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Abstract

We explore the task of intrinsic source attribution: inferring
which portions of a derived document were adapted from
an unobserved source document. Specifically, we model the
relationship between news articles and their press release
sources using a dataset of 64,784 health science news arti-
cles and 23,068 press releases. We approach the problem at
the sentence level and work with science journalism profes-
sors to develop a four point Likert scale describing the extent
to which a news article sentence is derived from the content in
the corresponding press release. Because manual annotation
of news article - press release pairs is time-consuming, we
turn to a mix of expert, non-expert, and heuristic-based an-
notation to label our dataset. After a small pilot study, which
found that humans, when only able to view the text of the
news article, struggle to identify which content is derived or
not, we compare four different sentence regression models
on the task. We find that modeling a sentence’s context in
the entire document is important, with the best performing
model, a sequence regression model with BERT token repre-
sentations, achieving a spearman’s p of 0.49 and NDCG@1
of 0.60 on the expert-labeled test set. Examining the model’s
predictions, we find that it successfully identifies copied or
closely paraphrased sentences in articles with a mix of de-
rived and original content, but struggles to differentiate be-
tween loosely paraphrased and original sentences in articles
with mostly original writing.

1 Introduction

Authors typically rely on a wide array of sources when writ-
ing a new document. These source documents serve a va-
riety of purposes, from simply being general inspiration, to
containing specific text and ideas to paraphrase, summarize,
and potentially copy. A historian, for example, may quote,
paraphrase, and discuss a number of primary and secondary
sources in a journal article. Similarly, a blogger posting
about a recent newsworthy event could quote, discuss, and
be inspired by news articles and blog and social media posts
on the same topic. Tracking this flow of information and
ideas across a corpus of texts can be difficult, however, since
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parent-child relationships between documents are often un-
clear and similarity between documents can range from du-
plication to paraphrasing and topical resemblance (Hamid
et al. 2009; Metzler et al. 2005). Approaches using social
media and news data (Leskovec, Backstrom, and Kleinberg
2009; Seo and Croft 2008) track the spread of short pieces
of text (“memes”) by measuring similarity between differ-
ent copies of the same meme across documents. Other ap-
proaches use word overlap to trace longer instances of text
reuse, such as in congressional bills (Wilkerson, Smith, and
Stramp 2015) and 19th C. newspapers (Smith, Cordell, and
Dillon 2013).

In contrast to work on retrieving and analyzing reused
text, we propose to perform the task of source attribution,
inferring which portions of a document were derived from
a source, from internal evidence alone, i.e., when the source
documents are not available at test time. As described in the
results of our pilot study (§6), this task is difficult for humans
— without viewing the underlying source(s), it is not clear
what portions of a document are derived or newly written.
Though difficult, this problem setting is more realistic since
many authors do not fully cite sources and some source doc-
uments are unpublished or not easily accessed. For instance,
given a senator’s press release after a closed-door meeting,
we might infer which portions may have been copied from
the meeting’s unreleased talking points. Similarly, given a
recently published news article, determining which sections
of the article were adapted from press releases or other ar-
ticles would help to identify sources of fake news and mis-
information present in social and news media (Southwell,
Thorson, and Sheble 2017; Vosoughi, Roy, and Aral 2018;
Chou, Oh, and Klein 2018).

Validating results from a source attribution model, how-
ever, is difficult, as the source documents are often unpub-
lished and the relationships between documents unknown.
Therefore, we focus on a specific domain, health science
news articles, for which the relationship between documents
is somewhat clearer and some of the underlying source doc-
uments with apparent relationships to derived documents
are published widely. When writing a science news arti-
cle, journalists rely on a variety of sources, including, but
not limited to, the scientific article itself, press releases is-



sued by the university or journal, interviews with promi-
nent scientists, reports by government agencies, and other
news articles on the topic (Wihbey 2019; Len-Rios et al.
2009). Modeling how journalists write a piece, therefore, is
hard, as they not only combine multiple input sources, but
they may dramatically transform them, simplifying, para-
phrasing, and explaining. Further, we often don’t have ac-
cess to all of the sources a journalist may use, such as in-
terview transcripts and emails. Therefore, we simplify the
problem, focusing only on modeling the relationship be-
tween university or journal press releases and news articles
written about the same scientific article. Press releases are
an important source for journalists as their mere existence
indicates potentially important research (Kiernan 2003b;
Wihbey 2019), and they serve as a high level summary of
the work.

In the domains of journalism and science communication,
in particular, there are ongoing debates about how to more
accurately render new research findings to the public and to
improve what has been called the “science of science com-
munication” (National Academies of Sciences, Engineering,
and Medicine 2017; Bubela et al. 2009). Greater understand-
ing of how foundational knowledge is processed and dissem-
inated to the public remains vitally important as researchers,
policy makers, and public officials attempt to grapple with
rampant misinformation on topics such as vaccine effective-
ness and human-induced climate change (Southwell, Thor-
son, and Sheble 2017; Chou, Oh, and Klein 2018).

Exaggerated claims in science-related press releases
themselves, as well as faulty replication and conveyance of
scientific research information by journalists, can lead to
compounding misinformation for the public (Sumner et al.
2014; Caulfield et al. 2016). Therefore, research on the infor-
mational network connecting academic findings, public rela-
tions materials such as press releases, and news media pub-
lication may be highly useful to journalists who are looking
to improve their practice and better inform their audiences,
as well as to consumers, media critics, and other watchdogs
who are on guard for potentially damaging misinformation
and the process by which it is generated.

2 Problem Formulation

In this paper we explore the problem of source attribution
using health science news data, predicting which sentences
of a news article (NA) have likely been adapted from the un-
derlying press release (PR). Concretely, given a newly pub-
lished NA, we split it into sentences, then, without access
to the text of the PR, predict, for each sentence, how likely
it is that its content is either derived from the source PR,
wholly novel, or somewhere in between. We label our data
on a 0-3 Likert scale developed in collaboration with 2 sci-
ence journalism professors (§5). Unlike common paraphrase
and plagiarism detection tasks, which assume access to both
a source and derived document, we assume that the underly-
ing source PR is not available at test time. We argue that is
a more realistic version of the problem since many science
journalists do not exhaustively cite and link to the full text
of their sources. We perform our analysis and train our mod-
els using 64,784 NAs and 23,068 PRs written about 20,271
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scientific articles.

To better understand the task, consider these excerpts
from 6 different PR-NA pairs with differing amounts of con-
tent overlap, paraphrasing, and summarization:

Example 1: Label 2

e PR: The taller you are, the more likely you may be to de-
velop blood clots in the veins, according to new research
in the American Heart Association journal Circulation:
Cardiovascular Genetics. In a study of more than two mil-
lion Swedish siblings, researchers found that the risk of
venous thromboembolism - a type of blood clot that starts
in a vein - was associated with height, with the lowest risk
being in shorter participants.

e NA: Taller people are at higher risk for venous thrombo-
sis, according to a study of siblings in Swedish national
registry databases reported in Circulation: Cardiovascular
Genetics.

Example 2: Label 2

e PR: Neurologists have long believed RLS is related to a
dysfunction in the way the brain uses the neurotransmit-
ter dopamine, a chemical used by brain cells to communi-
cate and produce smooth, purposeful muscle activity and
movement. ... The small new study, headed by Richard P.
Allen, Ph.D., an associate professor of neurology at the
Johns Hopkins University School of Medicine, used MRI
to image the brain and found glutamate — a neurotrans-
mitter involved in arousal — in abnormally high levels in
people with RLS.

e NA: New research suggests that insomnia caused by rest-
less leg syndrome (RLS) is strongly linked to high lev-
els of the brain chemical glutamate, contradicting long -
held assumptions that the neurotransmitter dopamine is
the main culprit of the symptoms.

Example 3: Label 3

e PR: The study found significant improvements among
participants in mental health, aerobic endurance and out-
come expectations for exercise (for example, perceived
benefit of exercise participation), based on assessments
completed by the participants.

e NA: Significant improvements were also found among
participants in mental health, aerobic endurance and out-
come expectations for exercise.

Example 4: Label 3

e PR: Preeclampsia is a complex form of high blood pres-
sure in pregnancy that can damage the kidneys, liver and
brain and lead to fetal complications such as premature
delivery, low birth weight and stillbirth.

e NA: Pre-eclampsia can damage the kidneys, liver and
brain, and lead to foetal complications such as premature
delivery, low birth weight and stillbirth, experts say.



Example 5: Label 1

e PR: Tresiba(r) Trial Shows that People with Type 2 Dia-
betes who Avoid Severe Hypoglycaemia have a Reduced
Risk of Death. Novo Nordisk today announced new analy-
ses from the multinational, double-blinded DEVOTE trial
showing that people with type 2 diabetes who experi-
ence severe hypoglycaemia (low blood sugar levels) are
at greater risk of death.

e NA: In adults with type 2 diabetes, higher day-to-day fast-
ing glycemic variability and severe hypoglycemia are in-
dependently associated with all-cause mortality, accord-
ing to two secondary analyses from the DEVOTE trial
presented at the European Association for the Study of
Diabetes Annual Meeting and published simultaneously
in Diabetologia.

Example 6: Label 1

e PR: The researchers found that PM continued studying
addiction through the 2000s to develop successful and po-
tentially safer nicotine products, and that from the mid-
1990s to at least 2006, Philip Morris’s internal models
of addiction regarded psychological, social, and environ-
mental factors as comparable in importance to nicotine
in driving cigarette use. Elias and colleagues argue that
PM’s outward support for nicotine’s role in driving smok-
ing allowed the company to redirect policy away from
proven social and environmental interventions and toward
the promotion of potentially reduced harm industry prod-
ucts.

e NA: In other words, they said, PM’s’ opportunistic shift
from denying to affirming nicotine’s addictiveness was
driven not by a substantive change in scientific under-
standing but by public, regulatory, and legal pressures.

In example 1, the journalist summarizes the 2 correspond-
ing PR sentences and includes a small additional detail from
the study about the Swedish national registry database. The
journalist similarly summarizes two non-adjacent PR sen-
tences in example 2. In examples 3 and 4, the journalists
nearly exactly copy excerpts from the corresponding PR sen-
tences. In example 5, the journalist paraphrases some of the
content from the corresponding PR sentences, but adds sig-
nificantly more specific details pulled from the actual study.
Finally, in example 6, the journalist both summarizes the
corresponding PR sentences and adds their own interpreta-
tion. Each example is labeled on a 0-3 Likert scale described
in §5. In order to perform this labeling, annotators view the
full NAs and corresponding PRs side-by-side and examine
lexical and semantic similarities. At test time, however, our
pilot study subjects (§6) and models (§7) make predictions
using only the language of the NA.

3 Related Work
3.1 Automatic Fact-Checking

Related to our source attribution problem is work focused
on automatic fact-checking of news content (Rashkin et al.
2017; Potthast et al. 2018). Verifying an article’s claims and
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determining their sources are related, but distinct, tasks —
for example, a sentence derived from a source could still be
untrue if the author misrepresents its meaning (taking out
of context, exaggerating, etc); conversely, a sentence with
no clearly attributable textual source could still be factually
accurate. Rather, results from both systems are complemen-
tary. For instance, to combat misinformation in anti-vaccine
literature, veracity and source attribution models could be
run on NAs in question, and readers could use both scores to
help determine what information is trustworthy.

3.2 Text Reuse & Similarity Identification

Text Reuse Detection Measuring the flow of information
and reuse of ideas and text is well studied (Hamid et al.
2009; Metzler et al. 2005), with applications from short
“memes” in news and social media (Seo and Croft 2008;
Leskovec, Backstrom, and Kleinberg 2009) to longer in-
stances of reuse such as sentences, paragraphs or large por-
tions of entire documents (Wilkerson, Smith, and Stramp
2015; Smith, Cordell, and Dillon 2013; Nicholls 2019).
Many text reuse systems, however, identify reuse only
through lexical similarity (e.g. word overlap, edit distance),
thereby missing instances where the author of the de-
rived document substantially changes the text of the source
through paraphrase, summarization, etc. In further contrast
to our source attribution task, text reuse systems also assume
the presence of both the source and target documents at pre-
diction time.

Plagiarism Detection There are two commonly studied
settings for plagiarism detection: 1) extrinsic — given a new
document D,, and a corpus of source documents C', detect
which sections of D,, are plagiarized, if any, and find their
sources in Cs (Belyy, Dubova, and Nekrasov 2018) 2) in-
trinsic — given only D,,, detect which sections of D,, are
plagiarized (Eissen and Stein 2006; Potthast et al. 2009).
Our source attribution task is most similar to intrinsic detec-
tion since inference is performed on just the NA. Prior work
in intrinsic detection has approached the problem as binary
classification on text segments (plagiarized or not), training
classifiers such as Naive Bayes and Gradient Boosted Re-
gression Trees with features such as bag-of-words (BOW),
POS, and readability scores (Bensalem, Rosso, and Chikhi
2014; Rahman 2015; Stein, Lipka, and Prettenhofer 2011).
Although similar to intrinsic plagiarism detection, as dis-
cussed in §5, our source attribution task captures a larger
variety of source-derived relationships beyond just wrong-
ful and unattributed use of other’s language and thoughts
(plagiarism). We examine multiple levels of reuse, ranging
from near or exact copying to paraphrasing, summarization,
interpretation, and general inspiration, regardless of if the
underlying source is properly cited or not.

Paraphrase Identification As noted above, our source at-
tribution problem includes instances where the author of
the derived document paraphrases the source. There exists
significant prior work in paraphrase identification (Cer et
al. 2017; Dolan and Brockett 2005; Jurgens, Pilehvar, and
Navigli 2014; Iyer, Dandekar, and Csernai 2017). Labeled
datasets include pairs of texts with either binary or ordinal



(e.g. 1-5) ratings indicating whether they are paraphrases of
each other and, in the case of the ordinal ratings, to what
extent. Current state-of-the-art (SoTA) models train neural
architectures on this sequence-pair classification or regres-
sion task (Devlin et al. 2019; Reimers and Gurevych 2017;
Liu et al. 2019). However, similar to text reuse and extrin-
sic plagiarism detection, since this problem setup assumes
a pair of texts as input, these models would not be directly
applicable to our problem. Instead, as described in §5, we
explore applications of SoTA neural models to help gener-
ate training data for our source attribution system.

4 Dataset

Our dataset comes from Altmetric!, a company that tracks
mentions of scientific research online. Altmetric monitors
mentions of research in over 2000 news sources of vari-
ous types, including, for instance, traditional national and
local news outlets, university and journal press offices, and
niche science news websites, such as Colon Cancer News
Today. Altmetric finds mentions of scientific articles in news
articles by searching for direct hyperlinks to scholarly pa-
pers and by extracting potential journal, article and author
names and performing a search on CrossRef’s scientific ar-
ticle database (English news articles only).

Altmetric has provided us with a database snapshot from
October 8th, 2019. This contains metadata (title, abstract,
journal, etc.) for 26,222,754 scientific articles along with
URLSs of corresponding news and social media articles. Most
of the scientific articles, however, do not garner news cover-
age. For our analysis, we first filter this dataset to 5,649,276
health science articles (articles with categorized as “Health
Science” by Scopus), then remove scientific articles with
no news coverage, leaving 343,245 scientific articles with
1,277,646 distinct news article URLs. We use lazyNLP2
to crawl and extract article content, and successfully crawl
544,777 articles. We do not download the full text of the sci-
entific articles due to copyright limitations.

Data Cleanup As we aim to model how journalists trans-
form PRs into new content, we need to first separate our
list of articles into PRs and NAs. For PRs, we utilize results
from a survey of science journalists (Wihbey 2019) to se-
lect a list of 13 PR publishers and aggregators® and mark
the rest as NAs, yielding 56,369 PRs and 488,408 NAs. For
each NA, we identify all PRs written about the same scien-
tific article(s) as potential sources and remove NAs and PRs
with no corresponding source or target. This yields 49,725
PRs and 238,029 NAs written about 38,656 scientific arti-
cles. Inspecting the dataset, however, we find that it contains
many NAs which are either near copies of other NAs or re-
lated PRs, or off-topic boilerplate. Since we want to model
how journalists transform source content and create a new
piece, we do not want to include articles from outlets which

Yaltmetric.com/audience/researchers

*https://github.com/chiphuyen/lazynlp

3EurekAlert!, Science Daily, AlphaGalileo, Newswise, Na-
ture, PR Newswire, Journalist’s Resource, Science News, Sci-
ence/AAAS, Kaiser Health News, Business Wire, Mayo Clinic,
The New England Journal of Medicine.
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Split \ #Docs # Sentences  Avg. Sent Length

Train | 58,134 1,770,348 25.2
Dev | 6,600 179,945 25.6
Test | 50 1,140 28.0

Table 1: Dataset Summary Statistics

are copies of other documents or unrelated to the PR. Thus,
based on manual inspection of the dataset, we devise a set of
document- and sentence-level word-overlap rules to cleanup
the data. We split documents into sentences and tokenize us-
ing spaCy (Honnibal and Montani 2017), then remove stop-
words and punctuation. At the document level, we transform
NAs and PRs into TF-IDF weighted BOW. At the sentence
level, we transform each sentence in a document into its own
TF-IDF weighted BOW.

To remove NAs which copy substantial PR content, we
remove NAs with document-level cosine similarity > 0.8
to any corresponding PR or where > 20% of its sentences
have similarity > 0.8 to any PR sentence. To find NAs that
are unrelated to the PRs, we remove NAs with document-
level similarity < 0.2 to all relevant PRs or where < 20%
of its sentences have similarity > 0.2 to any PR sentence.
The sentence-level cutoffs are necessary to identify copying
NAs with uncleaned boilerplate content and unrelated NAs,
such as those on a related topic that only briefly mention
the underlying scientific paper as related work. In order to
deduplicate the NAs, we group them by scientific article and
remove those with document-level similarity above 0.8 to
another NA. We similarly deduplicate PRs.

Finally, we manually inspect a sample of articles from
each of the 24 outlets with at least 500 articles in the dataset.
This includes major outlets such as NYT, CNN, and BBC,
newswires such as UPI, and science-specific outlets such as
The ASCO Post and Healio. We identify 3 PR-copying out-
lets and remove all of their corresponding ~ 4k NAs. This
leaves our final dataset of 64,784 NAs and 23,068 PRs writ-
ten about 20,271 scientific articles. We cap each NA and PR
at 75 sentences, greater than 95% of all documents.

Dataset Splits We split our dataset into train, dev, and test
sets so that no pair of NAs, for example, in the train and test
sets, have the same corresponding PR(s) or cite the same
scientific articles. We create a test set of 50 articles for ex-
pert annotation by journalists (§5.2) and split the remaining
64,734 articles into train and dev (Table 1). NAs contain, on
average, 30 sentences with mean 25 tokens per sentence.

5 Annotation
5.1 Annotation Scale Development

We examine the task of attributing portions of a derived doc-
ument to a source document at the sentence-level. For each
NA sentence, we wish to label it on a scale indicating how
original vs. derived its content is. To this end, we recruit two
science journalism professors (both authors of this paper) to
examine a sample of 5 NA-PR pairs. Following work in se-
mantic similarity scale development (Jurgens, Pilehvar, and



Navigli 2014; Cer et al. 2017), we develop and validate a 4
point Likert scale:

0. Novel or unrelated: not derived from passage(s) in the
press release.

1. Partially derived: journalist has used the PR as a source,
but has substantially changed or added to the content.

2. Mostly derived: journalist has paraphrased or repackaged
parts of the PR and not added much new content.

3. Derived: journalist has nearly or exactly copied the PR.

This is a difficult annotation task, even for journalists —
it is easy to miss similarities between documents, and there
can be too much to keep in mind at a time going back and
forth between the full NA and PR texts. To aid the annota-
tion effort, we iterate with the journalists to devise a small
annotation tool which displays a NA and all corresponding
source PRs side-by-side. When an annotator clicks on a NA
sentence, all of the overlapping tokens in the PRs are high-
lighted — all overlapping tokens are colored using a sequen-
tial, single hue (blue) color scale where rarer words (low
document frequency) are highlighted using a darker shade
of blue. Further, when a span of at least 3 tokens occurs in
both the NA sentence and one of the PRs, that span of tokens
in the PR is bold faced for easier identification. Though this
tool makes it easier to identify lexically similar content be-
tween a PR and NA, NA sentences that are derived from
the PR, but paraphrased, might be missed. Therefore, each
annotator is instructed to read each PR and NA in full be-
fore beginning annotation and to re-examine the entire PR
for both lexical and semantic similarities when labeling each
NA sentence. For reference, the NA-PR pairs in §2 contain
examples of NA sentences with labels 1-3.

5.2 Train-Dev-Test Annotations

Since we wish to build a model that learns to identify which
portions of a NA are derived from the corresponding PR,
we need labeled data, with each NA sentence labeled on our
0-3 scale. However, labeling each NA requires a substantial
amount of time (= 15 - 20 min.) and thought. In order to
scale to our dataset of =~ 65k NAs, we turn to a mix of expert
and non-expert human annotation along with heuristic-based
methods. Specifically, we evaluate our models on a test set
labeled by expert journalists, and we use a set of non-expert
annotations on a sample of our dev set to find an automatic
metric to label our training data.

Test Set: Expert Annotation To evaluate our model on
the cleanest data possible, we create a test set of 50 NAs
(1,140 total sentences) for expert annotation. We manually
clean these 50 articles, ensuring that all boilerplate content
is removed. The same two science journalism professors
who developed the annotation scheme also annotated the
test set. Each journalist annotated 25 NAs. To evaluate an-
notator consistency, one journalist annotated 3 randomly se-
lected NAs (58 sentences) from the other’s list of 25. We use
tie-corrected Spearman rank correlation (p) to assess agree-
ment, which is 0.74.

As seen in table 2, the dataset is imbalanced, with 67% of
sentences labeled 0. However, nearly half (24) of the NAs
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Average Label Across Each News Article:
Test Set

100 80 60 40 20 0
Sentence Percentile in Article

Figure 1: Test set: avg. sentence label across each quintile.

| Label 0 Label 1 Label 2 Label 3
Dev | 862 (66%) 204 (15%) 201 (15%) 46 (4%)
Test | 763 (67%) 172 (15%) 92 (8%) 113 (10%)

Table 2: Breakdown of the total number of label 0, 1, 2 and
3 sentences in each of the human-labeled datasets — 1,313
total dev sentences and 1,140 test sentences.

have at least one label 3 sentence — 16 NAs with at least
one label 2, and 10 with at least one label 1. The median
NA has 39% of its sentences labeled as derived (labels 1-
3). Figure 1 shows the average label at each quintile of an
NA - we sort each NA’s sentences by label then calculate
the average label at each quintile in the ranked list. The top
ranked sentence has an average label of 2.28, with a gradual
decrease to an average label of 0.1 for the least derived sen-
tence. In order to examine whether sentence position in the
NA has any relationship to its label, we iterate over each NA
and calculate the relative [0,1] positions of its derived sen-
tences (labels 1-3). We find that the derived sentences occur
slightly more frequently in the first half of the NA, but are
mostly uniformly distributed.

Train & Dev Sets: Non-Expert Annotation & Heuristics
Though we have created an expert-labeled, clean test set for
evaluation, we still need labeled data to train models. In or-
der to scale to tens of thousands of NAs, we turn to text
similarity heuristics. Many measures, such as ROUGE (Lin
2004) and BLEU (Papineni et al. 2002), and sentence em-
bedding models, such as Universal Sentence Encoder (Cer
et al. 2018), exist to measure similarity between two pieces
of text. However, it is not clear a priori which metric most
closely resembles human judgement on this task. We there-
fore sample 50 articles from the dev set for annotation in or-
der to find the metric which best approximates human labels.
As our expert annotators have limited time, 4 non-expert,
fluent English speakers (two of them authors of this paper)
annotated data for this task. Using the same tool and instruc-
tions as the expert journalists, each annotator annotated 12
or 13 NAs for a total of 50. To evaluate the agreement of
the annotations, we randomly select 3 NAs (112 sentences)
for annotation by all 4 annotators. The average pairwise p is
0.75, nearly identical to the 0.74 p between the journalists.



Inspecting the annotations, we discover 5 NAs with la-
bel “0” for all of their sentences (none of them were used
to calculate annotator agreement). We find that these NAs
are on related topics to the corresponding PRs, but focus on
separate, distinct scientific articles. Since there is no source-
target relationship between these pairs, we exclude them
from our analysis, yielding a labeled dataset of 1,313 sen-
tences across 45 NAs. As can be seen in table 2, this dataset
also has a heavy class imbalance: 66% of sentences are la-
beled 0. However, we also find that there is a difference be-
tween the percentage of label 2 and 3 sentences between the
dev and test sets. Examining the labels and their correspond-
ing sentences, we find that although this is partially due to
chance, with the test set containing articles that copy more
content, there is discrepancy between the groups of annota-
tors on how to label sentences with high content overlap that
fall between a 2 and 3. The journalists were more likely to
label such sentences as 3s (near exact copies), whereas the
non-experts as 2s (close paraphrases).

We then automatically generate a label for each of the
1,313 sentences as follows — we calculate its similarity (un-
der some unsupervised model) to each sentence in the cor-
responding PR(s), and label it with the maximum similar-
ity score from across all of the PR sentences. We opt for
this all-sentence-pairs comparison since PRs in our dataset
are very long (avg. 31 sentences), and each NA sentence is
likely only derived from and similar to a specific subset of
the PR, if at all. This setup, though, will miss NA sentences
that partially excerpt, paraphrase, and/or summarize con-
tent from multiple, sometimes non-adjacent, PR sentences.
We performed initial experiments calculating the similarity
between a NA sentence and an entire PR document using
TF-IDF cosine similarity (ie. vector space model for infor-
mation retrieval), but achieved better results with the all-
sentence-pair comparisons — we thus stick with this setup
for the following experiments. We leave applications of su-
pervised cross-level (document-to-sentence) semantic simi-
larity identification and retrieval systems to future work.

Following work in paraphrase identification (Jurgens,
Pilehvar, and Navigli 2014; Cer et al. 2017; Huang and
Chang 2014, Sarkar et al. 2016; Ferrero et al. 2017) and text
reuse detection (Metzler et al. 2005), we calculate similar-
ity scores between each of the 1,313 NA sentences and their
corresponding PR sentences under 8 similarity metrics — five
using BOW representations and three using continuous rep-
resentations:

e ROUGE: -1, -2, and -L, with and without stemming (Lin
2004)

e BLEU (Papineni et al. 2002)
e Meteor (Banerjee and Lavie 2005)

e Token-level Levenshtein similarity = 1 — (Levenshtein
distance/ length of longer sequence)

e Bag-of-ngrams cosine similarity, n € {1, 2,3}, with and
without TFIDF-weighting

e Word Mover’s Distance (WMD) (Kusner et al. 2015) with
GloVe vectors (Pennington, Socher, and Manning 2014).
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Heuristic p
ROUGE-1 | 59.0
ROUGE-2 | 59.2
ROUGE-L | 554

BLEU | 53.0

Meteor | 57.0
Levenshtein | 47.8
Bag-of-ngrams | 61.2
TFIDF-ngrams | 62.5
WMD | 535

USE | 59.1
Sent-ROBERTA | 59.1
Sent-BERT | 52.5

Table 3: Spearman’s p x 100 between heuristic-derived sim-
ilarities and non-expert labels on 1,313 sentences from the
dev set.

We use negative WMD to ensure that more similar se-
quences have higher (closer to zero) scores.

e Universal Sentence Encoder (USE) (Cer et al. 2018) co-
sine similarity*
e Sentence-BERT? (Reimers and Gurevych 2019) cosine
similarity
For each metric, we measure the similarity between its
scores and the ground truth, non-expert human labels us-
ing tie-corrected p (Table 3). Correlation is commonly used
to measure the similarity between human-rated Likert scale
similarity judgements and machine output similarity scores
(Cer et al. 2017; Reimers, Beyer, and Gurevych 2016;
Jurgens, Pilehvar, and Navigli 2014; Reimers and Gurevych
2019). We opt for p since it is not sensitive to outliers, non-
linear relationships or non-normally distributed data, unlike
Pearson’s correlation (Reimers, Beyer, and Gurevych 2016;
Zesch 2010).

As seen in Table 3, we find that TFIDF-weighted bag of n-
grams (unigrams and bigrams, no stopping or stemming) co-
sine similarity has the highest absolution correlation, with a
p of 0.625 with the human labels. Thus, we select it generate
labels for each of the 1,948,833 sentences from the 58,134
train and 6,550 dev NAs without human-annotated labels.
We follow the same all-sentence-pairs setup as above, label-
ing each sentence with the maximum TFIDF cosine similar-
ity across the corresponding PR sentences.

Heuristically-Labeled Data Description Figure 2a
shows the distribution over the TF-IDF similarity scores
for all 1,948,833 heuristically-labeled sentences. Approxi-
mately 61% of sentences have similarity < 0.1 Only ap-
proximately 8% have similarity scores of at least 0.3, 5%
of at least 0.5, and 1% of at least 0.9. These percentages
are substantially lower than the proportions of label 1-3 sen-
tences in the human-labeled dataset. This is due to multiple

*https://tfhub.dev/google/universal-sentence-encoder/3

Tested the 2 best performing models on the STS bench-
mark data: bert-large-nli-mean-tokens and roberta-large-nli-stsb-
mean-tokens. https://github.com/UKPLab/sentence-transformers#
pretrained-models
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Figure 3: Relative positions of sentences in NAs with high
cosine similarity scores in train and dev sets.

factors, but most significantly because journalists often sum-
marize, paraphrase and simplify PR content. A BOW model
applied only at the sentence-pair level cannot capture these
complex relationships. However, as demonstrated by the p
of 0.625 with the human labels, the BOW method still ranks
sentences relatively well — on average, sentences that are la-
beled as derived (labels 1-3) have higher TF-IDF scores than
the the unrelated or novel sentences (label 0).

Figure 2b shows the distribution over the max TF-IDF
score across each NA. Of the 64,684, approximately 16%
contain a sentence with a similarity score of at least 0.9. The
mean NA contains a maximum sentence-level similarity of
0.49 (median 0.38). To generate figure 2c, we sort each NA’s
sentences by similarity score and calculate quintiles as we
did for the test set. Average similarity at the 80th percentile
is 0.2, then declines steadily to nearly 0.

Similar to the test data, we also examine the relationship
between sentence position and TF-IDF similarity. We find
the relative [0,1] positions of each sentence with similarity
> 75% the maximum sentence similarity in that NA. As seen
in figure 3, similar to the test data, these relatively high sim-
ilarity sentences occur slightly more frequently in the first
half of the NA, but also with spikes at the start (5% of top
scoring sentences) and end (4%) of the NA.
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6 Task Difficulty: Pilot Study

To assess the difficulty of this task, we conducted a small pi-
lot study. We recruited 5 fluent English speakers to perform
the source attribution task — given a NA, predict which sen-
tences are derived from the unseen, underlying press release
using only the text of the NA. None of the participants are
authors of the paper or were previously involved in the label-
ing effort. We sampled 8 NAs from the test set for the study
— 3 to familiarize participants with the task and 5 for eval-
uation. Participants first examined the 3 example NAs, their
corresponding PRs and the expert sentence labels using the
same tool used by the annotators. Then, for each of the 5
evaluation NAs, the participants each predicted a 0-3 score
for all of the sentences (121 total sentences) without look-
ing at the PRs. As in §5.2, we use tie-corrected p to eval-
uate the pilot participant’s predicted scores vs. the ground
truth. Since, unlike the text similarity metrics used to label
the training data, participants are making integer predictions
on the same ordinal scale as the labels, we also evaluate us-
ing F1 score. We compute F1 score under two settings: bi-
nary F1 (derived vs. not) by collapsing labels 1-3 to a single
positive label, and macro-averaged multi-class F1.

As can be seen in table 4, with a maximum p of 0.4, bi-
nary F1 of 0.626 and multiclass F1 of 0.361 across all partic-
ipants, this task is difficult. In general, participants overes-
timated the proportion of derived sentences (labels 1-3) and
struggled to differentiate between the different levels of de-
rived content (hence the similarities in multiclass F1 scores).
Some participants, however, excelled with respect to others
in differentiating between non-derived and derived content,
leading to the disparities in p and binary F1. Participants
noted that they thought usage of direct quotes and listing of
specific numbers and figures were signals of content copy-
ing, but that this intuition was not perfect since journalists
could use a variety of sources while writing an article (the
original scientific article, interviews with non-affiliated ex-
perts, other news articles, etc).

7 Models

As demonstrated by our pilot study results, non-expert hu-
man readers cannot highly accurately identify which sen-
tences in a NA are derived from the underlying PR. We thus
argue that a model trained to identify derived PR content



Subject \ p F1 (binary) FI (multiclass macro)
A 25.5 58.3 28.4
B 25.7 55.4 31.7
C 40.0 61.0 36.1
D 32.6 62.6 31.9
E 13.7 329 33.0

Table 4: Pilot study results: 5 non-expert raters predicted 0-
3 labels for sentences in a sample of 5 expert-labeled NAs
from our test set. p, F1 x100.

would be useful for such readers to help them better under-
stand and analyze the NAs they read. We evaluate the perfor-
mance of 4 different models on this task — 2 neural models
and 2 feature-based models. As noted in §3, although our
task is quite similar to other, common NLP tasks such as
paraphrase identification and extrinsic plagiarism detection,
since the source PR is not available at test time, we are un-
able to apply models designed for these tasks to our dataset.

In order to generate labels for our training and dev data
that are on a similar scale as our 0-3 human labels, we mul-
tiply each NA sentence’s TF-IDF cosine similarity score by
3.

Fine-Tuned BERT We select BERT g a5 (Devlin et al.
2019) as BERT-based architectures have recently achieved
SoTA performance on a variety of NLP tasks, including
sentence classification and sequence tagging (Devlin et al.
2019). Optimally, we would use a model that could effi-
ciently and effectively train on whole NAs, extracting a
contextual representation for every sentence and making a
prediction for each one. However, the NAs in our dataset
are long (average 857 WordPiece tokens), well above the
512 WordPiece limit of the pre-trained BERT checkpoint
released by Google®. We thus fine-tune BERT on individ-
ual NA sentences. Following Devlin et al. (2019), we feed
each WordPiece tokenized (Wu et al. 2015) NA sentence
into BERT independently, use the final [CLS] embedding as
the representation for the entire sentence, and feed that into
a linear layer to make our final regression prediction. We
train the models using Adam (Kingma and Ba 2014) and,
following work on ordinal regression with class-imbalanced
data (Baly et al. 2019; Rosenthal, Farra, and Nakov 2017),
optimize mean absolute error (MAE) loss.

BCL: BERT-CNN-LSTM As noted above, we hypothe-
size that learning representations of NA sentences that are
sensitive to the entire document context will improve per-
formance. Thus, instead of operating on each NA sentence
independently, our model must take an entire NA as in-
put, then predict a score for each sentence. We use BERT
as the basis of our model and, again, due to the sequence
length limitations, input each NA sentence to BERT in-
dependently. Further, due to memory constraints of fine-
tuning BERT with all of the sentences of an NA in a single
batch, we opt for the more efficient feature-based approach,

Sstorage.googleapis.com/bert_models/2018_10_18/
uncased_L-12_H-768_A-12.zip
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Figure 4: BCL model design.

which has been shown to have comparable performance to
fine-tuning on some tasks (Peters, Ruder, and Smith 2019).
Use of feature-based BERT requires a task-specific architec-
ture on top of the extracted embeddings. Much of the prior
work on feature-based BERT for sequence tagging (Devlin
et al. 2019; Peters, Ruder, and Smith 2019) has focused
on token-level tasks, such as NER, and has utilized a BiL-
STM (and sometimes CRF) as the task-specific architecture.
As we are making predictions on sequences of sentences,
we must first aggregate a sentence’s token representations
into one sentence-level representation. Thus, we extract and
concatenate BERT’s last 4 hidden layers (dimensionality
3072) as features for each token, then use a CNN to learn a
sentence-level representation. We select CNNs as they have
proved effective on many sentence-level classification tasks
(Kalchbrenner, Grefenstette, and Blunsom 2014; Kim 2014,
Johnson and Zhang 2015). We use ReLU as the CNN activa-
tion function and 1-max pooling over time to learn a fixed-
length representation of each sentence. We then pass all sen-
tence representations for a given NA through a single layer
BiLSTM (dim. 200 each direction) to encode each sentence
with information about surrounding sentences. We use a fi-
nal linear layer for prediction. We train to minimize MAE.
For clarity, figure 4 shows the design of the entire model.

Feature-Based Models: SVR & GBR We explore two
feature-based models: Support Vector Regression and Gra-
dient Boosted Regression Trees, both trained with MAE loss
functions. Similar to BERT (and unlike BCL), we train each
feature-based model on individual sentences. Thus, they
cannot leverage the text of surrounding NA sentences when



Corpus-Level NDCG g
p NDCG@1140 | @1 @3 @5
In-Order - - 243  36.0 40.1
SVR 37.7 85.2 57.0 56.7 55.6
GBR 43.0 86.4 59.7 549 564
BERT | 37.7 85.3 553 542 55.1
BC 40.7 85.9 57.0 56.7 55.6
BCL 48.8 87.6 60.3 62.6 62.7

Table 5: Results on test set — 1,140 sentences across 50 NAs.
p and NDCG x100.

making their predictions.

We design 7 sentence-level features: sentence length,
presence of a quote, and 5 measures of position (absolute
position, relative position, is 1st sentence, is last sentence,
and a 1-hot vector indicating in which positional quartile in
the NA the sentence occurs). We also include BOW features
for each sentence, extracting counts of n-grams. The number
of BOW features for each model is tuned on our dev set.

8 Evaluation Settings

Hyperparameters: For all models we select the hyperpa-
rameter configuration with lowest MAE on the dev set.

BERT: For efficiency, we limit each sentence to 57 Word-
Piece tokens, excluding the special [CLS] and [SEP] tokens
(>95% of sentences). As suggested by Devlin et al. (2019),
we search over: batch size € {16, 32}, learning rate € {5e-5,
3e-5, 2e-5} and train up to 4 epochs.

BCL: We train using the same 57 WordPiece token max
sentence length and Adam optimizer (learning rate le-3)
as fine-tuned BERT. As suggested by Zhang and Wallace
(2017), we perform a grid search over the hyperparameters
for our convolutional layer, with filter sizes € {1, 3,5, 7,10}
and feature map sizes € {100,200,400,600}. We use
dropout (0.1) after the CNN and LSTM layers. We train on
mini-batches of size 32 for a maximum of 10 epochs.

SVR & GBR: We perform a grid search, optimizing max-
imum and minimum document frequency, with/without TF-
IDF weighting, with/without stopping, order of n-grams €
{1,2,3}, maximum number of BOW features, and model
specific hyperparameters.

Metrics: We evaluate all models using p, as described
in §5.2. Also, following Reimers, Beyer, and Gurevych
(2016), we use the ranking metric N DCGQFk (Jirvelin and
Kekaildinen 2002) as another corpus-level statistic. Specifi-
cally, we rank all 1,140 sentences by their predicted scores
and compute N DC'G@1140 for the entire list.

Since users of a source attribution system would likely
only use and evaluate models on individual NAs at a time,
we also compute NDCG scores for each NA and av-
erage those scores across documents. We argue that this
document-level evaluation is more realistic than the corpus-
level as it measures how well a model rates all of the sen-
tences in an NA with respect to each other, specifically how
well it identifies the k most derived sentence(s). We compute
NDCG g for k € {1,3,5}.
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Non-Model Baseline: As derived sentences often occur
earlier in the NA (§5.2), we include predicting the sentences
of a NA in their original order as a non model baseline
for NDCG 4. This is similar to the commonly used Lead
baseline in summarization, since the lead paragraph of a NA
summarizes and introduces the main elements of the story.

9 Results

Table 5 shows the results of the four models and In-Order
baseline on the test set, as well as an ablation experiment
described below. BCL outperforms all other models and
the baseline across all metrics. It outperforms the next best
model, GBR, by a margin of approximately 0.5 to 8% abso-
lute across the different metrics. As N DCG 4,.@1 is simply
the ratio of the label of the top predicted sentence and the
maximum label sentence in the NA, BCL’'s NDCGg4,.@Q1
of 0.6 is approximately equal to, on average, ranking a label
2 sentence as the most derived in a NA with one or more
label 3 sentences. Furthermore, BCL’s strong performance
relative to fine-tuned BERT, a model with significantly more
trainable parameters, demonstrates the importance of BCL’s
ability to leverage the context of an entire NA when predict-
ing scores for each sentence.

Document-Context Ablation Experiment In order to
more directly examine the impact of BCL’s ability to model
document-level context, we perform an ablation experiment,
training a sentence-level BC model without the document-
level LSTM. Thus, each sentence is processed independently
by feature-based BERT, the CNN and the final dense layer
for prediction. We use the same MAE loss and optimal hy-
perparameters from the best BCL model. As seen in table 5,
our hypothesis of the importance of incorporating document
context is confirmed, with performance relative to BCL de-
creasing across each metric by ~ 2-8% absolute. Interest-
ingly, the BC model outperforms BERT across all metrics.

Error Analysis To gain intuition into the performance of
BCL, we analyze its errors on the test set. We compare the
13 NAs in the bottom quartile of N DC'G 4,.@5 performance
(NDCG4,.Q5 < 0.4) to the rest of the test set (> 0.4).
We find that the primary difference between the two sets is
the proportion of derived sentences in each NA. The bot-
tom quartile NAs contain fewer derived sentences than the
rest of the test set — each bottom quartile NA has, on av-
erage, only 16% of its sentences labeled 1-3, and the aver-
age sentence label across the NAs is 0.23. Only 7 of the 13
NAs contain a sentence labeled 2 or above, and only 2 con-
tain a label 3 sentence. This compares to averages of 52%
nonzero-labeled sentences and a 1.03 sentence label across
the NAs on the rest of the test set. These results indicate that
identifying highly derived (label 2-3) sentences in NAs with
a mix of derived and non derived sentences is easier than
differentiating between low and non-derived (label 0-1) sen-
tences in NAs with mostly original writing. Examining the
performance of the other models, we find similar, but not as
extreme trends (slightly higher average sentence labels and
proportion of derived sentences in the bottom quartile NAs).

We also examine whether sentence position in the NA has
any relationship with the predicted scores on the test set.



As noted in our analysis of the expert labels (§5.2), the de-
rived sentences occur slightly more frequently in the first
half of the NA, but are mostly uniformly distributed. For
each model’s predictions, similar to figure 3, we calculate
the relative positions of each sentence and identify those top-
scoring sentences with a predicted score > 75% the max-
imum score in that NA. We find that all 4 models overesti-
mate scores for sentences occurring earlier in the NA. On av-
erage, approximately half of the top scoring sentences iden-
tified by each model occur in the first third of a NA. BCL’s
predictions are the most biased towards earlier sentences —
13% of the top scoring sentences are the first sentence in
their respective NAs.

10 Conclusion

We explore the task of intrinsic source attribution, with ap-
plication to inferring which sentences in a NA were likely
adapted from the underlying press release. We work with
two science journalism professors to develop a 4 point Lik-
ert scale to measure how derived a given NA sentence is and
to create an expert-labeled test set of news articles. We find
that this task is difficult for non-experts participants in our
pilot study, and thus explore the applications of 4 models
to assist humans. We train our models with heuristically-
derived sentence labels based on each sentence’s TF-IDF
similarity with the PR. We demonstrate the importance of
modeling document-level context, with the best performing
model using a document-level LSTM to encode sentences
with information about surrounding content in the NA and
achieving p of 0.49 and NDCG@]1, 3,5 of 0.60, 0.63 and
0.63, respectively, on the expert-labeled test set

Source attribution-related research may have uses for
journalists and media watchdogs who are keen to improve
the accuracy of scientific information in the public domain.
Ultimately, models that can help unpack and explain the
transformation of scientific information for public consump-
tion may be used as part of a system to identify quality jour-
nalism or misinformation.

There are several potential directions for future research.
First, we can explore finer-grained modeling of the task than
at the sentence level, though getting human labels on indi-
vidual tokens would be difficult. Next, as our results demon-
strate the importance of modeling document-level context,
we could test the performance of other contextual models,
such as fine-tuning BERT on a sliding window of NA sen-
tences (Wang et al. 2019). Further, we can examine uses
of our labeled data for training paraphrase, summarization,
and genre-transfer models. Finally, by modeling the portions
of a NA’s content not traceable to a PR, we can explore
what content journalists add, potentially helping to iden-
tify and examine propagation of exaggerated or false claims
(Bubela et al. 2009; Sumner et al. 2014; Kiernan 2003a;
Caulfield et al. 2016; Chou, Oh, and Klein 2018).
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