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Abstract

We study the use of distributed computation in a representa-
tive multi-robot planetary exploration mission. We model a
network of small rovers with access to computing resources
from a static base station based on current design efforts and
extrapolation from the Mars 2020 rover autonomy. The key
algorithmic problem is simultaneous scheduling of compu-
tation, communication, and caching of data, as informed by
an autonomous mission planner. We consider scheduling of
a dependency chain of required and optional (but rewarding)
tasks and present a consensus-backed scheduler for shared-
world, distributed scheduling based on an Integer Linear Pro-
gram. We validate the pipeline with simulation and field re-
sults. Our results are intended to provide a baseline compar-
ison and motivating application domain for future research
into network-aware decentralized scheduling and resource al-
location.

1 Introduction
The NASA roadmap for 2020 and beyond includes several
key technologies which will have a game-changing impact
on planetary exploration. The first of these is High Perfor-
mance Spaceflight Computing (HPSC), which will provide
orders of magnitude increases in processing power for next-
generation rovers and orbiters. In an effort to modernize the
flight computing hardware available for NASA missions, the
HPSC initiative was announced in 2013 (Doyle et al. 2013;
Powell et al. 2011; Mounce et al. 2016; Schmidt et al. 2017).
Unlike the current generation of computing, this program
aims to keep NASA computing technologies at most one
generation behind commercial technologies. HPSC is ex-
pected to become a mainstay in post-2020 deployments.

The second is Delay Tolerant Networks (DTNs), which
overlay the Deep Space Network, providing internet-like
abstractions and store-forward to route data through inter-
mittent delays in connectivity. DTNs span communications
links in an overlay architecture, enabling connectivity across
network boundaries in a transparent manner, regardless of
multiple potentially disparate network link layer protocols.
A core principle of this overlay quality is the ability of in-
dividual nodes to store network data for possibly long du-
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Figure 1: Illustrative MOSAIC scenario. A set of process-
ing and data-driven tasks (left as dependency graph) must
be mapped to multiple assets with heterogeneous comput-
ing, communication, and energy capacities. Each asset is
also available over a fixed time window due to terrain ef-
fects or orbital parameters. The goal is to compute all the
required tasks as quickly as possible.

rations before forwarding it to another node. Many fea-
tures of Delay Tolerant Networking architectures are of par-
ticular utility in the deep space interplanetary communica-
tions realm, where a multitude of link layers, bandwidth
constraints, and disruptions are expected during end-to-end
transfer of mission commands and data (Wyatt et al. 2017;
Cerf et al. 2007; Burleigh et al. 2003).

The third is a trend toward small, co-dependent robots in-
cluded in flagship missions (MarCO, PUFFER, and Mars
Heli). Current planetary exploration is limited to benign op-
erating areas due to the inability to land in or traverse chal-
lenging terrain. Unfortunately, the most compelling loca-
tions are often in these extreme terrains such as on Recur-
ring Slope Lineae or in caves (McEwen et al. 2014; Léveillé
and Datta 2010). In addition secondary mobile sensor plat-
forms are beneficial because they can investigate transient
targets without endangering the primary mission timeline
e.g., being left behind to investigate the transient methane
detection from MSL (Webster et al. 2015). Two examples
of potential future systems being considered for develop-
ment are the Mars Helicopter, and the “PUFFER” rover
(Pop-Up Flat-Folding Explorer Robots) (Karras et al. 2017;
Davydychev, Karras, and Carpenter 2019). Whatever the
mission, these small craft can be released from parent rovers
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or deployed in numbers via traditional landers and guided to-
ward sampling targets. The “daughter-craft” often have even
more restrictive weight, power, cost, and size constraints.

Combining these three trends, we envision scenarios in
which a system containing two or more robotic agents with
large discrepancies in processing power, communication
bandwidths, data capacities, and energy storage must collab-
orate to achieve a science mission. We are motivated by the
heterogeneity of these systems to study how the disparity in
computation and communication capabilities affects small,
resource-constrained, high-risk “edge” devices. In particular
how, by optimizing data flows and processing assignments
among all the devices, the mission efficiency can be in-
creased. In this paper we formalize this problem and present
preliminary results in modeling and analyzing Mars explo-
ration missions. Because data and computation are shared
among many devices, we dub a local computation-sharing
network a MOSAIC (Multi-robot On-site Shared Analytics
Information and Computing) network.

Our candidate mission involves one to fifteen daughter-
craft deployed from a stationary lander to take and process
samples from the environment. We present an Integer Linear
Program that solves the optimal allocation of sensing, com-
putation, and communication. We study the performance
and show responsiveness to network changes in field demon-
strations with multiple nodes. We demonstrate a 3x im-
provement in the number of samples taken by agents by re-
distributing the processing load to support agents in areas of
interest. The tasks, communications models, and mission re-
quirements are presented for reference and for comparisons
by the community.

2 Related Work and Contribution
The problem of task scheduling at the core of the pro-
posed MOSAIC architecture is known to be NP-complete
(Garey and Johnson 1979; Ullman 1975). Furthermore,
while polynomial-time approximation schemes for the prob-
lem exist, to the best of the authors’ knowledge no such
schemes are known for the task scheduling problem when
computing nodes have heterogeneous computational capa-
bilities (that is, the same task requires different computation
times on different nodes) (Graham et al. 1979; Kwok and
Ahmad 1999).

Accordingly, a large number of heuristic algorithms have
been proposed to solve the task scheduling problem. Such
heuristics may be classified as list scheduling heuristics (e.g.
(Sih and Lee 1993)), which rely on greedily allocating tasks
according to a heuristic priority task assignment; clustering
heuristics (e.g. (Yang and Gerasoulis 1994)), which iden-
tify groups of tasks that should be scheduled on the same
computing node; and task duplication heuristics, which du-
plicate some tasks to reduce communication overhead (e.g.
(Ahmad and Kwok 1994)). In addition, a number of guided
random search algorithms (including genetic algorithms (Yu
and Buyya 2006) and ant colony optimization algorithms
(Chen and Zhang 2009)) are available. We refer the reader
to the survey in (Kwok and Ahmad 1999) and introduction
in (Topcuoglu, Hariri, and Wu 2002) for a thorough review.

In particular, the heterogeneous earliest-finish-time
(HEFT) heuristic algorithm (Topcuoglu, Hariri, and Wu
2002) provides excellent performance for heterogeneous
task scheduling problems, and a number of variations of
HEFT have been proposed (Tang, Li, and Padua 2009;
Canon and Jeannot 2010; Tang et al. 2011). However, the
HEFT algorithm and its derivatives generally assume that
computation nodes are able to perform all-to-all communi-
cation and that the availability of communication links does
not change with time; they also do not capture access con-
tention or bandwidth constraints on communication links,
and do not accommodate optional tasks which are not re-
quired to be scheduled but result in a reward when com-
pleted.

Several heuristics are also available for the online
scheduling problem, where computational tasks appear ac-
cording to a stochastic process, and are not revealed to
the scheduler in advance (Tassiulas and Ephremides 1992;
Dai and Lin 2005); recent work extends such schedulers
to accommodate communication latency constraints (Yang,
Avestimehr, and Pedarsani 2018). However, online ap-
proaches generally perform poorly compared to offline al-
gorithms when the list of tasks to be executed is known in
advance; in addition, even state-of-the-art online algorithms
assume that all-to-all communication between the computa-
tion nodes is available. In contrast, the approach proposed
in this paper (based on integer programming) does adapt to
realistic communication constraints and accommodates op-
tional tasks, while offering fast computation times that make
the approach amenable for field use.

Specifically, our contribution is threefold. First, we de-
sign a scheduling algorithm based on integer programming
that accounts for time-varying, bandwidth-constrained,
multi-hop communication links and optional tasks and re-
turns high-quality solutions in seconds. We also provide
a distributed implementation of the algorithm based on a
shared-world, consensus-backed model. Second, we vali-
date the performance of the algorithm with hardware field
tests. Third, we highlight a number of interesting emerg-
ing behaviors produced by the scheduler, and we show that
sharing of computational tasks results in increased science
throughput.

Collectively, the results in this paper show that sharing of
computational tasks among heterogeneous agents is critical
to realizing the benefits of heterogeneous multi-agent archi-
tectures, resulting in higher utilization of computational re-
sources and increased scientific throughput for a given hard-
ware architecture.

3 Problem Description
We now define the formulation of the communication and
processing work flow and tasks that make up mission ob-
jectives. We consider robotic agents, each with an interde-
pendent series of tasks, on-board computing, sensing, and a
time-varying communication link to a subset of other agents.
Agents: Let there be N ∈ Z+ agents in the network, where
Z+ denotes positive integers. The robot agents are denoted
by A1, A2, . . . , AN . Each agent has known on-board pro-
cessing, memory, and communication links.
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Figure 2: PUFFERs software network.

Tasks and Software Network: The agents perform M ∈
Z+ data-driven tasks. The set of M tasks is denoted T. A
subset of the tasks are required, denoted R ⊆ T, meaning
they must be executed each round. Optional tasks are things
we would like to execute in addition to required tasks, and
are given a reward score r(T ).
Assumption: An isolated agent can process all its own re-
quired tasks without communication or collaboration.

Tasks produce data products. Data products for task T
are denoted d (T ). The size of the data products are known
a-priori as s (T ) for task T . Let PT be a set of predeces-
sor tasks for T . So j ∈ PT means that task T depends on
the data product of task j. Data products from predecessors
can be computed or communicated from other agents. We
define the software network SN as a dependency graph that
encapsulates this information. A SN used in our simula-
tions is shown in Figure 2.
Assumption: Software networks SN do not have cycles.
Processors: We consider heterogeneous processing times,
so the time required to execute task T on agent i is given
by: τi (T ). The model represents, e.g., the worst-case, ex-
pected, or bounded computation time, and so all the times
are deterministic. Program outputs are the same irrespective
of the agent doing the computing (or are just as useful). If an
agent has two or more dissimilar processing units, they can
be modeled as coincident agents. If an agent has access to
two or more similar processing units, we adjust the costs of
each task to reflect its level of parallelization, but otherwise
consider them the same processor.

A solution is a mapping of tasks to servers (agents) and
start-times denoted S : i → (Aj , t) where j ∈ [1, . . . , N ]
and t ≥ 0. Each agent’s computing schedule in a solution is
denoted Si = j →i (t).
Communication Graph: A key feature of DTN-based net-
working is Contact Graph Routing (CGR) (Wyatt et al. 2017;
Araniti et al. 2015). CGR takes into account predictable link
schedules and bandwidth limits to automate data delivery
and optimize the use of network resources. The practical ef-
fect of incorporating DTN’s store-forward mechanism into
the scheduling problem is that it is possible to use mobile
agents as robotic routers to ferry data packets past com-
munication interference. The time-varying contact graph
CG captures the communication network topology between

Figure 3: Contact graph for 3 agents showing connectivity
time windows and bandwidths available.

agents. For each agent, the graph provides a list of all the
time intervals during which it can establish a directed com-
munication link with another. An example time line repre-
sentation for 3 agents with available bandwidths can be seen
in Figure 3.

Links have a time-varying data rate from 0 (not con-
nected) to∞ (communicating to self), denoted by rij(t) for
the rate from Ai to Aj at time t. At any time k, let Gk be the
graph representing the set of agents it can send to or receive
from, vertices V = {1, . . . , N} and the directed edges Ek
along which communication is possible. The task of com-
municating the data product d (T ) from Ai to Aj at time t
requires time τij (T ) ∝ s (T ) /rij(t) for both agents.
Assumption: Agents take 0 time to communicate the so-
lution to themselves, except in the case of multiple on-
board processors, which are modeled as coincident proces-
sors linked by a given data rate.

Problem 1 (Distributed Computation) Given a set of
tasks modeled as a software network SN , a list of com-
putational agents Ai i ∈ [1 . . . N ], a contact graph CG,
and a maximum schedule length C?, find a solution which
is a mapping of tasks to servers (agents) and start times,
S = f(i) :→ (Aj , t), such that: (1) The maximum overall
computation time, C(S) = maxj C(Sj) is no more thanC?;
(2) All required tasks are scheduled; (3) All of the prerequi-
sites for all required tasks are scheduled; (4) The reward due
to optional tasks

∑
T∈T\R r(T )1{T is scheduled} is maximized.
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4 Scheduler Implementation
To study the role of optimal distributed computing in our
mission concepts, we cast Problem 1 as an integer linear
program (ILP). We consider a discrete-time approximation
of the problem with a time horizon of C?

d time steps cor-
responding to the maximum schedule length C?. The opti-
mization variables are: X , a set of Boolean variables of size
N ·M · C?

d . X(i, T, c), with a true entry iff agent Ai starts
computing task T at time c. D, a set of Boolean variables of
sizeN ·M ·C?

d . D(i, T, c), with a true entry iff agentAi has
stored the data products d(T ) of task T at time c. C, a set of
Boolean variables of size N2 ·M · C?

d . C(i, j, T, c), with a
true entry iff agent Ai communicates the product of task T
to agent Aj at time c. The optimization objective is to max-
imize the sum of the rewards corresponding to completed
optional tasks, i.e.

N∑
i=1

∑
T∈R

C?d−τi(T )∑
c=1

r(T )X(i, T, c) (1)

The problem constraints are captured by the following set
of equations:

N∑
i=1

C?d−τi(T )∑
c=1

X(i, T, c) ≤ 1 ∀T ∈ R (2a)

N∑
i=1

C?d−τi(T )∑
c=1

X(i, T, c) = 1 ∀T ∈ T \ R (2b)

X(i, T, c) ≤ D(i, L, c)

∀i ∈ [1, . . ., N ], T ∈ [1, . . .,M ], L ∈ PT , c ∈ [1, . . ., C?d ] (2c)
M∑
T=1

 N∑
j=1

/ (C(i, j, T, c) + C(j, i, T, c)) +

c∑
ĉ=max(1,c−τi(T ))

X(i, T, ĉ)

 ≤ 1

∀i ∈ [1, . . ., N ], c ∈ [1, . . ., C?d ] (2d)

D(i, T, c + 1)−D(i, T, c) ≤
c∑
τ=1

N∑
j=1

rji(c)

s(T )
C(j, i, T, c) +

c−τi(T )∑
τ=1

X(i, T, c)

∀i ∈ [1, . . ., N ], T ∈ [1, . . .,M ], c ∈ [1, . . ., C?d − 1] (2e)
C(i, j, T, c) ≤ D(i, T, c) ∀i, j ∈ [1, . . ., N ], T ∈ [1, . . .,M ], c ∈ [1, . . ., T ]

(2f)
D(i, T, 1) = 0 ∀i ∈ [1, . . ., N ], T ∈ [1, . . .,M ] (2g)
Equation (2a) ensures that all required tasks are performed

and (2b) that optional tasks are performed at most once.
Multiple occurrences of the same task are modeled as sep-
arate tasks. Equation (2c) ensures that agents only start a
task if they have access to the data products of its predeces-
sor tasks from their own processing or from communication
by one or more agents. Equation (2d) captures the agents’
limited computation resources by ensuring that each agent
either performs a single task, communicates, or is idle at
any given time. Equation (2e) ensures that agents learn the
content of a task’s data products only if they (i) receive such
information from other agents or (ii) complete the task them-
selves. Equation (2f) ensures that agent only communicate a
data product if they have stored the data product themselves.
Finally, Equation (2g) models the fact that data products are
initially unknown to all agents.

The ILP has N2MC?
d + 2NMC?

d Boolean variables and
M(N(3C?

d − 1) + N) + NC?
d constraints; instances with

dozens of agents and tasks and horizons of 50–100 time
steps can be readily solved by state-of-the-art ILP solvers.

4.1 Distributed Implementation

In order to provide a distributed implementation of the
scheduler presented above, we embedded it in a broadcast,
plan, and execute cycle. The agents are assumed to have
access to a common clock, and we consider an operational
cycles 45 seconds long, where 5 seconds are dedicated to
broadcasting the agents’ states through a flooding mecha-
nism, 10 seconds are dedicated to planning/scheduling, and
30 seconds are allocated to execution.

During the broadcast phase, agents learn the current state
of the network, including set of tasks for all agents and com-
munication link status. This has the added benefit of al-
lowing online discovery of task lists each round, so the im-
plementation is responsive to varying load and agent needs.
However, the choice of a single broadcast epoch per round
does cause some delay in responsiveness, since new tasks
can only be scheduled if they appear prior to the broadcast
cut-off for each round. A variety of gossip and consensus al-
gorithms are available that provide better performance even
in presence of time-varying communication links; the selec-
tion of a specific consensus algorithm is beyond the scope of
this paper.

Then, all agents solve Problem 1with the network topol-
ogy and vehicle states as inputs. Finally, each vehicle reads
the scheduler’s output and executes the tasks that are as-
signed to itself according to the prescribed timing.

The execution phase was chosen to be 30 seconds based
on the autonomy tasks we modeled (Shown in Figure 2, dis-
cussed in Section 5 in particular Figure 4).

Problem 1 is in general is NP-hard, and a solver may fail
to find an optimal solution within the allocated time. To en-
sure that a feasible final solution is found, we provide the
solver with a trivial initial solution which consists of ev-
ery agent performing only its own required tasks (the zero-
reward case). The solver used is deterministic (i.e., it ex-
plores the decision tree according to a deterministic policy),
and all agents terminate the solver after a prescribed, deter-
ministic number of iterations, to ensure that each agent finds
the same candidate solution when the timeout is reached.

The consistency of the scheduler output among all agents
is controlled by using the same four inputs on all agents:
i) All software networks from all agents ii) Status of all
communication links iii) number of iterations allowed to the
solver and iv) the initial conditions for the solver. Through
this approach, we provide a distributed and anytime imple-
mentation of Problem 1.

We remark that the approach is not robust to failures of the
broadcasting synchronization mechanism. The integration
of more robust coordination mechanisms (e.g. challenge-
response or watchdogs triggering the execution of an agreed-
upon contingency plan) are an interesting direction for fu-
ture research.

In the next section, we evaluate the performance of the
proposed approach through software and hardware experi-
ments.
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5 Experimental Results
In this paper we focus on a Mars multi-robot science mission
scenario based on current design efforts and extrapolation
from the Mars 2020 rover autonomy. We study the decen-
tralized task allocation and computation resource sharing in
a varying network topology and bandwidth in which multi-
ple smaller vehicles perform both maintenance tasks (e.g.,
sensing, path planning) and science tasks (e.g., microscope
measurements) depending on where they are located. The
goal is to maximize the number of science tasks executed,
analyzed, and stored in a base station for further uplink.

We have implemented a hybrid framework that integrated
simulated components and hardware implementations to test
the distributed approach and the proposed scheduler. We ex-
plore different network topologies and present how the net-
work of agents adapts to the changing environment.

5.1 Setup
Our scenario, illustrated in Figure 5a, is based on multiple
PUFFERs cooperatively (i.e., their autonomous operations
are coordinated by sharing information and tasks) exploring
particular target science areas (blue zones) to support a par-
ent platform (e.g., base station or flagship rover).

In practice, PUFFERs create a communication network
during exploration and transit through the environment. The
communication between vehicles varies depending on their
distance and might be interrupted due to radio obstacles. We
vary the number of PUFFERs from 3 to 15 to investigate the
proposed scheduler’s solutions as nodes come in and out of
the network, the topology and bandwidth changes, and as
they move around the environment.

Details of the current PUFFER hardware design are given
in (Karras et al. 2017).

Figure 4: A simplified model for the Mars 2020 autonomous
navigation pipeline from (Rieber 2017).

To design a representative software network, we bor-
rowed from the current state of the art in the Mars 2020
rover (Rieber 2017). A highly simplified version of Mars
2020’s autonomous navigation pipeline, including the tim-
ings for each task and waterfall dependencies on prior tasks,
is shown in Figure 4. All tasks were previously run on repre-
sentative hardware (RAD750), and their timings are shown
in seconds.

Accordingly, each PUFFER, regardless of their position
and zone, have to schedule a set of mandatory activities
based on the task network illustrated in Figure 2 (top) which

includes (i) capturing an image of the terrain, (ii) localiz-
ing itself based on that image, (iii) planning a path through
the environment, (iv) and dispatching the drive command.
While image capture and drive command have to be exe-
cuted on board, localization and path planning tasks (both
computationally more demanding) can be allocated to an-
other vehicle in the network.

We assume the PUFFERs are exploring a distributed, but
spatially-correlated phenomena, such as water moisture lev-
els. We model the sampling and estimation on a simi-
lar terrestrial process used in farms (Tokekar et al. 2016).
The point samples of moisture levels are gathered by spec-
troscopy or dipole measurements, and are incorporated into
a spatial-estimation technique called Kriging (Bárdossy and
Lehmann 1998). Kriging is computationally expensive, and
requires storage of all measurements — not suitable for
computationally-constrained devices like PUFFERs.

Accordingly, if a PUFFER is located in a science zone
(blue) it can perform additional, optional, science tasks, as
shown in Figure 2 (bottom). Specifically, a PUFFER can
(i) take a sample from the environment, (ii) analyze it, and
(iii) send the analysis data to the base station for storage and
eventual uplink. The sample analysis task can be assigned
to another vehicle, if appropriate, while storage can only be
performed by the base station. Each one of these three tasks
has a rewards associated to it; the reward for sample collec-
tion is set to 5, the reward for data analysis is 10, and the
reward for storing data is 20.

When tasks are shareable and assigned to other vehicles,
the scheduler needs to take in consideration the transfer
times of the required data products. The duration of a trans-
fer is determined by the bandwidth between the vehicles and
the size of the data product (also shown in Figure 2). In our
experiments, communication is blocked if the line-of-sight
between two vehicles crosses the red zones. We also allow
manually breaking a communication link to study the adap-
tation of the system. Herein, we used a step-wise function to
model the communication bandwidth between nodes, from
1 Mbps within 15-200 meters up to 11 Mbps within 0-5 me-
ters.

Base Station As a stationary resource, the base station in-
cludes more significant computational resources, such as an
HPSC. The base station is also large enough to have more
power generating capacity. To receive science data from the
PUFFERs, the base station is equipped with the same com-
munication equipment as the other nodes in the network.

The base station is not assigned any required tasks. In-
stead, it serves as a supporting node for sharing the compu-
tational load of the network, since it can perform all share-
able tasks much faster compared to the PUFFERs (see cost
comparisons in our Software Network in Figure 2). In ad-
dition, the base station is the only vehicle capable of storing
the analyzed data in this scenario, acting as a notional cache
for later downlink to Earth.

Integrated Framework Our framework integrates both 1)
hardware and 2) software environment to simulated the com-
ponents to control the vehicles tasks and communication.
The PUFFERs were represented by Raspberry Pis (model
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(a) Illustrative scenario in the Mars Yard at JPL. (b) Visualization tools.

Figure 5: Experimental setup and RVIZ visualization. Timelines (left) represents the operational cycle and the task allocation.
Communication links can be disabled to test system adaptation and relocation of tasks. RVIZ view (right) provides vehicle
positioning and network topology information.

3) which were used to provide the location of the vehicle
in the environment through a GPS antenna (see Figure 5b).
The base station was represented by a desktop computer in
the field. All the vehicles were connected through a WiFi
router.

The main software environment that represents the logical
layer of our experiment was implemented using the Robot
Operating System (ROS). For each vehicle in the network
we developed a set of simulated components, including a
communication system to handle the broadcasting phase and
transfer of data, a science component to emulate science
tasks, a navigation/localization system to keep track of the
vehicles pose, and a controller to plan and dispatch tasks ac-
cording to the scheduler. In that environment a set of tools
were developed to visualize 1) the execution timeline (and
task allocation), 2) the network topology and bandwidth
variations, 3) the vehicles positions in the environment, and
4) also to manipulate the scenario by adding additional no-
communication zones, removing communication links. The
software interface is shown in Figure 5b.

The ILP scheduler is designed to either run locally in each
vehicle or as a service in the framework. The ILOG CPLEX
solver was used to solve the ILP - since CPLEX does not
support the Raspberry Pi’s ARM architecture, we deployed
the scheduler in an X86 server (AWS m5.xlarge) that was
queried at each plan phase by each vehicle. Vehicles called
the scheduler independently; the solution received by each
vehicle was guaranteed to be consistent with the other vehi-
cles’ through use of a deterministic solver with a determinis-
tic stopping criterion (discussed in Section 4.1) and caching.

The ILP solver’s execution was terminated after a deter-
ministic amount of solver steps (corresponding to approxi-
mately 10 seconds of execution on the Pi) to ensure consis-
tency of the nodes’ schedules, and the best solution found
was returned. The solver was provided with an initial solu-
tion where agents did not share any computational tasks to
ensure anytime availability of a feasible solution.

The performance of the system was evaluated in a field
test. During the test, we added and removed PUFFERs from

from the network (by activating and deactivating the corre-
sponding Raspberry Pi’s) in different locations; we moved
active PUFFERs around, including in and out of science
zones to change the set of tasks that must be scheduled;
and we observed the solutions produced by the scheduler
to study how tasks were allocated to (approximately) maxi-
mize science return. Representative portions of the field test
are shown in a video in the Supplementary Material. In the
next section, we present a set of interesting emerging task
allocation scenarios from those observations.

5.2 Results
During field test, we observe a few common patterns in the
task distribution among the network of agents while maxi-
mizing the number of science samples and their respective
analysis and storage at the base. The presence of a commu-
nication barrier shown in Figures 5a and 5b was essential to
create some of the interesting cases covered below.

Science Clusters One recurring behavior we observed
refers to the formation of science clusters in which one ve-
hicle is in the science region and one or more other vehicles
are nearby but outside. A common situation in the exper-
iment was to see a cluster of vehicle to the left of field in
Figure 5a disconnected from another cluster to the right of
the field, where the base station was located. In the left clus-
ter, the vehicle in the science zone would off-load its local-
ization and path planning tasks to the other nearby agent,
so as to perform multiple sample collection and analysis
tasks. This represented a multiplicative increase in samples
per round that can be collected and demonstrates the use-
fulness of edge distributed computation. Due to the timing
chosen for our tasks, the maximum increase achievable was
3x more samples per node in science zones. Occasionally,
the data analysis task was also offloaded to nearby vehicles.
Since the cluster on the left was disconnected from the base
station, no data storage tasks were performed for samples
collected from that cluster. Conversely, the cluster to the
right of the field had the support of the base station, which
allowed the PUFFERs in the science zone to not only col-
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Figure 6: Illustrative example of the assembly line case.

lect more samples and off-load maintenance tasks, but also
to store samples at the base station.

Data Relay Next, we strategically placed a few “bridge”
nodes so that they would create communication links be-
tween nodes located in both of the aforementioned clusters.
In this scenario, we observed some of the “bridge” nodes
serving as data relays, transferring sample data or analyzed
data from the left-hand-side cluster towards the base station.
That relay behaviors was not limited to one node; several
nodes could be used for that purpose, either as a chain of
relays or just providing multiple options (and higher band-
width) to transmit data from one cluster to the other.

Science Assembly Line As an extension of the previous
scenario, Figure 6 (topology view on the right) shows three
bridging nodes (PUFFERs 2, 3 and 6), in which some of the
bridging vehicles (e.g, PUFFERs 2 and 3) would serve not
only as data relays, transferring sample data, but also ana-
lyzing them on the way towards the base station. In addi-
tional to relay, some of the analysis task were also offloaded
to those bridging node which created interesting cases of
assembly lines. Figure 6 shows an illustrative example of
that case, where PUFFER 1 is in the left-most science zone
and offloads localization to the nearby PUFFER 6 (see green
arrow in the timeline representing terrain image data being
sent to PUFFER 6 which will later run a localization for
PUFFER 6, cyan box). The figure shows the three sam-
ple collections in red by PUFFER 2. Only two sample data
products are then transferred to a chain of bridging (in tran-
sit) nodes which themselves analyze the data and then trans-
fer it to the base station for storage. In the example consid-
ered, PUFFER 2 receives two sample data products and send
both analyzed data product and a raw sample data product to
PUFFER 3, which exhibits a similar behavior and perform
one analysis. The two analyzed data products are then for-
warded (gray arrows) to the Base station. The third sample
data product is not analyzed or stored given the lack of time
for such; nevertheless, given that collecting a sample does
add reward to the solution, the scheduler choose to do so.

This family of assembly line scenarios happened often
when a chain of vehicles was established with a good band-

width between the nodes, so that they could offload tasks
more easily (especially to the base station) and transfer data
at high rate. As mentioned, this demonstrates a 3x improve-
ment in science samples that can be taken, simply by al-
lowing edge distributed computation among agents, and or-
thogonal to any improvements in the network from e.g., au-
tonomous path planning to move agents through the envi-
ronment.

Data Muling An additional interesting data muling be-
havior was observed in numerical simulations (as shown in
the video in the Supplementary Material). A cluster of three
agents was connected to the base station via a single, low-
bandwidth communication link. The agents were informed
that one of the agents would drive towards the base station
at the end of the optimization horizon; accordingly, agents
knew that the bandwidth between the moving agent and the
base station would increase, whereas the bandwidth between
the same agent and the rest of the cluster would decrease. In
this scenario, agents in the cluster transmitted data intended
for the base station to the moving agent, effectively assign-
ing it a “data mule” role; once the agent approached the
base station, it relayed the relevant data to it. This scenario
was not observed in field tests because, in those tests, the
agents were manually moved, therefore the evolution of the
link bandwidths was not predictable. Integration of the MO-
SAIC solver with the agents’ autonomy stack, so as to pre-
dict future communication link availability based on planned
movement, is an area for future research.

Reproducing Our Results To reproduce the scenarios we
observed in field trials, or to reproduce on hardware, we
have provided a public facing repository containing the core
scheduler implementation and scenario descriptions that can
be used as input to produce the discussed results. We pro-
vide a Python codebase compatible with the Robot Operat-
ing System (Quigley et al. 2009). In addition, a hardware
implementation requires only a Raspberry PI and GPS mod-
ule. See (Vander Hook 2019).
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6 Conclusion
We described the MOSAIC concept for Mars exploration
in which scheduling of computation, communication, and
caching of data across networked assets is shown to be ben-
eficial. We presented a series of scenarios to illustrate how
MOSAIC networks can impact science utility, vehicle per-
formance and enable an optimal distribution of computa-
tional loads, specially in multi-asset scenarios - a natural
progression of future missions to Mars and other planets.

One defining feature of proposed Mars Sample Return
mission concepts is the likelihood re-visiting the same area
with subsequent launches to fetch, retrieve, and eventually
launch soil samples for return to Earth (Mattingly and May
2011). If an on-site computing asset were available to mul-
tiple rovers in the area, they could make use of it for off-
loading their required engineering tasks, in order to take
advantage of opportunistic science processing and sensing.
Thus, the assisting asset(s) could provide an “infrastructure
upgrade” and could remain on-site, providing communica-
tion, computation, and data analysis services for all subse-
quent phases of the campaign1. The asset could be embed-
ded in a CubeSat network, and “piggy back” on the 2020
launch, similar to the MarCO CubeSats (Hodges et al. 2016;
Schoolcraft, Klesh, and Werne 2016), be embedded in the
“sky crane” lander and dropped during the “flyaway” phase
(Korzun et al. 2010; Sell et al. 2013), could be a tethered
balloon configuration (Kerzhanovich et al. 2004), or could
be an aerostationary orbiter providing constant assistance
to half the Mars surface(Breidenthal and Abraham 2016;
Breidenthal et al. 2018). This concept is particularly com-
pelling when assisting not just ground, but also orbiting net-
works. Our next efforts will address this domain.

The methods of this paper can be used to optimize the
hardware of the distributed missions, or design communi-
cation networks for future Mars exploration missions, by
simulating the scheduling problem in the loop with an itera-
tive hardware trade explorer. Thus, determining the “tipping
points” between different processing regimes is most impor-
tant since the differences in efficiency between regimes can
be very large. We expect this analysis will fold nicely into
a framework similar to (Herzig et al. 2017) which provides
a hardware-space expansion for designing multi-asset mis-
sions.

A primary next step is to investigate different scheduling
techniques that could be utilized onboard the assets to allo-
cate computation load. Agents might have different utility
functions and goals that will add an interesting element to
our network problem. Uncertainty and risk management is
a key aspect of realistic assets networks for planetary ex-
ploration. Several aspects of exploration mission have un-
certainty and can potentially be represented with stochastic
models, such as task outcome and duration, vehicle failure,
connectivity, bandwidth variations, and others. One promis-
ing research avenue is to incorporate probabilistic planning
and scheduling approaches (Santana et al. 2016) to the com-
putation sharing problem, as well risk-bounded techniques

1An interesting direction for future research would be to iden-
tify the requirements of such an asset.

to provide guarantees that the network and the vehicles are
able to operate within user specified bounds. Finally, differ-
ent cost metrics merit study, in particular energy optimality,
which is especially relevant given low-resource nodes like
small ground robots.
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