., attention). It can also be rationalizations,
such as stating the semantic beliefs about a fact that led to
the answer. Below, we outline three modes of explanations
and illustrate how they are used in ExAG.

Attention. We use attention masks computed based on the
question asked to highlight spatial locations/objects in the
image that are weighted more heavily in the inference pro-
cess of answer prediction. We employ two types of atten-
tion layers - free-form attention that weighs visual features
in the pixel-space and object-based attention that weighs ob-
ject proposals in the image (Figure 3). A player can check if
the attention masks correspond to the relevant part of the im-
age given the question to determine if the machine generated
answer is trustworthy.

Object and Scene Predictions (ObjScene). We display
a list of the most relevant object and scene predictions ob-
served in the image. The relevance of an object/scene word
O is measured by S(O) = dist(O,A)

p(O|I) where I and A denote
the image and machine generated answer word, respectively,
and dist(O,A) denotes the Word2Vec distance (Mikolov et

Figure 5: When given a choice, players increasingly opt for
explanations even when explanation usage is penalized - ex-
tra 2 points per question-answering round.
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Table 1: Human performances of ExAG in the controlled settings with different explanation modes. Overall, explanations
improve game performance in terms of both win rate and averaged score. Explanations can help human players identify the
secret image not only correctly but also with fewer questions (as reflected by higher scores).

With Expl No Expl Group Baseline Overall Improv Stat Sig
Score Win Rate Score Win Rate Score Win Rate Score Win Rate p conf

Attention 6.23 66.67 6 64.92 5.66 62.1 0.66 5.52 0.1 none
Rel QAs 6.8 71.48 6.03 64.54 6.02 65.45 1.23 10.33 0.0019 99%
Both 6.44 69.03 5.83 63.25 5.68 63.75 0.87 7.88 0.03 90%
Overall 6.52 69.29 5.97 64.3 5.81 63.85 0.95 8.14 0.0015 99%
Overall inc no 6.52 69.29 5.74 61.85 5.57 61.15 0.95 8.14 0.0015 99%

al. 2013) between the object and answer words. p(O|I) is
calculated using the image encoder in VQA. When object-
based attention is used, this explanation mode is skipped
since objects are already highlighted by attention masks. Un-
der this explanation mode, the player needs to judge if the
listed relevant objects are consistent with the visual contents
in the image and machine-generated answer.

Related questions and answers (RelQAs). Five ques-
tions that are semantically close to the given question are re-
trieved from the VQA2.0 Validation Dataset. The closeness
is measured via a semantic similarity based on the LSTM
(from the question encoder in Figure 2) embedding distance
over all the words in the pair of question and answer. Fur-
thermore, questions with a high word overlap are rejected to
avoid paraphrases (e.g., ‘what is in the image?’ vs. ‘what
is in the picture?’). The VQA agent generates answers to
these related questions as part of the explanation. The player
needs to judge the trustworthiness of machine-generated an-
swer based on the correctness of and coherence among these
pairs of related questions and answers (Figure 4).

Game Settings

At-will Setting. In this setting, N = 20 images are se-
lected and the player has the option of receiving explana-
tions or not. Each question asked costs one point and ex-
planation, if requested, costs an additional two points. All
explanation modes are shown once the player chooses to re-
ceive explanations. This includes free-form attention for all
images, ObjScene for the secret image, and RelQAs for the
secret image. To be helpful of game wins, explanations need
to be not only correct/coherent with the given answer but
also sufficiently subtle/complete against distractor images.

Controlled Setting. In this setting, we show spatial atten-
tion, object-based attention and RelQAs for all the images.
Since extra information (explanations) are given for all the
images, the coherence between the explanation and given
answer plays more important role in assisting game perfor-
mance. In order to reduce the cognitive load on the players,
we reduce N from N = 20 in the at-will setting to N = 5
and make the images more similar to each other to maintain
the same level of difficulty. Since we use object-based atten-
tion, the ObjScene explanation is not shown to avoid repeti-
tion. We randomly assign each explanation type to a group
of AMTworkers. As users play the game, they are also asked
to rate how helpful the explanations are after each round of

Figure 6: Histogram of ratings of how “helpful” and “cor-
rect” explanations were while playing the game. “Helpful-
ness” ratings were given by workers while playing games
before knowing the game outcome. “Correctness” was rated
by three independent workers for explanations of the secret
image.

question answering. Note that at the time of rating, players
do not yet know the outcome of the game. So, their rating is
not confounded by whether they succeeded or not, but likely
reflects how helpful the explanations seemed in narrowing
down the secret image and identifying the proper question
to ask next.

Results

At-will Setting

In this setting, the ExAG game was played in a competi-
tive setting (with cash rewards for the team that won the
most within a stipulated time) by about 60 people grouped
into 6 teams. The players were free to choose explanations
or forgo them. Using explanations resulted in an additional
2 point penalty and time loss since explanation generation
takes more time than just answer generation.
Of 206 total games played, the average win rate was 43%.

We divided the game plays into games where explanations
were never used (N = 49) and those where explanations
were used at least once (N = 157). The win rate with
explanations was 47% and 28% when explanations were
never used. The z-test for proportions indicates that this is
a statistically significant difference at 95% confidence level
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Figure 7: Game win percentage as a function of user perceived helpfulness rating. Baseline is first 5 no-explanation performance
for the same group of workers. Helpfulness was self rated by workers before they knew the GT image or the outcome of the
game. We see that overall, excellent explanations significantly improve performance.

Figure 8: Image sets were of similar difficulty (as measured
by deep image feature distance of distractor images to GT
image) for explanations that were rated “Excellent” as com-
pared to “Confusing”, thus not confounding improve in per-
formance for “Excellent” explanations.

(p=0.019).
Moreover, as the players proceeded to play the ExAG

game, they tended to opt for using explanations even though
that resulted in additional 2 point penalty and time loss. Fig-
ure 5 shows this spontaneous adoption of explanation with

increasing number of plays. A z-test comparing the propor-
tion of games using the explanations during the first half of
plays (61.2%, N = 103) vs. during the second half (91.3%,
N = 103) indicates highly statistically significant increase
in explanation utilization (p < 10−5).

Controlled Setting

This setting shows explanations for all images and hence,
players have to rely on the coherence of explanations to aid
their game (i.e., if explanations are good, the secret image’s
explanation will be more coherent with answer shown com-
pared to the explanations for the distractor images). All anal-
yses henceforth are performed on this setting.
The games were played by 69 individual AMT workers.

The instructions were to try to win the game by guessing
the secret image correctly and were warned that a lack of
effort (e.g., randomly select answers) would lead to rejec-
tion. For AMT worker selection, location was set to the
US only to recruit workers with proper English skills, and
worker qualification threshold was set to above 98% (num-
ber of HITs > 1000) to ensure the quality of game plays.
The workers played 1469 games in total covering four ex-
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Figure 9: Game win percentage as a function of independently rated explanation accuracy. Baseline performance was adjusted
to reflect the baseline of only that subset of games where correctness ratings were collected. Overall, we see that incorrect ex-
planations hurt performance, while correct explanations are not sufficient to improve performance compared to no-explanation
games.

planation modes - attention, RelQAs, both shown together
(referred to as ‘Both’), and also without any explanations
(“WithoutExpl” group).

Each individual worker always saw only one mode of ex-
planation while playing. Each worker was instructed to play
at least four sessions with each session consisting of five
games. Sessions with and without explanations were alter-
nated. For instance, the first session does not provide ex-
planations, followed by a session with assigned choice of
explanations. The first block is used as the “group base-
line” no-explanation performance for the assigned explana-
tion worker group. When reporting “no expl” performance
for a group, we average the first and third blocks and “expl”
performance is the average of the second and fourth blocks.

Note that we also studied the performance of each round
of the “WithoutExpl” control group (i.e., group that never
saw any explanations) to examine whether the performance
of later rounds would be improved given the experiences of
earlier rounds. No statistically solid improvement was ob-
served mostly because only five consecutive tries were al-
lowed and image sets with sufficient variety were used in
each trial. Based on this study, we could directly compare
performances in each round without the need to normalize

scores to balance learning effect that can potentially con-
found the player’s performance.

Overall impact of explanations. The overall impact of
explanations on the performance of ExAG is summarized
in Table 1. The ‘Overall’ row averages across all explana-
tion modes (i.e., the three rows above) whereas the ‘Over-
all inc no’ also includes the performance of workers who
never saw any explanations (i.e., the ‘WithoutExpl’ group).
For each of the modes, ‘With Expl.’and ‘No Expl.’ list the
performance with and without explanations, respectively.
‘Group baseline’ is the baseline performance without ex-
planations (the first 5 rounds) of that worker group. ‘Over-
all Improv’ shows the improvement with respect to ‘Over-
all inc no’. The game score starts from 10 (Po = 10)
with each question asked costing one point (pi = 1). We
observe that the game win rate is statistically significantly
(p = 0.0015, 99% confidence) improved by explanations
overall and fewer questions were required to guess correctly
(as suggested by higher scores).‘RelQAs’ improves game
performance the most (p = 0.0019, 99% confidence), fol-
lowed by ‘Both’ (p = 0.03, 90% confidence). We don’t see
a statistically significant effect of attention-based explana-
tions when presented in isolation, which is consistent with
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Figure 10: Explanations help when VQA answers are wrong.
Without explanations (red line), if the answer from the VQA
is wrong, user performance drops dramatically. However,
at least a few good explanations (black line) help reveal
VQA answer correctness so that it can be taken into ac-
count. Hence, game performance without explanations is
much lower when answers are wrong than with explana-
tions. The black line is defined as games where there was
at least one explanation above indifferent.

observations from prior works (Chandrasekaran et al. 2017;
2018).
We also analyze how the difficulty level of the selected

image set affects the game performance. We use theL2 norm
on the VGG16 FC7 feature (Simonyan and Zisserman 2014)
to evaluate the distance between each images and the se-
cret image and the averaged distance as the overall difficulty
level of the set- lower distance meaning higher difficulty. We
observe that for game rounds with explanations, the average
difficulty level is similar between winning and losing game
rounds. However, for game rounds without explanations, the
difficulty level of winning games is much lower than that of
the losing games. This may suggest that explanations help
players to identify critical cues about how the VQA answers
questions which may not be visually salient otherwise.
To understand the effect of explanation quality on perfor-

mance, we collect two types of ratings for the explanations
1) While playing the game, workers are asked to self rate
their “perceived helpfulness” of the explanation for zeroing
down on an image after each question asked. 2) We sep-
arately collect the correctness of the explanations and an-
swers from 3 independent AMT workers by showing them
the answer and explanation for the asked question and the
secret image. Below, we use these ratings to analyze how
“perceived helpfulness” and “correctness” of explanations
and answers affect game performance.

Impact of explanations as a function of perceived help-
fulness ratings. We collect self-reported helpfulness rat-
ings of explanations as workers receive answers and ex-
planations for their questions (Figure 6). We analyze game
performance as a function of these ratings to see if expla-
nations perceived as “helpful” do help game performance.
Since workers didn’t know the secret image or the game

outcome while rating, their decision was not affected by the
(future) play outcome and likely reflected the helpfulness of
explanations in narrowing down their image choices. The
workers were asked to rate the explanations according to
the following options: “Helping a lot” (refered to as Excel-
lent here-on), “Mostly helping” (Mostly Good), “Somewhat
Helpful” (Somewhat), “Not helping much” (Not Much) and
“Completely Confusing” (Confusing). The histogram of the
ratings across all the games is shown in Figure 6 and the
explanations are mostly perceived as helpful.
We see that overall (Figure 7a), explanations perceived

as Excellent significantly increase game performance. When
explanations are rated less helpful, performance is similar
to playing without explanations supporting the notion that
workers seem to ignore the explanations, or somewhat de-
graded as the workers were confused by them. Notably, we
calculate the average difficulty levels of the candidate im-
age sets for each game round and observe no confound of
image sets being more easy when explanations were rated
more helpful (Figure 8).
Next we break down explanation helpfulness-dependent

performance by explanation modes. Figure 7b shows that
combining attention and RelQAs improves performance sig-
nificantly for explanations rated as Excellent, but hurts per-
formance slightly when rated below Somewhat. Figure 7c in-
dicates that attention-based explanations don’t help much on
their own, however, when they seem very helpful for making
a choice, they do help game performance slightly. Excellent
RelQAs were the most helpful for game performance when
presented in isolation as in Figure 7d. We reason that this is
probably due to the consistency of related question answers
being a slightly better indicator of VQA answer accuracy.
We calculate the correlation coefficient of the explanation
correctness to answer correctness and observe that it is 0.37
for related question-answers as compared to 0.33 for atten-
tion. This combined with the ease of parsing textual atten-
tion than heatmaps probably make related QA explanations
more effective.

Impact of explanations as a function of independent ex-
planation correctness ratings. To analyze by explanation
correctness, we ran a separate AMT task to collect correct-
ness ratings of the explanations for the secret image, the
question that was asked and the answer given by the VQA
model. Three independent workers were asked to rate the
explanations for the given question and image according to
the following options: “Exactly on-point” (referred to as Ex-
cellent hereon), “Mostly on-point” (Mostly on-point), “In-
different” (Indifferent), “Somewhat off” (Somewhat off ) and
“Completely Wrong” (Wrong). The histogram of ratings is
shown in Figure 6.
Figure 9 shows game performance as a function of ex-

planation correctness ratings. We see that for modes with
overall (9a), combined (9b) and attention-based (9c), correct
explanations are not sufficient for improving game perfor-
mance, while, incorrect explanations can severely degrade
the performance. This suggests that giving incorrect expla-
nations can make players disbelieve a correct answer and
hence fail games. We observe that while RelQAs has very
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Figure 11: An ExAG game round where explanations help the user in winning the game. Even though the most prominent
‘toilet’ is in the fourth image, explanations make it clear to the users that the fifth image could also be the secret image.
Explanation suggest that the machine probably mis-detected the ‘bathtub’ or ‘sink’ for a ‘toilet’. This hints the user to ask
follow-up questions like “is there a sink?” to finally select the correct image.

few Excellent cases, as long as they areMostly on-point, they
help game performance substantially (9d).

Impact of explanations as a function of VQA answer cor-
rectness. As noted before, we observed that correct expla-
nations do not necessarily help game performance. Further
examination indicates that game performance is indeed in-
fluenced by the combined effect of the correctness of ex-
planations and machine-generated answers. We collect the
answer correctness ratings for the ExAG games through an
independent AMT experiment. The workers were required
to rate the answer for a given question and image pair as ei-
ther “correct”, “somewhat correct” or “completely wrong”.
We analyzed the game performance with varying average
VQA answer correctness in game rounds with at least one
correct (above indifferent) explanation and without.
As displayed in Figure 10, we see that having at least

a few correct explanations (black line), interestingly, helps
user performance significantly (p = 0.013, 95% confidence)
in games where the VQA answers are mostly wrong as com-
pared to no-explanation games (red line). This suggests that
having explanations helped workers in identifying poten-
tially incorrect answers which motivates them to ask clar-
ification questions, a few of which could have had correct
answers with correct explanations that the users could pick
out. As expected, without explanations (red line of Figure
10), game performance degraded as VQA answers got less

accurate, suggesting that a player had no way of telling if an
answer was correct or not without explanations.
An qualitative run of ExAG is shown in Figure 11.

RelQAs explanations suggest that the VQA also understand-
ably sees a ‘toilet’ in the fifth image. This prevents the
user from selecting the obvious fourth image choice straight
away and prompts him/her to further ask questions like “is
there sink?”, eventually resulting in him/her selecting the
correct secret image.

Conclusion

We propose the ExAG game as an evaluation framework
for explanations in VQA. Our experiments provide empir-
ical evidence that overall, explanations help improve per-
formance on such a human-machine collaborative image
guessing task. When analyzed by user self-rated “helpful-
ness” and independently-rated “correctness”, helpful expla-
nations (rated as excellent) significantly improve perfor-
mance, while incorrect explanations degrade performance.
Moreover, since the self-rated helpfulness is not influenced
by the outcome of the game, this suggests that users can use
their insight into explanation helpfulness to decide when to
trust and include them in decision making process for choos-
ing the image.
We also note that “correct” explanations, interestingly,

help significantly when machine predictions are noisy (Fig-
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ure 10). Without explanations, users blindly trust incorrect
machine predictions, which hurts game performance. With
explanations, users ask follow-up questions and are able to
succeed based on few correct explanations.
We believe that our ExAG framework can help in de-

signing more accurate and helpful explanations that improve
human-AI collaboration performance.
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