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The Research of Allen Newell:

John E. Laird and Paul S. Rosenbloom

Illen Newell’s research career was
Adeﬁned by his pursuit of a single ques-

tion. It is the ultimate scientific ques-
tion underlying psychology and AI as well as
a substantial part of philosophy: What is the
nature of the mind? Newell’s autobiography
(American Psychological Association 1986)
puts it thusly:

The central line of Newell’s research has
remained always the quest for
understanding the nature of the mind.
The detailed analysis of protocols, the
development of production systems,
pulling together the theory of human
problem solving (in the book of the same
name, with Herb Simon), the develop-
ment of the notion of cognitive architec-
ture, the problem-space hypothesis, a
theory of how humans acquire cognitive
skills, work on artificial intelligence sys-
tems for doing demanding intellectual
tasks (such as discovering algorithms),
the development of a complete architec-
ture for intelligence—these are some of
the main stepping stones. They comprise
various mixtures of artificial intelligence
and cognitive psychology, as chance and
opportunity would have it. This central
question will occupy Newell for the rest
of his research life, no doubt. (He seems
quite incapable of imagining another.)
(p. 348)

What Newell does not mention in his auto-
biography is the magnitude of his stepping
stones. Each one of Newell’s contributions is
not just a small increment in our understand-
ing of the nature of the mind but a major
building block of Al and psychology. Newell’s
research style was to never hold back but to
go for the tough problems that would have a
high payoff. As figure 1 summarizes, Newell
and his colleagues have been responsible for
establishing many of the concepts that are
central to Al and cognitive psychology,
including heuristic search, list processing,
problem spaces, weak methods, production

Opposite: Allen Newell playing chess with Herbert Simon
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systems, chunking, physical symbol systems,
and the knowledge level. During his pursuit
of the nature of the mind, Newell accumulat-
ed a wealth of honors that acknowledge his
contributions to Al and psychology as well as
his contributions to some of his diversions
(see figure 2). Although one of the striking
things about Newell’s research is his focused
pursuit of the mind, along the way he had his
share of diversions, as is evident in figure 1.
These diversions were not on the main path
but nevertheless helped to shape his journey.

This article reviews Newell’s research career,
starting with symbolic computation in 1954
through the present and his involvement
with soARr and its ramifications. This summary
barely scratches the surface of his career as a
scientist and cannot convey the spirit and
passion that he brought to his work. It
excludes his contributions as a senior states-
man in establishing and nurturing the fields
of cognitive science and AIl. It does not
convey the significant effort he contributed
to building and maintaining one of the pre-
miere computer science departments in the
world. It gives only a glimpse of Allen Newell
as teacher and mentor.

Preparation

Allen Newell did not grow up planning to
devote his adult life to pursuing the nature of
the mind. At 17, he wanted to become a
forest ranger. In 1945, when 19, he was draft-
ed into the United States Navy and witnessed
the atomic bomb tests on the Bikini Atoll
from a ship carrying scientists who were there
to observe the blasts. After the tests, his job
was to make maps of the distribution of radia-
tion over the atolls. When he returned from
the Navy, he had decided on a career in sci-
ence, and he attended Stanford University,
majoring in physics. He engaged in under-
graduate research in x-ray optics, with his first
publication coming from this work (Newell
and Baez 1949).

Although physics was his major, Newell
took a class from George Polya entitled Math-
ematical Methods in Physical Science. Polya

Allen Newell was
one of the
founders and
truly great scien-
tists of AlL. His
contributions
included founda-
tional concepts
and ground-
breaking systems.
His career was
defined by the
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single, fundamen-
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nature of the
human mind.
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his early work on
search and list
processing in sys-
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National Medal of Science, 1992

National Academy of Sciences, elected 1972
National Academy of Engineering, elected 1980

Harry Goode Memorial Award, American Federation of Infor-
mation Processing Societies, 1971

A. M. Turing Award (with H. A. Simon), Association for Com-
puting Machinery, 1975

Alexander C. Williams Jr. Award (with William C. Biel, Robert
Chapman and John L. Kennedy),
Human Factors Society, 1979

Distinguished Scientific Contribution Award, American Psycho-
logical Association, 1985

Award for Research Excellence, International Joint Conference
on Atrtificial Intelligence, 1989

Emanuel R. Piore Award, Institute for Electrical and Electronic
Engineers, 1990

Franklin Institute’s Louis E. Levy Medal, 1992

Doctor of Science (Honorary), University of Pennsylvania,
1986

Doctor in the Behavioral and Social Sciences (Honorary), Uni-
versity of Groningen, The Netherlands, 1989

First President, American Association for Artificial Intelligence,
1980

John Danz Lecturer, University of Washington, 1971

American Academy of Arts and Sciences, elected 1972

John Simon Guggenheim Fellow, 1976-77

Computer Pioneer Award, Charter Recipient, IEEE Computer
Society, 1982

William James Lectures, Harvard University, Spring 1987

William James Fellow Award (charter recipient), American Psy-
chological Society, 1989

Figure 1. Allen Newell’s Honors
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was a distinguished mathematician, and the
class covered the material in the now classic
How to Solve It (Polya 1945). Polya was inter-
ested in problem solving, and his book
attempted to teach a method based on
heuristic reasoning. Newell became fascinated
by Polya, and he took every class that Polya
taught (as a freshman in physics!), even class-
es in interpolation and numeric integration
and differential geometry. He never devel-
oped a personal relationship with Polya, and
Polya’s work did not immediately impact
Newell’s career (as evidenced by the lack of
any reference to Polya’s work during the early
work on the LOGIC THEORIST [LT] and the GENER-
AL PROBLEM SOLVER [GPs]). Newell (1983) reflect-
ed on this lack of explicit influence on his
own life in an analysis of Polya’s influence on
problem solving in Al. One suspects, as did
Newell, that Polya affected his research
implicitly for years to come as Newell
attempted to discover the precise details of
human problem solving.

From Stanford, Newell went to Princeton
in 1949 for graduate studies in mathematics.
Once there, a graduate career in pure mathe-
matics did not excite him, and for a time, he
contemplated (we don’t know how seriously)
dropping out of graduate school and raising
sheep in New Zealand. While at Princeton,
Newell worked with Oskar Morgenstern on
game theory and logistic models. By the end
of his first year, he abandoned graduate
school for RAND Corporation, the Santa
Monica think tank that was one of the few
places doing work in game theory.

Once at RAND, Newell concentrated on
logistics systems and organizational science.
He worked with Bob Chapman, Bill Biel, and
John Kennedy (with whom he later shared
the Alexander C. Williams, Jr., Award, from
the Human Factors Society) within the Sys-
tems Research Laboratory (SRL). The task of
SRL was to study interactions between
humans and machines to improve training in
the military. Their experimental test bed was
a full-scale mock-up of an Air Defense Early
Warning Station (no computers!), where deci-
sions had to be made about sending up
planes to investigate radar sightings. For vari-
ous technical reasons, real radar was not
used, but simulated displays of radar blips
were produced on an IBM, predigital comput-
er programmable calculator. These simulated
radar maps were then printed on paper by an
old-fashioned 80-column IBM printer. Pro-
ducing this simulation was one of Newell’s
responsibilities in the lab, and he did it in
collaboration with J. C. (Cliff) Shaw, an actu-
ary turned system programmer who worked
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Figure 2. A Summary of Allen Newell’s Research.
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in RAND’s computation department and
whose interests were in programming lan-
guages and operating systems. The lab was
designed so that all phone interactions
between crew members were tape recorded
and subsequently analyzed to investigate the
patterns of interaction among people and
their decision-making processes; a precursor
to Newell’s later work on the analysis of
human thinking-aloud protocols.

At the beginning of 1952, shortly after the
lab came into operation, Newell met Herb
Simon, who was recruited by Kennedy and
Chapman as a consultant to the activity.
Newell had now made connections with
those people with whom he would make
major contributions in AI. Moreover, the
map-producing program he and Shaw had
constructed taught them that computers
could be used for symbolic, as well as numer-
ic, processing; Simon learned this lesson from
exposure to the program. Through other
activities going on at RAND (for example,
Merrill Flood was building mechanical turtles,
little robots that rolled about and looked for
power outlets to hook up to when their bat-
teries ran low) and their general curiosity
about the computers that were just beginning
to appear (Newell and his partners were
aware of early efforts on computer chess by
Claude Shannon and others, and Simon had
written an appendix to a technical report that
he generated at RAND in 1952-1953 on a
program to play chess by heuristic search),
the triad was becoming aware of the possibili-
ty of using computers as general symbol pro-
cessors. In the summer of 1954 while they
drove to observe some air exercises, Newell
and Simon had a long discussion about using
computers to simulate human problem solv-
ing or the decision making of the airmen in
the lab. However, Newell continued to work
on organizational science and saw that as his
area of research for the foreseeable future.

The Origins of Al

On a Friday afternoon in mid-November
1954, Newell had what he described as a con-
version experience while he attended a talk by
Oliver Selfridge. This talk converted a general
interest in the possibilities of computer simu-
lations of symbolic processes into an urgent
desire to devote all his energies to this task.
What he had been exposed to as an interest-
ing possibility was now revealed to him as a
present reality. If he was to participate in this
exciting adventure, he must begin at once.
Selfridge’s talk was on the pattern-recognition
system that he was developing with G. P.

Dinneen on the Whirlwind MTC computer at
the Massachusetts Institute of Technology’s
(MIT) Lincoln Laboratories. During this talk,

it was instantly clear to Newell that
intelligent adaptive systems could be
built that were far more complex than
anything yet done and that they would
be programmed on digital computers.
Imprinting had occurred, and Newell has
been working ever since on discovering
and constructing the mechanisms that
constitute mind. (American Psychologi-
cal Association 1986, p. 348)

His immediate response was to attempt to
program a computer to learn to play chess
because of the perceived difficulty of chess as
a form of thought. Immediately attempting
to program a computer is central to his
methodology: The way to learn about sys-
tems is to try to build one. He did not take an
optimization approach but instead borrowed
heavily from ideas in psychology. To blend
research in Al and psychology was another
hallmark of Newell. Because his goal from the
beginning was to understand human think-
ing (the airmen in SRL or the chess master)
and because his key research tool was com-
puter simulation, Al and psychology had to
go hand in hand. His work on chess was
based squarely on notions of heuristic search,
that is, search using rules of thumb, which
not only were the basis for the way he saw
humans attempt to play chess but also were
necessary to chop down the enormous prob-
lem space to a manageable size. This led to
Newell’s first publication related to Al: He
reported on a design for his chess machine at
the 1955 Western Joint Computer Conference
(Newell 1955). A chess language was designed
in the summer of 1955, but the restricted
memory sizes at the time proved to be the
stumbling block to building a working
system, which clearly frustrated Newell. In
his first effort at Al, he believed in the cen-
trality of a working implementation, even if
he had not yet achieved it.

As every design engineer knows, the
only difference between a good design
and the actual machine is time and
effort.... The scheme presented here is
not far from a good design.... But this is
not sufficient. These mechanisms are so
complicated that it is impossible to pre-
dict whether they will work. The justifi-
cation of the present article is the intent
to see if in fact an organized collection
of rules of thumb can pull itself up by its
bootstraps and learn to play good chess.
(Newell 1955, p. 108)



Newell had been invited to go to the Center
for the Advanced Study of the Behavioral Sci-
ences at Stanford University, but Simon con-
vinced him to move to the Carnegie Institute
of Technology in the spring of 1955 to com-
plete a doctoral degree and to work with
Simon on simulations. Newell and Simon
maintained their connection with Shaw and
the computer by telephone, teletype, and
travel. All during this time, Newell had been
discussing his plans with Simon and Shaw,
and in early 1955, Shaw and Simon joined
with Newell to build a computer program that
would demonstrate complex information pro-
cessing. Although Newell had made some
progress with chess, the three of them looked
for something a bit simpler to start with. They
initially started trying to build a system for
working in geometry but abandoned it to
work on propositional logic, in part because
Simon owned a copy of Principia Mathematica.

LOGIC THEORIST

During 1955, Newell, Shaw, and Simon
attempted to create a computer program that
could replicate the proofs of Chapter 2 in
Whitehead and Russell’s (1935) Principia
Mathematica. On 15 December 1955, Simon
performed a hand simulation of the system
that demonstrated the feasibility of their
enterprise. This research led directly to L,
which on 9 August 1956 created the first
mechanical proof of a theorem (theorem
2.01) (Newell and Simon 1956b; Newell,
Shaw, and Simon 1957).

LT was one of the first working Al programs,
and it incorporated many of the ideas that,
over the years, have become the foundation
of Al First and foremost was heuristic search,
where a problem is solved by a sequence of
transformations of symbolic structures. The
symbolic structures, called states, are theo-
rems, while the transformations, called opera-
tors, create new theorems by combining,
modifying, or decomposing existing theo-
rems. At each state, many different operators
could be applied, and general rules of thumb,
called heuristics, are used in selecting appro-
priate operators.

LT was also the first program that tried to
solve problems the way people solved prob-
lems. Thus, it did not try to overcome the dif-
ficulty of discovering proofs through either
brute-force search or what today is called the-
orem proving. Newell, Shaw, and Simon were
extremely sensitive to the fact that working
with logic did not mean that the problem
solver had to be deductive, even if the final
result was a proof.

The reader should not be misled by
words “proofs” and “logic.” Discovering
proofs is not a deductive process. More-
over, the fact that the task is one in sym-
bolic logic does not make the problem
solving process any more “logical” than
if some other task—e.g., writing this
book—were involved. (Newell and
Simon 1972, p. 105)

INFORMATION-PROCESSING LANGUAGE

While Newell, Shaw, and Simon were
attempting to build LT and a chess-playing
program, they were faced with the fact that
no computer languages supported the sym-
bolic processing that was ubiquitous in their
programs. At the time, computers were used
to process numbers, not symbols, and most, if
not all, programming was done in machine
code or assemblers. In what was to be an
often repeated task, Newell, Shaw, and Simon
were faced with building their own tools.
Thus, in early 1956, as part of their work on
L1, they developed the first implemented list-
processing language: INFORMATION-PROCESSING
LANGUAGE (1rL) (Newell and Shaw 1957). 1L
was a follow-up to their LOGIC LANGUAGE,
which was never programmed for a computer
but was used for hand simulations (Newell
and Simon 1956a). LT was written in 1pL-II,
running on the JoHNNIAC computer developed
at RAND.

Until 1964, irLs went through continued
development, with a total of six distinct ver-
sions being developed.

The best one of the bunch was IpL-I1I...,
which had no syntactic structure at all. It
was beautiful. But [it] was so space inten-
sive that you simply couldn’t run it on
the machines [which had only 4000
words]. We had to abandon it. What it
did was execute every symbol. L* was like
it. Each symbol would go back and
extract from the program itself the
operands in successive places so that you
could go do anything you wanted in the
syntax because there wasn’t any syntax.
(A. Newell, September 1991, conversa-
tion with John Laird, Univ. of Michigan
Al Lab)

Along the way, IrLs introduced many of the
ideas that initially became fundamental to list
processing and later to computer science in
general, including lists, associations, schemas
(frames), dynamic memory allocation, data
types, recursion, associative retrieval, func-
tions as arguments, and generators (streams).
The 1pL-v manual (Newell 1961; Newell et. al.
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Figure 3. Problem-Behavior Graph during a Complex Situation in

Cryptarithmetic (Newell 1990)

Copyright, 1990, President and Fellows of Harvard College. Reprinted with permission.
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1964) advocated a design philosophy for pro-
gramming that years later would be reinvent-
ed independently as structured programming,
with such concepts as incorporating top-
down design and short subroutines, and
avoiding GOTOs (Simon and Newell 1986).
ipL suffered from superficial weaknesses in its
syntax (derived from the JOHNNIAC assembler)
and its requirement that the user explicitly
manage the available space. Lisp, developed
by John McCarthy at MIT in 1958, included a
background garbage collector that reduced
the programmer’s need to track unneeded
data structures and has since become the
standard language for list processing in Al
(although 1rL-v was used extensively on many
early Al systems and is still available—even
on a personal computer).

Ph.D.

During the original development of LT and
irL, Newell was still working for RAND,
although he spent all his time in Pittsburgh.
In 1957, Newell generated his thesis by sta-
pling together some of the original papers on
chess and Lr and received his Ph.D. from the
Graduate School of Industrial Administration
at the Carnegie Institute of Technology
(Newell 1957). His thesis identified ideas that

would appear 25 years later in soAr: dynamic
subgoal creation, multiple evaluation meth-
ods for controlling search, resource-limited
reasoning, learning based on applying exist-
ing knowledge, and the close integration of
learning and problem solving. In 1961,
although tempted to return to RAND and
California, Newell decided to stay in Pitts-
burgh and accepted a position as institute
professor at Carnegie Tech. Newell claimed
that one of the smartest things he ever did
was to never be an assistant professor.

Chess

Toward the end of the work on LT, Newell,
Shaw, and Simon returned to chess. Between
1957 and 1958, a chess-playing program,
called Nss (named for its authors), was written
in 1rL-1v (Newell, Shaw, and Simon 1958).
Many other chess programs were being devel-
oped at the time, and although Nss never did
remarkably well, it had many of the innova-
tions that were being developed concurrently
in other systems, such as alpha-beta pruning
and intermediate goals. The Nss program was
distinguished from the others by aiming at
the simulation of human players (de Groot
1946). It was a descendant of earlier programs
by Simon (from 1953) and Newell (from
1955), and it was independent of the others
being developed, which were pure Al. The Nss
team was interested in studying the mind,
not in building Al systems to show computer
smarts.

As was customary with all the tasks that
Newell attacked, he did a detailed analysis of
the underlying problem space of chess. One
of his observations was that there are
between 4000 and 5000 different legal moves
that can arise in a game of chess. In 1958,
this number was large enough so that it was
not feasible to have all the moves precomput-
ed. However, 20 years later, a chance discus-
sion of this fact led to an exploration into
creating a chess-move generator in which all
the 4000+ moves were precomputed and
stored in hardware. At each step in the
search, the analysis required to generate the
legal moves could be done in parallel with
tests of whether each of the 4000+ moves
independently tested was appropriate to the
current situation. This investigation led to
the very large-scale integrated move genera-
tor of the HI-TECH chess machine.

GENERAL PROBLEM SOLVER

Newell, Shaw, and Simon’s work on LT, chess,
and 1rL gave them experience with the funda-
mentals of symbolic processing and the



requirements for building simple single-task
Al systems. In LT, they had a system that
demonstrated intelligent behavior but in a
limited domain. All its methods and knowl-
edge were specific to the task of propositional
logic. Their inclination was to not build more
and more task-specific systems (although
many of their students during this time did
landmark work in applying heuristic search to
a variety of domains [Feigenbaum and Feld-
man 1963)).

Instead, they were interested in the next
major step, which for them was the general-
ization of these basic techniques so that a
single system could model human behavior
across many different domains.

[Gps] was an attempt to create a general
intelligent system and also create a
theory of human problem solving. It was
the first program to have pretensions to
generality, because it separated out the
program structure for problem solving
from the program structure to describe a
particular task. (Newell 1992, p. 35)

After comparing LT’s behavior to thinking-
aloud protocols of human subjects, it was
clear that LT’s structure was insufficient. The
protocols of humans working on the logic
task suggested a more goal-directed strategy,
where operators were selected on the basis of
how well they could help achieve the goal
given the current state: means-ends analysis.
Was it possible to build a system that could
use a few general methods on many different
tasks in ways similar to humans?

To answer this question, Newell, Shaw, and
Simon extended the methodology that they
had been using for LT and nss. They did not
try to create an optimal intelligent system
from scratch that could solve only a single
problem but instead tried to use what they
knew about human behavior to aid in their
development of a more general intelligent
system. Pursuant to this approach, they resur-
rected protocol analysis as a technique for
exploring human behavior. Protocol analysis
had fallen into disfavor during the rise of
behaviorism because of its supposed reliance
on introspection.

A raw protocol is of limited value until it is
analyzed and coded. Although this work
might seem more appropriate for a graduate
student (and it is an immense amount of
work), Newell and Simon analyzed the proto-
cols themselves. Newell claimed that only by
getting down into the data is it possible to get
the important insights into behavior. This
hands-on approach was characteristic of his
research style.

In studying these protocols, Newell and
Simon developed problem-behavior graphs as
a notation for tracking the performance of
the subjects. This notation allowed them to
code the decisions that were being made by
their subjects and, ultimately, to compare the
performance of computer systems with
humans. Figure 3 shows a small segment of
problem solving for the cryptarithmetic prob-
lem DONALD + GERALD = ROBERT. The task is to
replace each of the letters with numbers, so
that the same letter is always assigned the
same number; no two letters have the same
number; and when the letters are replaced by
numbers, the numbers for DONALD and GERALD
add up to the number for ROBERT. During this
segment, the subject was already given that D
= 5 and concluded that T = 0. The subject
then considers R = 7 and how that implies
that L = 3 and G = 1 or 2 depending on the
carry into the final column, and so on.

By going over and over these protocols, it
was obvious that the subjects were often
searching the space of legal operators that
they could use and that means-ends analysis,
where actions are selected based on their abil-
ity to achieve a goal, was a strong component
of the control.

The research on Gps started in 1957. The
first flowchart for the organization of Grs was
produced in October 1957, including not
only means-ends analysis but also hierarchi-
cal planning. The first two publications on
Gps appeared in 1960 (Newell, Shaw, and
Simon 1960a, 1960b), with three more fol-
lowing in 1961 (Newell and Simon 1961a,
1961b, and 1961c). gps was first presented
publicly in talks during 1958, which were, in
turn published in 1962 as the first detailed
computer model of human problem-solving
behavior (Newell, Shaw, and Simon 1962).

As mentioned previously, the general
method that Gps used was means-ends analy-
sis, a commonsense approach where opera-
tors (the means) are selected to reduce the
differences between the current situation (the
state) and the goal (the ends) of the problem.
As a simple example, consider that someone
is at the School of Computer Science at
Carnegie Mellon University (CMU-SCS) in
Pittsburgh, Pennsylvania, and wants to get to
the offices of the American Association for
Artificial Intelligence (AAAI) in Menlo Park,
California. Here, the current state is being at
CMU-SCS, and the goal is to be at AAAIL

The system’s ability to solve a problem is
determined in large part by the problem
spaces and operators that the system has
available. As mentioned earlier, the operators
are the ways the system can move through
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the problem, and the problem space consists
of the operators and the set of possible states
that can be visited. If an operator takes us
immediately from our current state to the
goal, the problem is trivial. If many operators
can apply to each situation, and the problem
requires a long sequence to achieve the goal,
the problem is much more difficult. In our
example, the problem space contains all the
possible locations of a person in the world,
and the operators are actions, such as walking;
driving a car; taking a bus, cab, train, ship, or
airplane. The complete, expanded problem
space does not exist explicitly in the world
(the person is only at one location and, thus,
one state at a time), nor does it have to exist
explicitly within the person as a data struc-
ture. Instead, the states of the problem space
are generated dynamically as operators are
applied, so that during problem solving, only
a small subset of the states are ever generated.

Many other activities might be involved in
solving our example problem, such as buying
tickets and getting money, that expand the
set of operators. The problem space is similar-
ly expanded to include not only the location
of the person but also whether he/she has a
ticket, how much money he/she has, and so
on. Other problems have different problem
spaces and operators. In cryptarithmetic, the
states include partial assignments of numbers
to letters in a puzzle, such as DONALD +
GERALD = RoBERT, and the operators either
assign numbers to letters or test that the
assigned numbers are consistent with the
constraints in the puzzle (such as D + D = T).
Even a single problem can be attacked using
different problem spaces. Cryptarithmetic
becomes an easier problem if the problem
space is expanded to include the carries for
the columns, sets of potential numbers for
given letters, and the parity of the number
for a given letter (even or odd). The operator
set is similarly expanded to include operators
for summing columns, computing carries,
proposing and pruning sets of numbers for a
letter, and so on.

By using the common framework of prob-
lem spaces to represent any problem, the
activity of solving a problem can be reduced
to the problem of selecting and applying
appropriate operators. In Grs, the operators are
selected in a two-step process. The first step is
to compute the differences between the cur-
rent state and the goal, and the second step is
to select the operator that best reduces the
most important difference. In our example,
the initial difference would be that the person
is more than 2000 miles from his/her destina-
tion. With this difference, an operator is

selected that can best reduce this difference.
In our example, the operator would most
likely be to take a commercial airline flight.

Once an operator is selected, Gps attempts
to apply it to modify the current state. If a
person is in a room, and an operator is select-
ed to walk to the door, the operator applies
immediately, and the current state then has
the person at the door. However, in many
cases, the operator selected cannot apply
immediately. Remember that the operator is
selected to reduce the difference to the goal,
and at this point, the ability to apply the
operator to the current state is ignored. Some-
time, the selected operator cannot apply, as
in our example, where a person at CMU-SCS
cannot immediately take an airplane because
he/she is not at the airport, and he/she does
not have a ticket.

In such situations, Gps considers the inabili-
ty to apply the current operator as a subprob-
lem and recursively attempts to solve it. In
our example, the system would now attempt
to get to the airport and buy a ticket using
the same method as the original problem.
This approach was used by Gps to solve a vari-
ety of different problems (Ernst and Newell
1969) and has become a staple for Al plan-
ning systems, with strips being the classic
example (Fikes and Nilsson 1971).

However, Newell and Simon knew that
simple means-ends analysis, as modeled by
the initial Gps, wasn’t the whole story. In logic
problems, the subjects would slip into short
bursts of abstract problem solving, where
they ignored many of the details of an axiom
as they tested its usefulness. Once a short par-
tial plan was created, the subjects would
immediately return to fill in the details. In
the travel example, a person might create a
complete plan for driving and flying to
Menlo Park without ever worrying about the
details of walking and buying tickets. The
original Gps could not create this complete
initial plan and then later refine it.

Observations from the human protocols
led to an extension to Gps in which a problem
would first be solved completely at an
abstract level, ignoring details that would be
easy to fill in later. The solution at the
abstract level would then serve as a guide for
solving the problem with all the details. This
system, called PLANNING GPs (Newell and
Simon 1972), was the first planning system to
use multiple levels of abstraction, predating a
similar approach used in ABsTrIPS (Sacerdoti
1974). However, none of these systems ever
matched the flexibility seen in the protocols
where the humans switched back and forth
between abstraction and ground-level opera-



tors during the problem solving.

Another shortcoming of pure means-ends
analysis was noticed in cryptarithmetic,
where many of the control decisions were not
based solely on the difference between the
current situation and the goal but could best
be characterized as independent pieces of
knowledge that were conditional on the cur-
rent situation. Thus, instead of encoding
knowledge as a fixed sequence of behavior, as
in standard programming languages, or even
as a fixed method, such as means-ends analy-
sis in Gps, knowledge should be encoded as
small individual units that are not explicitly
called but that determine for themselves
when they should apply.

Newell and Simon also observed that the
subroutines of Grs, ignorant of higher-level
context, would grab hold and dig into a
deeper and deeper hole (like depth-first
search) (Newell 1962). From the combination
of observations of human behavior and frus-
trations with the control structure of Grs
came the identification of if-then rules as a
notation for describing the behavior. Rules in
this form were originally called productions
(with a computational system based on them
being called a production system) by E. L. Post
(1943) when they were used for work in sym-
bolic logic.

To wit, you build problem behavior
graphs. [Then] you say, “Let’s build simu-
lation programs.” So you sort of say,
“What are we going to have? We are
going to have an operator at each node
of this problem behavior graph.” That is
what the problem behavior graph shows.
[Then] you say, “Let’s write at each node
the collection of conditions on the
state.” Now you are sitting just about
where you say, “Well gee, if I just wrote
what are the conditions and here’s the
operations, and then I'll just gather them
altogether, and then I have a production
system.” That’s actually how it hap-
pened. From my point of view, it was
derived entirely from the data analysis
via problem behavior graphs as the right
programming schema to make it clear
whether in fact the conditions were the
same or different at different nodes and
so forth and then you can build a pro-
gramming language. As soon as that hap-
pens, sitting in this [computer science]
environment,...you say, of course these
are in fact like Floyd productions, like
Post productions. (A. Newell, September
1991, conversation with John Laird,
Univ. of Michigan Al Lab)

Newell and Simon had been familiar with

productions for some time, given Selfridge’s
(1959) related work on PANDEMONIUM for per-
ceptual processing and Floyd’s (1961) use of
production systems in algorithm design. Sur-
prisingly, even the metaphor of blackboards,
usually considered a derivative of production
systems (leading to the creation of HEARSAY II
[Erman et al. 1980] and the use of black-
boards as a control structure within AI [Nii
1986]), was being used by Newell.

Metaphorically we can think of a set of
workers, all looking at the same black-
board: each is able to read everything
that is on it, and to judge when he has
something worthwhile to add to it. This
is just that of Selfridge’s PANDEMONIUM: a
set of demons, each independently look-
ing at the total situation and shrieking in
proportion to what they see that fits
their natures. It is a much easier mode of
organization to use when the processes
are only perceptual—that is, look at, but
do not change, the environment—than
with active problem-solving where the
workers are busy writing and erasing as
they are reading. (Newell 1962, p. 13)

Grs had other weaknesses, including that
the initial formulation of the problem had to
be provided by a programmer. A key insight
in solving any problem is knowing which
operators (such as movement, ticket buying)
and which aspects of the situation (such as
location, possession of tickets, amount of
money) to include and which to ignore. The
issue of determining the appropriate problem
space was never addressed directly by Gps,
although Simon later addressed it in the
UNDERSTAND project (Hayes and Simon 1974,
1976), as would Newell within soar (Newell
1990; Newell et al. 1991). Many other aspects
of Grs would later be generalized in SOAR
(Newell 1992), a problem-solving architecture
based on problem spaces and production sys-
tems (Laird, Rosenbloom, and Newell 1986¢).

Human Problem Solving

The book Human Problem Solving (Newell and
Simon 1972) was the culmination of Newell
and Simon’s investigations into complex
problem solving. It brought together their
studies of protocol analysis, Gps, and produc-
tion systems, presenting a computational
theory of human problem solving based on
heuristic search in problem spaces. It reiterat-
ed many earlier themes, such as the impor-
tance of analyzing the exact nature of a task
and suggesting that human behavior is deter-
mined in large part by the constraints of the
task (analogous to Simon’s [1969] famous ant
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—-PS.ONE PROGRAM ~
0100 PS.ONE: (PDI PD2 PD3 PD4)

0200 ;

0300 PDI: (AA AND BB —> (OLD **))
0400 PD2: (CC AND BB —> (SAY HI))
0500 PD3: (DD AND (EE) —> BB)
0600 PD4: (AA —> CC DD)

0700 ;

0800 STMI: (AA QQ (EE FF) RR SS)

0090 ;

TRACE OF PS.ONE—-

0100 0. STM: (AA QQ (EE FF) RR SS)

0200 PD4 TRUE

0300 0. ACTION- CC

0400 1. ACTION- DD

0500 2. STM: (DD CC AA QQ (EE FF))
0600 PD3 TRUE

0700 2. ACTION- BB

0800 3. STM: (BB DD (EE FF) CC AA)
0900 PDI TRUE

1000 3. ACTION- (OLD **)

1100 . STM: ((OLD AA) BB DD (EE FF) CC)
1200 PD2 TRUE

1300 4. ACTION- (SAY HI)

1400

'ISOO Fedkkdkkdkkdkkk Hl

1600

1700 5. STM: (CC BB (OLD AA) DD (EE FF))
1800 PD2 TRUE

1900 5. ACTION- (SAY HI)

2000

2‘| 00 Fedkkdkkdkkdkkk Hl

2200

2300 6. STM: (CC BB (OLD AA) DD (EE FF))
2400 PD2 TRUE

2500

Figure 4. Example Production System (PS.ONE)

Run Using psG (Newell 1973a).

Copyright © 1973, Academic Press. Reprinted with permission.
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on the beach) together with the human’s
goals and knowledge of the structure of the
task. Most of Human Problem Solving was
based on work that was done during the late
fifties and early sixties. The book itself was
started in the late fifties. Needless to say, the
writing of the book took much longer than
either Newell or Simon expected, and when
the work on production systems started to
gain momentum in the late sixties, they had
to resist the temptation to rewrite Human
Problem Solving using production systems as
the underlying representational formalism.

Simon and Newell remained fast friends
until Newell’s death, but they never under-
took another joint research project as signifi-
cant as Human Problem Solving. There was no
rift between them, but the lack of close col-
laboration was probably a natural drift as
each built a research strategy to reflect differ-
ing beliefs about the source of the biggest
payoff for studying intelligence. Simon
(1991) successfully pursues

programs such as Gps, EPAM, the sequence
extrapolator, and BACON, which simulate
human behavior over a significant range
of tasks but do not pretend to model the
whole mind and its control structure.
(p. 328)

Newell’s (1992) emphasis was on the com-
putational architecture and attempts to

model the control structure underlying intel-
ligence.

An architecture is a fixed set of mecha-
nisms that enable the acquisition and
use of content in a memory to guide
behavior in pursuit of goals. In effect,
this is the hardware-software distinction:
the architecture is the hardware that is
supporting the software and the software
is the collection of data structures that
encode the content. This is the essence
of the computational theory of mind.
(Newell 1992, p. 27)

One of Newell’s (1973b) classic papers,
“You Can’t Play 20 Questions with Nature
and Win,” written for the 1973 CMU sympo-
sium on visual information processing, goes
to the heart of his philosophy on research in
pursuit of the mind. Newell put forth the
hypothesis that cognitive psychology should
reconsider its attempt to carry out experi-
ment after experiment to peel back the struc-
ture of human cognition. Newell proposed
that sufficient data already exist to pin down
much of the structure of the mind. Thus, the-
ories should be built that cover a wide range
of phenomena. This line of argument led to
his call for unified theories of cognition, and
he was so bold as to claim that there exist
enough psychological data, when taken
together, to serve as sufficient constraint on
unified theories. Such a statement was not to
deny his love for data and, most likely, was a
bit tongue in cheek.

Production Systems

Newell and Simon’s work on production sys-
tems, which was the first use of production
systems for Al and cognitive modeling, began
in the mid- to late sixties. Although Newell
was working intensely on production systems
during the sixties, he did not publish an arti-
cle on them until 1972 (Newell 1972; Newell
and Simon 1972). However, he gave a series
of lectures at Stanford in 1967 on production
systems as control architectures that proved
to be influential. Bruce Buchanan and Ed
Feigenbaum (a former student of Simon’s and
a collaborator with Newell on 1rL-v) attended
his talk and were left with the insight to use
productions as a representation for the
knowledge of their DENDRAL program (Lindsay
et al. 1980), the progenitor of all expert sys-
tems.

Although the idea of production systems is
relatively straightforward—long-term
memory consists of a set of productions that
are continually matched against the system'’s
current situation represented in its working



memory—the space of possible production-
system architectures is huge, with many dif-
ferent alternative schemes for representing
productions and working memory, matching
productions to working memory, and select-
ing between competing productions. In the
early seventies, a series of experimental lan-
guages were developed to study different pos-
sible design decisions for production-system
languages (Newell 1973a). The final version,
called rsG (production-system version G) is
the direct precursor to the official production-
system (ops) languages (Forgy and McDermott
1977).

Figure 4 shows a simple production system
and its behavioral trace, as implemented in
rsG. There are four productions (PD1-4), and
working memory initially contains (AA QQ
(EE FF) RR SS). PSG used production order to
determine which production would fire if
more than one matched working memory.

The early development of production sys-
tems during the late sixties and early seven-
ties was in parallel with continued work in
protocol analysis. Protocol analysis was
extremely time consuming, and as with any
computer scientist, once faced with a difficult
manual process, there is an urge to automate
it. Thus, Newell attempted to build an auto-
matic protocol analysis tool with Don Water-
man (Waterman and Newell 1971). The result
was the creation of the rass systems. The goal
of prass-1 was to go from natural language to a
problem-behavior graph, and it achieved
some level of competence for cryptarithmetic.
The follow-up program, rass-ii, was to be an
adaptive production system that was aided by
a human in doing the analysis. However, a
useful working program never emerged.

The work in psG opened the question of
whether a production system could become a
complete programming system. Mike Rychen-
er (1976) took up this challenge as his thesis
with Newell and developed the psNLST produc-
tion system in which he reimplemented
many classic Al systems. Although this work
was successful, it did not address one of the
fundamental challenges of production sys-
tems: Can very large production systems,
with tens of thousands of productions, be
built and operated successfully? This
challenge was in terms of both underlying
technology and the knowledge encoded in
the production systems. For the underlying
technology, there were questions about
whether a production-system architecture
could support matching large numbers of
productions efficiently. For the knowledge
encoded in the system, there were questions
about how this amount of knowledge could

be acquired and then, once acquired, how a
human could possibly understand thousands
of productions. These interests led to the cre-
ation of the Large Production-System Project
in 1975. By 1976, the concern for knowledge
acquisition and maintenance led to the
hypothesis that the only way to build large
production systems was to eschew program-
ming and writing of individual productions
and base all knowledge acquisition on
instruction. Thus, the project quickly became
the Instructable Production System (IPS) Pro-
ject (Rychener and Newell 1977; Rychener
1980, 1983), which included Charles Forgy,
John McDermott, Mike Rychener, Kamesh
Ramakrishna, Pat Langley, John Laird, and
Paul Rosenbloom.

Although this project produced many dif-
ferent systems, none of them could take gen-
eral instructions, and none grew to a
reasonable size. However, even though the
project was described by Newell as “a first-
class failure,” it spawned a wealth of research:

First, the ops family of languages (1-7) and
the ReTE match algorithm were built to sup-
port the IPS project (Forgy 1981). orsS (Forgy
1981; Brownston et al. 1984) became one of
the most widely used production systems and
is the forerunner of ors83 (Forgy 1984),
KNOWLEDGE-CRAFT, CLIPS, and SOAR.

Second, r1/XxcoN was developed by John
McDermott (1982) after working on IPS. Sam
Fuller of Digital Equipment Corporation, a
former faculty member at CMU, suggested
using an Al system to help with the configu-
ration of computer systems. A secondary
motivation was some friendly taunting by Ed
Feigenbaum and his colleagues in the Heuris-
tic Programming Project at Stanford Universi-
ty because the work on production systems at
CMU had never been tested on real tasks. Rr1,
implemented originally in ors4 and then
rewritten in orsS, was one of the first Al sys-
tems used commercially on a day-to-day
basis. Years later, a reimplementation of r1 in
SOAR, called r1-soAR (Rosenbloom et al.
1985a), led to the creation of a new language
for building expert systems at Digital, called
RIME (Soloway, Bachant, and Jensen 1987).

Third, work on using problem spaces and
weak methods as an organizing principle for
production systems grew out of frustration
with the lack of a higher-order organization
for productions, which, in turn, led to the
creation of sOAR in 1982.

MERLIN

Production systems were not the only repre-
sentation of knowledge that Newell investi-
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Herbert Simon Remembers Allen Newell

closest partner in the venture, who

remains a close associate and
friend to the present day. Although
this volume is speckled with vignettes
of various of my associates, I can pro-
vide only a scanty one of Al. Our
paths have meshed so intricately over
such a long time that telling about
our collaboration and friendship
would require writing another book. I
will, however, say a bit about the
young Al Newell, as I first encoun-
tered him.

When I first met Al at RAND in
1952, he was twenty-five years old,
and fully qualified for tenure at any
university—full of imagination and
technique, which is what it takes to
make a scientist. I suspect he was
ready for tenure soon after birth,
Athena springing fully armed from
the brow of Zeus. His energy was
prodigious, he was completely dedi-
cated to his science, and he had an
unerring instinct for important (and
difficult) problems. If these remarks
suggest that he was not only bright
but brash, they are not misleading.

His earliest and probably most
important education as a cognitive
psychologist came when, an under-
graduate physics major at Stanford, he
took several courses from the distin-
guished mathematician George Polya,
who recorded many of his ideas about
problem solving in a widely used
book called How to Solve It (1945).
Polya introduced Al to the word
heuristic and to the idea behind that
word. A year as a graduate student in
the rarefied atmosphere of the Mathe-
matics Department at Princeton con-
vinced Al that his interests lay in
applied, rather than pure, mathemat-
ics, and that for the immediate future
he wanted to be involved in hands-on
research rather than graduate studies.
He then accepted a position at RAND,
where I found him.

If imagination and technique make
a scientist, we must also add dollars. I
learned many things in the postdoc-
toral training I took with Al, few

Imust say something about my

more important than how to position
the decimal point in a research pro-
posal. My first lesson came from the
Systems Research Lab, a grandiose
project if there ever was one outside
physics and space science. Al and his
three colleagues simply took it for
granted that it was reasonable for the
air force to build an entire simulated
air defense station and to staff it for
years with an air force unit, enlisted
men and officers. It was, indeed, rea-
sonable, but I am not sure that would
have occurred to me before I saw it
happen.

Thinking big has characterized Al’s
whole research career, not thinking
big for bigness’ sake, but thinking as
big as the task invites. Al learned
about research funding through his
early association with physicists, and
it is a lesson that we behavioral scien-
tists still need to study with him. (He
has been teaching us this lesson at
Carnegie Mellon University, with the
funding of research in cognitive sci-
ence and artificial intelligence and,
more recently, with the computer
networking of our campus.)

From our earliest collaboration, Al
has kept atrocious working hours. By
this I don’t mean that he is more of a
workaholic than I am—perhaps a
dead heat—but that he works at the
wrong time of day. From the start, he
preferred sessions that began at eight
in the evening and stretched almost
to dawn. I would have done most of
my day’s work by ten that morning,
and by ten in the evening was ready
to sleep, and not always able not to.

Perhaps his greatest pleasure (at
least as judged by his behavior) is an
“emergency” that requires him to
stay up all night or two consecutive
nights to meet a deadline. I recall his
euphoria on our visit to March Air
Force Base in 1954, when the air exer-
cise extended over a whole weekend,
twentyfour hours per day.

Some of these memories are
frivolous, but high spirits, good
humor, and hard work have character-
ized my relations with Al from the

beginning. We have not been closely
associated in joint research projects
since the mid1960s, certainly since
our book Human Problem Solving
appeared in 1972. But, however much
our working paths have diverged, we
still find, whenever we are together,
that remarkable community of beliefs,
attitudes, and values that has marked
our association from the first ten min-
utes of meeting in February 1952.

In describing our style of work
during the years, especially from 1955
to the early 1960s, when we met
almost daily, I will paraphrase an
interview I gave Pamela McCorduck
about 1974, when she was writing
Machines Who Think. It worked
mostly by conversations together. Al
probably talked more than [; that is
certainly the case now, and I think it
has always been so. But we ran those
conversations with the explicit rule
that one could talk nonsensically and
vaguely, but without criticism unless
you intended to talk accurately and
sensibly. We could try out ideas that
were half-baked or quarter-baked or
not baked at all, and just talk and
listen and try them again.

Aside from talking shop, Al and I
have frequently shared our personal
concerns and problems. And after Lee
Bach left Pittsburgh, Dorothea and I
designated the Newells in our wills as
guardians of our children, an indica-
tion of the closeness and trust we felt
toward them. But mainly, we talk
about our research, except sometimes
when dining or socializing with Noel,
Al’s wife, and Dorothea.

Whatever hobbies and recreations
we have outside our work, we have
pursued separately. My own guess is
that, when together, we would not
resist taking up again those issues
that are central to the lives of both of
us—our science. The content of our
talk would vary little, whether climb-
ing a mountain together or talking in
Al’s study or my living room.

From Models of My Life , pages 199-201. (New
York: Basic Books., ©1991. Reprinted with per-
mission)
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gated in the late sixties and early seventies.
Together with Jim Moore and Richard Young,
Newell worked on a system called MERLIN that
had analogy as its core method (Moore and
Newell 1974). MERLIN originally started as an
Al tutoring system that was supposed to teach
CMU graduate students about the various
weak methods in Al. Newell had been pursu-
ing research in general methods for problem
solving based on the experience from Gps and
protocol analysis, which, in turn, led to a
study of the weak methods and the paper on
ill-structured methods (Newell 1969). Thus,
MERLIN was to be a system that knew all about
the methods and other topics in AL

MERLIN was originally conceived (with the
name csa, standing for almost nothing)
in 1967 out of an interest in building an
assistance-program for a graduate course
in artificial intelligence. The task was to
make it easy to construct and play with
simple, laboratory-sized instances of arti-
ficial intelligence programs. Because of
our direct interest in artificial intelli-
gence, the effort transmuted into one of
building a program that would under-
stand artificial intelligence—that would
be able to explain and run programs, ask
and answer questions about them, and
so on, at some reasonable level. The
intent was to tackle a real domain of
knowledge as the area for constructing a
system that understood. (Moore and
Newell 1974, p. 201)

Like all his previous architectures, it was pro-
cess oriented but this time with assimilation
through analogy at its core. The basic process-
ing was “the construction of maps from the
structure that represents what MERLIN knows
to be the structure that MERLIN seeks to under-
stand” (Moore and Newell 1974). From
today’s perspective, it looked much like a
frame (schema) system, and from this per-
spective MERLIN was one of the first. The basic
representational unit, the beta structure, rep-
resented a concept X in terms of some other
concept Y with further specification.

Figure 5 shows a simple analogy problem,
where the subject is to pick out which of
X1-XS5 fits in with C analogously to the way
B is related to A. In this case, X4 is correct.
These objects are represented in beta struc-
tures by a list of features, where features can
be other objects as well. The problem is then
represented by X: [C B/A #], meaning that X
can be seen analogous to C in the same way
that B is analogous to A.

MERLIN contained many new ideas before
they became popular in mainstream Al, such
as attached procedures, general mapping,
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B-structure representation:

A:  [TRIANGLE LARGE [TRIANGLE SMALL INSIDE]]
B:  [TRIANGLE LARGE]

C:  [CIRCLE LARGE [SQUARE SMALL INSIDE]]

X1: [CiRCLE LARGE [CIRCLE SMALL INSIDE]]

X2: [SQUARE SMALL]

X3: [CIRCLE LARGE [TRIANGLE SMALL INSIDE]]
X4: [CIRCLE LARGE]

X5:  [TRIANGLE LARGE]

TRIANGLE:  [PLANE-FIGURE TRIANGLE-NESS]
CIRCLE: [PLANE-FIGURE CIRCLE-NESS]
SQUARE [PLANE-FIGURE SQUARE-NESS]
X:  [CB/A#]

~  [CIA[[TRIANGLE SMALL INSIDE] NULLT]#]
~  [C[[TRIANGLE SMALL INSIDE] NULL]]

(From the posit: TRIANGLE-NESS/SQUARE-NESS, we conclude

that [TRIANGLE SMALL INSIDE]/[SQUARE SMALL INSIDE].
- C [[SQUARE SMALL INSIDE]/NULL]]
— [CIRCLE LARGE]

X/Xi - (fail) fori=1,2,3 & 5.
But:
X/X4 —> [CIRCLE LARGE] (success!)

Figure 5. Geometric Analogy Problem Represented in MERLIN

(Moore and Newell 1974).

Copyright © 1974, Lawrence Erlbaum and Associates. Reprinted with permission.

indefinite context dependence, and automat-
ic compilation. MERLIN would automatically
compile its solutions to multistage mapping
problems into a single step, a precursor to
chunking in SOAR. MERLIN was a reaction
against the brittleness of existing Al systems
that had sharp boundaries between the prob-
lems with which they were successful and
those with which they failed. Instead of blam-
ing the discrete character of digital computa-
tion for the brittleness, Newell and Moore
attempted to avoid brittleness by allowing
elastic mappings between representations,
working with the character of the processing
and not the declarative representation.

Even with all its innovations, by the end of
the project, Newell regarded MERLIN as a fail-
ure. It was a practical failure because it never
worked well enough to be useful (possibly
because of its ambitious goals), and it was a
scientific failure because it had no impact on
the rest of the field. Part of the scientific fail-
ure can be attributed to Newell’s belief that it
was not appropriate to publish articles on
incomplete systems. Many of the ideas in
MERLIN could have been published in the late
sixties, but Newell held on, waiting until these
ideas could be embedded within a complete
running system that did it all; the only publi-
cation was many years after the initial work
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Figure 6. The MODEL HUMAN PROCESSOR Block Diagram

(Card, Moran, and Newell 1983)

Copyright © 1983, Lawrence Erlbaum and Associates. Reprinted with permission.
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was completed (Moore and Newell 1974).
Unfortunately, the team could never make it
all work the way it had been envisioned, and
the final paper that describes MERLIN requires
three readings (at least for us) to understand
“How Can MERLIN Understand?” Needless to
say, MERLIN slipped into obscurity.

The Psychology of
Human-Computer Interaction

As the work on human problem solving
matured, Newell looked for applications of
applied cognitive science (and an excuse to
return periodically to the West Coast).
Although never mentioned explicitly, his
continual use of computers must have sug-
gested human-computer interaction as a pos-
sible area. In early 1971, he discussed the
possibility of doing research in this area with
George Pake and Robert Taylor of the Xerox

Palo Alto Research Center (PARC). Xerox
PARC was formed in 1970 as a major research
center for exploring digital electronic tech-
nologies in the context of office information
systems. Newell thought it was the perfect
place for the type of research project he had
in mind. In 1973, Newell became a consul-
tant to Xerox PARC, and in 1974, two of his
students from CMU, Stu Card and Tom
Moran, joined Xerox PARC to form the
Applied Information-Processing Psychology
Project to apply psychological theory to
human-computer interaction. At the time,
the design of computer interfaces was an art,
without any scientific or engineering princi-
ples. Card, Moran, and Newell attempted to
pull together existing psychological data and
theory into a form that could be applied by
interface designers, with the product being
The Psychology of Human-Computer Interaction
(Card, Moran, and Newell 1983).

The domain of concern to us, and the
subject of this book, is how humans
interact with computers. A scientific psy-
chology should help us in arranging this
interface so it is easy, efficient, error-
free—even enjoyable. (Card, Moran, and
Newell 1983, p. 1)

For example, Fitts’ Law predicts the time it
takes for people to move their hands to touch
an object. The key parameters are the dis-
tance to the object and the object’s cross-sec-
tion. Fitts’ Law, combined with models of
human typing, can be used to determine
when it is most cost effective to use a mouse,
a light pen, or keyboard commands for cer-
tain computer tasks.

Card, Moran, and Newell went one step
beyond collecting and categorizing existing
theory and data. They developed an engi-
neering-level model of routine cognitive skill
called the MODEL HUMAN PROCESSOR. Figure 6
shows a block diagram of the MODEL HUMAN
PROCESSOR, with the perceptual, cognitive, and
motor processors as well as the memories and
stores that the processors access and store
information in. Within each processor is its
basic cycle time, and within the memories are
their sizes, durations, and medium of repre-
sentations.

Although the MODEL HUMAN PROCESSOR
brings together many existing theories and
data, it does not provide a methodology for
analyzing the details of new tasks. This
methodology was provided by Gowms, a lan-
guage for analyzing and describing such
behaviors. GoMs stood for goals, operators,
methods, and selection, the basic compo-
nents of the language used to describe a task.
GowMs allowed a designer to make estimates of



the time it would take a human to carry out a
routine task. The resulting model was not
expected to match human behavior exactly
but to capture the major components so that
the time estimate would be within 20 percent
of the actual time. The MODEL HUMAN PROCES-
SOR served as a preliminary venture for
Newell’s later attempt at casting SOAR as a uni-
fied theory of cognition.

The Symbol and
Knowledge Levels

The eighties began with Newell helping to
launch AAAI; he was its first president. His
presidential address in 1982 provided an
occasion to “propose a theory of the nature of
knowledge, namely, that there is another
computer system level immediately above the
symbol (or program) level” (Newell 1982, p.
87). By proposing the knowledge level, he was
claiming that an abstract level of analysis of a
computational system (human or artificial)
existed in which predictions of behavior can
be made by knowing just the system’s knowl-
edge and goals (where prediction includes
explaining behavior, controlling behavior, or
constructing something that behaves to speci-
fication).

Knowledge systems are just another level
within this same hierarchy [of computer
systems], another way to describe a
system.... The knowledge level abstracts
completely from the internal processing
and the internal representation. Thus, all
that is left is the content of the represen-
tations and the goals toward which that
content will be used. As a level, it has a
medium, namely, knowledge. It has a
law of behavior, namely, if the system
wants to attain goal G and knows that to
do act A will lead to attaining G, then it
will do A. This law is a simple form of
rationality—that an agent will operate in
its own best interests according to what
it knows. (Newell 1990, pp. 48-49)

The force of Newell’s proposal comes when
systems are described at the knowledge level
in terms of only knowledge and goals, and
their behavior can successfully be predicted.
Not all systems can be described this way
because they fail to fully exploit the knowl-
edge they have available to them (including
most current computer systems), but the
hypothesis is that intelligent systems can suc-
cessfully and usefully be described at the
knowledge level.

Just the year before his presidential address
to AAAI, at the founding of the Cognitive Sci-

ence Society, Newell declared that the

most fundamental contribution so far of
artificial intelligence and computer sci-
ence to the joint enterprise of cognitive
science has been the notion of a physical
symbol system, i.e., the concept of a
broad class of systems capable of having
and manipulating symbols, yet realizable
in the physical universe. (Newell 1980b,
p- 136)

This idea was a continuation of the Turing
Award lecture given by Newell and Simon
(1976) in which they discussed the impor-
tance of symbols and search in Al and com-
puter science in general. The importance of
symbol systems comes from the hypothesis
that they are sufficient for realizing the
knowledge level.

The entire field of artificial intelligence
is, in a sense, devoted to discovering the
symbol-level mechanisms that permit a
close approximation to the knowledge
level. (Newell 1990, p. 80)

Practice

In 1979, Newell agreed to contribute a piece
on human practice to the Sixteenth Annual
Carnegie Symposium on Cognition that was
being organized by John Anderson for the
spring of 1980. Because Paul Rosenbloom had
just returned from a year as a visiting gradu-
ate student in the Psychology Department at
the University of California at San Diego
(UCSD) and was at somewhat loose ends from
both the year of study and the termination of
the IPS Project, he was recruited to help out.
What struck Newell most about human
practice was the apparent uniformity of the
shape exhibited by the experimental practice
curves over a wide range of human perfor-
mance. Sighting a potential regularity that
could prove informative about the nature of
the mind—one powerful source of regularity
is the architecture—Newell and Rosenbloom
(1981) first set out to establish whether this
regularity was real or illusory and then, given
its reality—the curves turned out uniformly
to be power laws—to look for explanations of
both the shape and its ubiquity. They eventu-
ally settled on an architectural explanation
based on extending the already ubiquitous
notion of chunking (Miller 1956) to procedu-
ral learning (Newell and Rosenbloom 1981).
The initial abstract model of chunking was
made operational in a task-specific fashion in
the xars2 production-system language (Rosen-
bloom and Newell 1987)2 and then in a task-
independent, goal-based fashion in the xaps3
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language (Rosenbloom and Newell 1986). The
activation side of the xaps languages turned
out to be a dead end because it was found
necessary to eliminate it in going to the
domain-independent xArs3 model. In place of
the activation side were added notions of
goals and impasses (of a restricted form). The
theory of chunking was taken considerably
beyond the xaAps realization in its incorpora-
tion within soAr. One interesting side-effect
of this work was a theory of stimulus-
response compatibility that has since been
extended by Bonnie John (John, Rosen-
bloom, and Newell 1985).

SOAR

With the breakup of the IPS Project in the
late seventies, Newell made another attempt
to construct large production systems, but
this time, he focused on using problem
spaces as the organizing principle. This work
began in the late seventies with a theoretical
exploration (Newell 1980c). The work on
problem spaces then took a practical turn in
the fall of 1981 when Newell decided to
create a system for building problem spaces as
a tool for the introductory Al course at CMU.
This project was to be an excuse to learn Lisp,
but as the summer passed and it became clear
he would not have time to do it alone, he
recruited John Laird to help build the system.
This system was never put to serious use, and
in retrospect, Lisp was not an appropriate lan-
guage for representing the operator and
search-control knowledge required for prob-
lem spaces.

In parallel with this activity, Newell and
Laird were attempting to find a way to char-
acterize the weak methods in some unifying
framework. This effort was a continuation of
both MERLIN, which attempted to use frame-
like beta structures for representing methods,
and the IPS Project, which lacked a unifying
framework for representing methods. The
goal was to create a universal weak method
such that there was no need to select explicit-
ly the appropriate method for a task, but
instead, the knowledge of the task would lead
to behavior that constituted the appropriate
method.

Newell and Laird did some initial work
with data flow diagrams and then turned to
the tool developed for the course. They had
resisted using production systems as the
underlying representation of knowledge, wor-
rying that production systems would only
complicate the problem of determining the
relationship between methods and problem
spaces. However, when attempts at using data
flow diagrams and Lisp failed, the obvious

place to turn was production systems.

Instead of choosing one of the ors lan-
guages, they used xars2, with minor modifi-
cations to build the system to support the
universal weak method. It was originally
called sor (state, operator, and result) after
the main problem-solving step in a problem
space. It then quickly became soar. Although
SOAR was based on xAprs2, it was unable to
make direct use of the xars2 task-specific
chunking mechanism. The synthesis of
chunking and problem spaces came later,
after sOAR was reimplemented as an extension
of ors5, and automatic impasse-driven sub-
goal creation was implemented within soAr
in 1983 (Laird, Rosenbloom, and Newell
1986b; Laird, Newell, and Rosenbloom 1987).

In the summer of 1983, Newell, Laird, and
Rosenbloom decided to place their intellectu-
al bets with soARr as an architecture for general
intelligence and make it the center of their
research for the immediate future. From 1983
until his death, Newell, in partnership with
Laird and Rosenbloom, centered his research
on SOAR. The first step of this research was to
establish SOAR as an architecture for complex,
real-world tasks. Following some friendly
taunting from John McDermott (who had
since been converted to expert systems),
Rosenbloom, Laird, and Newell accepted the
challenge of reimplementing part of R1 in
SOAR and created R1-s0AR (Rosenbloom et al.
1985a). rR1-s0AR demonstrated the viability of
SOAR for building expert systems; it also
demonstrated that it was possible to build an
expert system with deep task knowledge,
which was general but expensive, that was
automatically compiled, through chunking,
into efficient, shallow knowledge.

The mid-eighties saw a flurry of activity on
integrated problem solving and learning
within soAr (Laird, Rosenbloom, and Newell
1984, 1986a, 1986b; Rosenbloom, Laird, and
Newell 1987; Rosenbloom et al. 1985b; Steier
et al. 1987). However, even as this activity
was going on, Newell was studying algorithm
discovery with David Steier and Elaine Kant
in a system called DESIGNER (Kant and Newell
1983, 1984), which then migrated to DESIGN-
ER-SOAR (Steier and Newell 1988).

Although soar was developed originally
with purely functional constraints in mind, it
became clear that it had many of the proper-
ties required to model human cognition. This
fact is not completely surprising, given its
roots in Grs, problem spaces, production sys-
tems, and chunking. Also, its basic
design—which includes firing productions
until exhaustion, automatically creating goals
whenever an impasse arises during problem



solving, and integrating chunking with the
impasse mechanism—began to raise the pos-
sibility that it would be an effective architec-
ture for cognitive modeling. These
observations, combined with the pressure of
an invitation from Harvard University to pre-
sent the William James Lectures, spurred
Newell to formulate soar as the basis for a
unified theory of cognition.

SOAR was in many ways a weak vessel for
this attempt. At the time, it had little ability
to interact with the environment, and most
of the cognitive modeling efforts were still
developing. However, Newell’s purpose was
not to claim that soar was the only unified
theory but instead to use it as a vehicle to
demonstrate what a unified theory would
look like, encourage the field to embrace uni-
fied theories as an appropriate goal for psy-
chological research, and encourage others to
join in the search for unified theories.

In my view, candidate unified theories
should all play the game of “Anything
you can do, I can do.” We should strive
to get our own theories to do what other
theories can do well. (Newell 1992, p. 55)

A high-jump metaphor is useful. As the
world record high-jump moves higher,
the field establishes an increasing thresh-
old that each new high jumper must get
over, just to qualify as a competitor. Sim-
ilarly once we get the process estab-
lished, each new unified theory must get
over a threshold of coverage and adequa-
cy before it can even be considered a
candidate. The issue is not who's
best—not who momentarily holds the
championship—but who can qualify for
the event. acT* established an initial
threshold. I think that soAr, even though
it has been largely exemplary so far, also
qualifies as a candidate. (Newell 1992, p.
56)

The deadline for the lectures also provided an
effective motivating force for his graduate stu-
dents, leading to new results that modeled
cognitive development, immediate behavior
(Polk, Newell, and Lewis 1989), complex
problem solving, and even cryptarithmetic.
Newell, once again garnering the forces of a
graduate student (Olin Shivers), went back to
the original protocols of cryptarithmetic and
attempted to have soAar model the subjects
more accurately than was possible with GPS.
This work was successful and is reported in
detail in Newell’s (1990) book Unified Theories
of Cognition.

Following the lectures, research on soARr as
a theory of cognition expanded around the

world (Lewis et al. 1990), with Newell taking
an active role in research on cognitive devel-
opment (Simon, Newell, and Klahr 1991),
natural language (Lehman, Lewis, and Newell
1991; Lehman et al. 1992), instruction taking
(Lewis, Newell, and Polk 1989), visual atten-
tion, human-computer interaction, and syllo-
gistic reasoning (Polk and Newell 1988).

During his last 10 years, Newell focused on
SOAR as a general architecture for intelligent
behavior, but he also found time to work on
projects that either supported the use and
development of sOAR or that were significant
extensions of the concepts in SOAR.

Production-System Efficiency

A concern that often arises with production
systems, be it PsG, OPS, Or SOAR, is the efficient
matching of large numbers of productions.
The RreTE algorithm was a first step but what
about other algorithms? Would a specially
designed production-system machine provide
orders-of-magnitude improvement over soft-
ware implementations? What role could par-
allelism play in production systems? What
influence did learning have on the underly-
ing architectures? These issues were investi-
gated by Newell and his students and
colleagues during his last 10 years (Gupta
1986; Gupta et al. 1988; Tambe et al. 1988;
Tambe, Newell, and Rosenbloom 1990). Most
recently, Bob Doorenbos created a system, DIs-
PATCHER-SOAR, that learns over 10,000 produc-
tions (Doorenbos, Tambe, and Newell 1992).3
This system has served as an important
research tool and has demonstrated that for
some applications, the speed of match does
not deteriorate as even tens of thousands of
productions are learned.

Rapid Task Acquisition

As identified early in the IPS Project, the
acquisition of new tasks is difficult. To
enhance the ability of users to create new
tasks in soAr, Newell worked with Gregg Yost
to develop a system in which users program
at the level of problem-space constructs and
not at the level of productions (Yost and
Newell 1989). The resulting system, TAQL,
allowed Yost (1992) to create specific expert
systems in SOAR as fast or faster than other
developers using domain-specific knowledge-
acquisition tools.

ASPM

As part of the work on cognitive modeling
that Newell and his students were doing in
SOAR, they had to determine which parameter
settings of their model would fit the given
data as closely as possible. Efficient solutions
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To each scientific life, its own style.
And each style defines a life.

Science is in the details.

The scientific problem chooses you, you don’t choose it.

Diversions occur, make them count.
Salvage what is possible for the main goal.

Embrace failure as part of success.
But use it for the main goal.

Solve whatever problems must be solved.
But do not be seduced by them.

Preserve the insight and deepen it.
Deep ideas transform themselves beyond imagining.

Deep scientific ideas are exceedingly simple.
Others usually see them as trivial.

Choose a final project to outlast you.

10. Everything must wait until its time.

11

Science is the art of the possible.

. To each scientific style its own maxims.

12. To work with results of field X, must be a professional in

X.

13. We are all flawed—

We all carry our burden of incapacities.

14. There is no substitute for working hard—very hard.

15. New things get started by evolution or chance, not

design.

16. A scientist is a transducer from nature to theory.

Seek out nature and listen to her.

17. The science is in the technique. All else is commentary.

Figure 7. Allen Newell’s Maxims for a Dedicated Scientific Life.
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have been found for certain types of model-
fitting problems (for example, linear and
integer programming) that involve specific
types of parameters (usually continuous) and
specific types of models (usually linear). How-
ever, these techniques often do not apply to
computational cognitive models whose
parameters are often discrete and symbolic
and whose internal workings must be treated
as a black box for the purposes of
fitting—exactly the case that comes up with
many of the soAr models. Newell, together
with Thad Polk, developed AsrMm (analysis of
symbolic parameter models) (Polk, Newell,
and VanLehn 1992), a suite of computational
tools for fitting and analyzing such symbolic
parameter models. It exploits a few con-
straints that are common among computa-
tional models (for example, that only a few
parameters are relevant to each task) to avoid
doing an exhaustive search of all parameter
settings. AspM was successfully used to fit and
analyze computational models with well over
10-billion parameter settings and is currently
available to interested researchers.

Social Systems

Five years ago, Newell returned to the area
that led him to Al: theories of social agents
and organizations. Working with Kathleen
Carley, he developed a theory of the nature of
social agents, called the MODEL SOCIAL AGENT, a
parallel to the MODEL HUMAN PROCESSOR (Carley
and Newell 1992).

Diversions

Newell dedicated himself to his research in Al
and psychology in pursuit of the nature of
the mind. However, he had his share of diver-
sions from this quest, which arose in large
part for personal reasons.

Computer Structures

In the late 1960s, Newell was diverted from
his research on mind for the first time
(1968-1972). This diversion arose when he
agreed to help Gordon Bell write a book on
computer systems. This textbook was to be
the first to give detailed descriptions of com-
puter systems. In the end, it was much more
because in the process of trying to describe
the different architectures, Bell and Newell
created languages for two different levels of
computer design: the system level (pMms) and
the instruction level (i1sp). At the system level,
the rMms language allowed a description of
computers and networks in terms of their
component memories, processors, switches,
controls, transducers, data operators, and



links. At the instruction level, the isp language
provided the means for describing the
detailed operation of the instruction set.
Later, when an interpreter was built for the 1sp
language, the dream of universal emulation
was realized, and it was possible to simulate
any computer on another computer as long
as there was an 1sp description of the first
computer and an Isp interpreter for the
second.

Although this diversion from the study of
intelligence was significant, it crystallized the
ideas of architecture and a hierarchy of levels
for analyzing computational systems. The par-
allels between the levels of computer architec-
ture and the human mind were evident to
Newell and Simon as early as 1962 (Newell
1962) and were a continual theme in Newell’s
work, including his views on the knowledge
level and unified theories of cognition.

L*

A second diversion that developed in the late
sixties and carried over into the seventies was
a language called L* (Newell et al. 1971). This
language was developed with Peter Freeman,
George Robertson, and Don McCracken. It
was an attempt to create a language for
system development so that it would be easy
for a system programmer to create a cus-
tomized operating system and user interface.
The underlying belief was that each user
would want to have an individually cus-
tomized system and that the way to create
such a system was to provide an underlying
kernel that could then quickly be grown into
a complete system. Thus, L* provided the abil-
ity to rapidly prototype a new system.

Our demonstration of it to the local
community was to start with an empty
machine and during the course of the
seminar to build all of the structure of L*
from scratch, before your very eyes. (A.
Newell, September 1991, conversation
with John Laird, Univ. of Michigan Al
Lab)

It is hard to come up with a simple charac-
terization of L*. It’s not X + Y, where X is
some other existing language, such as Lisp,
and Y is some additional capability such as
coroutines. Possibly, its most novel feature
was that every symbol had its own inter-
preter, close to some of the concepts behind
object-oriented programming. It also had a
universal-type mechanism, so that every
symbol had a type. L* was also a chance to
build a system programming language with
many of the list-processing ideas that came
up in IpPLS.

L* was never a widely used language,

although it was the implementation language
for psG, orsl, and zoG, another diversion for
Newell that came a bit later. In contrast to
Newell’s previous diversion with Gordon Bell,
which had a great impact on computer sci-
ence, L* suffered the same fate as MERLIN and
slipped into obscurity.

Speech Understanding

Another diversion for Newell in the early sev-
enties was the Advanced Research Project
Administration (ARPA) speech effort. In 1970,
ARPA was considering a major program in
speech understanding. Newell was asked to
take the lead in writing the report for the
study group, specifically because he was not
an active speech researcher. The report laid
out the first organizational plan for a multi-
institutional research effort in Al This report
led directly to the ARPA Speech-Understand-
ing Research Effort; Newell became the chair
of the Steering Committee and wrote the final
report (Newell et al. 1973).

Although Newell did not lead any of the
speech-understanding teams, he was interest-
ed in the underlying architecture of HARPY
(Lowerre 1976), the most successful system
(which is the predecessor of today’s hidden-
Markov model speech-understanding sys-
tems). Newell decided to take the HARPY model
seriously as a model of human speech percep-
tion and attempt to view it in terms of a pro-
duction system. This effort led to a new
production system, Hrsa77 (Newell 1980a), in
which Newell evaluated the sufficiency of
HARPY. HPSA77 had many novel features,
including activation of working memory, but
it was never implemented, although it would
later influence Paul Rosenbloom in the devel-
opment of XAPS.
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Figure 8. Scientific Ideas of Allen Newell.
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System name

LT
IPL

NSS
GPS

MERLIN

L*
PSG

PASS
7Z0G

IPS

(O)N)
HPSA77
XAPS
DESIGNER
SOAR

CParaOPS$S
TAQL

RL-SOAR
DESIGNER-SOAR
SYL-SOAR

SC-SOAR
IR-SOAR

NL-SOAR

Q-SOAR

VR-SOAR
PLURAL-SOAR
BROWSER-SOAR
MATHEMATICA-SOAR
DISPATCHER-SOAR
RAIL-SOAR

Co-developers

Shaw, Simon
Shaw, Simon

(Feigenbaum in IPL V)

Shaw, Simon
Shaw, Simon
(Earnst)

Moore, Young

Robertson, McCracken

Waterman

Robertson, McCracken

Rychener, et al.
Forgy, et al.

Rosenbloom
Kant, Steier
Laird, Rosenbloom

Gupta, et al.
Yost

Rosenbloom, Laird
Steier
Polk

T. Simon, Klahr
Polk

Lewis, Lehman
T. Simon, Klahr
Polk

Carley, et al.
John

Pathak, Steier
Doorenbos
Altmann

Task Years
Propositional Logic 1955-56
List Processing 1956-64
Chess 1957-58
Puzzles 1957-63
Intelligent Tutoring 1968-74
System software 1969-74
Cognitive modeling 1970-73
Protocol Analysis 1970-73
Interface 1973-84
Instruction 1976-79
Production system 1976-80

Speech understanding 1977

Learning 1979-83
Algorithm design 1982-85
1982-
Parallel OPSS 1985-89
Knowledge acquisition 1987-92

Computer configuration 1983-86

Algorithm design 1985-88
Syllogisms 1987-88
Series completion 1988-89
Immediate reasoning 1988-90
Natural language 1988-92
Number conservation  1989-91
Verbal reasoning 1990-91

Warehouse management 1990-92
Database browsing 1990-92
Software system control 1990-92
Message management  1991-92
Railroad yard switching 1991-92

Innovative Contributions

Heuristic search

Lists

Schemas (frames)

Dynamic memory allocation

Recursion

Functions as arguments

Generators (streams)

Human-like behavior

Means-ends-analysis

Recursive goal structures

Computer model of complex
human behavior

Attached procedures

General mapping

Indefinite context dependencies

Automatic compilation

Universal interpretation

Production system model of

human behavior

Efficient production match
Chunking

Integration of production systems and
problem spaces

Universal weak method

Impasse-driven goal creation

Universal subgoaling

Integrated learning and problem solving

Parallel rete production match

Problem-space level programming

Integrated deep and shallow reasoning

Learning in design

Mental models as states in problem
space

Model multiple immediate reasoning
tasks

Recognition-based comprehension

Model transition during development

Large learning system
Multiple learning strategies
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Figure 9. Systems of Allen Newell.
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In the summer of 1972, Newell helped orga-
nize a summer workshop on simulation for
cognitive psychologists. To provide hands-on
demonstrations of several large simulation
programs for novice computer users, Newell,
George Robertson, and Don McCracken
developed a program that provided a uniform
interface for using the simulation programs.
This system was called zog4 and had as its
chief deficiency the use of 300-baud output to
hard copy. This deficiency proved to be such
a bottleneck that the system was temporarily
abandoned. In 1975, they became aware of a
remarkably similar system called ProMIS (prob-
lem-oriented medical information system), an
effort led by Dr. Lawrence Weed of the Uni-
versity of Vermont Medical School (Schultz
and Davis 1979; Walton, Holland, and Wolf
1979). proMis avoided the failure of the initial
z0G by using state-of-the-art touch-screen
technology to provide one-half-second
response.

PrROMIS remained dedicated to its medical
application, but Newell, Robertson, and
McCracken decided to create a new general
version of zoG that used the new technology.
z0G became a fast-access hypermedia system
and interface for preexisting programs using a
touch-sensitive screen (Robertson, McCrack-
en, and Newell 1980). The goal of the
research was to study how people can use
such an interface, where new information is
displayed very rapidly (within 1/10 second)
upon selection of an item. Thus, it was a fore-
runner of hypermedia systems such as Hyper-
Card; however, it was also a tool for studying
how people use these systems.

When zoG was developed, it pushed the
limits of the existing workstation, disk, and
touch-screen technology. In addition to being
a research tool, an experimental zoG system
was fielded on the USS Carl Vinson, a nuclear-
powered aircraft carrier (Newell et al. 1982).
ZOG acted as an interactive management
information and planning system. The system
was a mixed success, being fielded on one of
the first workstations (PERQs) in an unstable
electric environment (power surges are the
norm on an aircraft carrier) and within a mili-
tary system that had to work. Subsequent to
his work at RAND, this instance was one of
the few examples of applied research that
Newell was involved in.

Reflections

Many threads run through Allen Newell’s
research career, but the strongest was his pur-
suit of the architecture of the mind.

Cognitive science has one result of
extreme generality and general accep-
tance. In the present context it can be
expressed as: unified theories take the form
of architectures. (Newell 1992, p. 27)

His first work in AI was in chess and LT.
What came out of LT were not new insights
into logic but, instead, insights into the fun-
damentals of thought: symbol systems and
heuristic search. In Gps, he and his colleagues
created the first Al architecture, a system that
“separated out the program structure for
problem solving from the program structure
to describe a particular task” (Newell 1992, p.
35). From there, he tried to create architec-
tures that avoid the rigidities and brittleness
that at times seem inherent to Al systems.
This pursuit was nonstop; Newell never
showed an inkling of slowing down. SOAR was
his latest attempt, which was “another try at
putting together a complete system that inte-
grated all these elements and learning too, as
it turned out” (Newell 1990, p. ix). SOAR has
had remarkable staying power for an Al archi-
tecture, but after 10 years, it still feels too
early to predict its eventual fate.

Another striking thing about Allen Newell
that was difficult to convey in this article was
the purity in his approach to science. In his
Distinguished Lecture titled “Desires and
Diversions” presented on 4 December 1991 at
CMU, he summarized his methodology (and
his philosophy of science) with a series of
maxims. His list is recreated in Figure 7. Some
of these maxims relate to a specific style of
research (one dedicated to pursuing a single
question: 4, 5, 6), but most apply to a dedicat-
ed scientific life in general, for which Newell
set the perfect example.

We expand here on a few of our favorite
maxims, those that are quintessential Newell.

2. Science is in the details. The breadth of
Newell’s research might suggest that Newell
“skimmed the cream,” contributing mostly
frameworks or theories and leaving the details
for others. As evidenced by the depth of his
contribution in each area, nothing could be
further from the truth. For Newell, generali-
ties, such as his work on physical symbol sys-
tems or the knowledge level, were
insufficient, even when one addressed a sub-
ject as broad as the nature of the human
mind. Theories had to have an associated
computational model that addressed the
details of human behavior. These details
included how long it takes people to deter-
mine whether a number is in a list they’ve
just seen (the Sternberg task) (Newell 1973a,
1990), how long they take to learn to press
buttons to match a light pattern, and how
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they solve puzzles like cryptarithmetic
(Newell and Simon 1972; Newell 1990). These
details were not the details of the research
but its core because from details, Newell
abstracted and generated his theories.

7. Preserve the insight and deepen it.
Deep ideas transform themselves beyond
imagining. Newell believed that to under-
stand an idea, you had to study it long and
study it hard. Consider the idea of chunking
that arose originally for declarative structures
in work by George Miller (1956). Newell and
Rosenbloom took chunking and extended it to
procedural learning in a specific task to study
the effects of practice. From there, chunking
was generalized to be a domain-independent
form of goal caching. Goal caching might
seem to be a relatively straightforward type of
rote learning, although as implemented in
SOAR, it was essentially explanation-based
learning (Rosenbloom and Laird 1986). In
SOAR, with subgoals generated automatically
for all impasses in knowledge, chunking
became a general learning mechanism that
could be used to acquire selection and genera-
tion knowledge for problem spaces, states, and
operators—all the types of knowledge encoded
in soAR. However, it appeared that chunking
would be restricted to symbol-level learning
and be unable to acquire new facts about the
world. However, under further examination
and with more experimentation, it was discov-
ered that soARr’s chunking mechanism could
learn declarative structures, so-called data
chunking, if the problem solving on which the
learning was based was itself inductive (Rosen-
bloom, Laird, and Newell 1987; Rosenbloom
and Aasman 1990). Chunking has since been
used to model human concept formation
(Miller and Laird 1991) and development
(Simon, Newell, and Klahr 1991).

8. Deep scientific ideas are exceedingly
simple. Others usually see them as trivial.
One of Newell’s guides in his pursuit of the
mind was to look for simple, uniform ideas.
Figure 8 lists what he considered his major
ideas, all of which are simple but also power-
ful when examined in detail. For example, in
SOAR, all long-term knowledge is represented
as productions, all short-term knowledge is
represented as attribute values, all problem
solving is formulated as processing within
problem spaces, all goals are generated from
architectural impasses, and all learning is
gathered by chunking. Uniformity alone is
not sufficient; it must also be general, with
the ability to be specialized to the demands
of a specific domain. For example, chunking
is soAR’s only learning mechanism, and it is
applied uniformly to every problem. Further-

more, what it learns is specific to the problem
and to the knowledge used to solve the prob-
lem. In MERLIN, mapping was everywhere, but
in L*, every symbol had its own interpreter,
and all structures arose from the combina-
tions of these interpreters (unfortunately,
these latter systems were ultimately not suc-
cessful for reasons unrelated to their underly-
ing scientific ideas).

14. There is no substitute for working
hard—very hard. Newell’s work was his life.
If he ever tired of what he was working on,
he simply switched to a new topic and
focused his remarkable energies on it. As evi-
denced by his contributions throughout the
years, he worked hard, very hard during his
complete research career.

Many a student tells the story of being up
late at night (into the morning) and, in the
midst of puzzlement, dashing off a short note
to Newell, expecting a response sometime the
next day. More often than not, the response
would be immediate. If not immediate, it
would be waiting the next morning, with an
extensive exploration of the implications of
the student’s question, far beyond what the
student thought possible.

16. A scientist is a transducer from
nature to theory. Seek out nature and listen
to her. Newell, as is true of almost every
researcher, had significant ego invested in his
theories. However, he was not afraid of the
truth, and if the truth dictated it, he was
ready to abandon a theory. He did not con-
tinually jump from one theory to another as
he found flaws because he also believed that
a theory should be nurtured. As evidence to
the contrary accumulates, a theory should
evolve to embrace this evidence if possible
rather than immediately discard it.

One of his favorite sayings to graduate stu-
dents as they labored over their computers,
running huge numbers of simulations or ana-
lyzing reams of human protocol data, was, “I
love datal!”s

Back in the sixties, whenever I used to go
home kind of depressed because I hadn't
learned anything in a week, I would take
a new protocol. I would take an evening,
and I'd clear the evening away and I'd
spend the evening with that protocol
and I would always find out something
about human behavior that I didn’t
know. Just listen to nature. (Newell
1991)

When presented with data that didn't fit
his theories, he would say, “Now that’s inter-
esting.” New data might have given him
insight into how to change his theories
because his theories were not floating crys-



talline structures that a single imperfection
would bring crashing down. His theories were
based on established fundamentals that cov-
ered a wide variety of phenomena but always
had edges and corners where they didn't fit as
well as incomplete structures where there was
just not enough time to fill in all the details.
Thus, he was always looking for new data that
might help twist or stretch or, best of all, sim-
plify a theory for more coverage. His search
was active because he wanted to be the first to
find data that confirmed or inspired exten-
sions of a theory or that pointed out the
theory’s faults. For example, in the mid-six-
ties, after many years of modeling verbal pro-
tocols of cryptarithmetic in Gps, the story was
still incomplete.

In sum, linguistic data is still far from
sufficient either to discover the process-
ing system being used or to verify con-
clusively that it accurately models the
human information processing system.

We need to obtain additional data.
(Newell 1967, p. 34)

The additional data in this case were eye
movements of subjects in addition to their
verbal protocols, and this research led to one
of the first models of human behavior at this
level of detail for a complex task (Newell
1967).

17. The science is in the technique. All
else is commentary. In his talk, he men-
tioned two subpoints. The first subpoint is,
“What lives is what your scientific descen-
dants must use to solve their problems”
(Newell 1991). For Newell, the real contribu-
tions were the theory, the data, and the
tools—sometimes programs and sometimes
methodology—that could be used by others.
He spent enormous energy developing tools
and architectures (IPL, GPS, L*, PSG, OPSS, MERLIN,
SO0AR) and techniques (problem-behavior
graphs, protocol analysis, Goms). To him, a
theory was only useful if it could be captured
in a technique or a system that others could
use.

The second subpoint is, “Do your philoso-
phy on the banquet circuit” (Newell 1991).
Newell had little use for philosophy and
metatheory as tools for advancing science.
Science is in the details of data and computa-
tional theories. Ironically, some of his most
influential work—symbol systems, 20 ques-
tions, and the knowledge level—is metatheo-
ry. However, to him, these accomplishments
were only the by-products of science.

One element in Al's methodology is that
progress is made by building systems
that perform: synthesis before analysis.

What is science in AI? It is knowl-
edge—theories, data, evaluations—that
describes the means to reach a class of
desired ends given certain structures and
situations. Science reaches beyond the
situation of its generation and becomes a
source of knowledge for future scientists
and technologists—investment rather
than consumption. Knowledge of means-
ends relations is what characterizes the
artificial sciences, of which Al is a part.
(Newell 1977, p. 970)

Newell lived all these maxims, but the maxim
that captures Allen Newell’s scientific life
more than any other came from his father
(who said it incessantly): “Keep your eye on
the main chance.”

Conclusion

Over the eons, many have taken the nature of
the human mind as their pursuit. Newell was
fortunate enough to start his pursuit immedi-
ately following the birth of computation, and
he was brilliant enough to understand its
potential. Newell blazed a path, developing a
new understanding of the mind. The results
are staggering. Newell led the field by devel-
oping programs, languages, and theories, as
listed in figure 9. Many of his individual con-
tributions would be considered the culmina-
tion of a successful scientific career, and
together, they define many of the fundamen-
tals of cognitive science and Al It is hard to
imagine Al and cognitive science without
him. He is possibly the greatest scientist that
cognitive science and Al will ever see.

Those of us who worked closely with him
will miss him dearly: his brilliant and deep
analysis of a new result; his penetrating ques-
tions; his wit; his enthusiasm; but, most of
all, his vision into all the areas of the mind
we have yet to even consider. Although we
are greatly saddened, we see his loss to the
field as even greater. He led the field in his
vision, his results, and his style. He gave the
field an example of what a great scientist is
and what great science requires. Without his
example, we must redouble our efforts so that
the field will not lose sight of the ultimate
question and settle for something less.
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Notes

1. This article is based on material drawn from
many sources. These sources include Allen Newell’s
brief autobiography published in American Psychol-
ogist (American Psychological Association 1986),
his Distinguished Lecture entitled “Desires and
Diversions” presented on 4 December 1991 at
Carnegie Mellon University, the Historical Adden-
dum to Human Problem Solving (Newell and Simon
1972), Pamela McCorduck’s (1979) Machines Who
Think, Herbert Simon’s (1991) autobiography
Models of My Life, and Allen Newell’s many publica-
tions over the years. The interested reader should
consider McCorduck’s book and Simon'’s autobiog-
raphy for a deeper and more personal look at Allen
Newell (and other early Al researchers), especially
during the late fifties and early sixties.

2. The original xaps (experimental activation-based
production system) was developed by Rosenbloom
while he was at the University of California at San
Diego (UCSD) in an attempt to merge insights from
ors4, HpsA77, and the work on parallel distributed
processing that was just beginning at UCSD.

3. At last count, it was at 113,000.

4. Although the source of SOAR as an acronym is
obscure, it does exist. In contrast, zoG is not an
acronym, just a three-letter nonsense syllable.

5. Given his love of data, there was significant
irony in his claim that psychology has sufficient
data to build unified theories of cognition.
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