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Bayesian); and nonsymbolic image-to-
image transformations. Most success-
ful practical vision systems are well-
engineered combinations of special-
purpose sensors, hardware, and algo-
rithms that are tailored to solve specif-
ic visual problems (and are generally
more successful in proportion to the
narrowness of the task). Some texts
(for example, Batchelor, Hill, and
Hodgson [1985]) don’t even mention
AI or its methods. Example practical
applications include assembly-line
robot welding guidance, inspection of
computer keyboards and integrated
circuits, counting of tea bags, tomato
grading, and optical tracking.

We can contrast computer vision’s
rather specific research directions
with the outward appearance of AI,

■ Recent general AI conferences show a
decline in both the number and the
quality of vision papers, but there is
tremendous growth in, and specializa-
tion of, computer vision conferences.
Hence, one might conclude that com-
puter vision is parting or has parted
company with AI. This article proposes
that the divorce of computer vision and
AI suggested here is actually an open
marriage: Although computer vision is
developing through its own research
agenda, there are many shared areas of
interest, and many of the key goals,
assumptions, and characteristics of
computer vision are also clearly found
in AI.

It is not easy to infer the relation-
ship between the fields of com-
puter vision and AI from their

external appearances. Recent general
AI conferences show a decline in
both the number and the quality of
vision papers, but there is tremen-
dous growth in, and specialization
of, computer vision conferences.
Some computer vision or robotics
researchers even claim that AI is
unnecessary or irrelevant; special-
purpose, dedicated, well-engineered,
mathematics-based processes will
lead to success.

Alternatively, we could consider the
interests and directions of the two
fields: An examination of many
recent computer vision conferences
and journals shows a marked inclina-
tion, especially in the more theoreti-
cal papers, toward complex mathe-
matics (for example, geometric
invariance, differential geometry,
functional analysis, control theory);
models of the physics of light, color,
shape, motion appearance, texture,
and so on; statistical models of the
scene and other properties (for exam-
ple, fractal, Markov random fields,

Hence, one might conclude that
computer vision is parting or has
parted company with AI. This phe-
nomenon is a more general problem
of AI, and most subfields are special-
izing to the point that wasteful dupli-
cation is occurring, and loss of sight
of the grand goal of reintegrating the
different aspects of intelligence is evi-
dent. In addition, although there are
many specializations of AI (for exam-
ple, planning, natural language
understanding, knowledge represen-
tation), no one questions the sepa-
rateness of these fields from AI. How-
ever, the technology of most
computer vision research is so non-
mainstream AI (that is, it looks more
like manufacturing engineering or
applied physics) that the connection
is no longer obvious.

Phrased in these terms, the differ-
ences seem extreme; however, I claim
the differences are largely illusory
and that computer vision still has
and will continue to have a strong
relationship with AI. Computer
vision’s specialization and unique
preoccupations define it as a field of
study but no more exclude it from
the community of AI than do the dis-
tinctive formalisms of natural lan-
guage grammars, the logics under-
pinning theorem proving and formal
reasoning, or the numeric calculus of
neural networks (and its learning
algorithms) exclude their subfields.

This article proposes that the
divorce of computer vision and AI
suggested here is actually an open
marriage: Although computer vision
is developing through its own
research agenda, there are many
shared areas of interest, and many of
its key goals, assumptions, and char-
acteristics are also clearly found in
AI. I take several views on this ques-
tion, not because of insecurity but
because many strands of connection
imply a close coupling in the space
of cross-disciplinary linkages (com-
pared with a sparser coupling [in the
sense of few links between concepts]
between computer vision and, for
example, architecture [coupled main-
ly through issues of shape, appear-
ance, and visual aesthetics]). I hope
to convince you that the relation will
become even stronger in the future.

Is Computer Vision Still AI?

Robert B. Fisher

which has spent much time investi-
gating more general methods, such
as search controlled by domain-
dependent constraints, models of
(formal) logical and nonlogical rea-
soning, heuristic and uncertain rea-
soning, representation of general
physical and world knowledge (for
example, surface shape, elasticity,
gravity) and human knowledge (for
example, conceptual, belief), and
learning (that is, inference of new
relationships, self-organization).

… the differences are
largely illusory … 

computer vision still has
and will continue to have

a strong relationship
with AI.
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AI and Computer Vision
Share Methodological

Approaches
There are many eloquent and intelli-
gent discussions of the nature of AI
(Boden 1988; Haugeland 1985) (and
if it can even exist [Penrose 1989]),
but lately, most arguments seem to
center on the how of AI, not the
what, that is, whether true AI can be
realized through classical methods
(that is, logic, representation, and
search), pattern classification (for
example, case and frame unification),
behaviorist methods (that is, an orga-
nized conglomeration of individual
goal-pursuing, goal-achieving behav-
iors), classical emergent-behavior
methods (that is, global, epiphenom-
enal behavior arising from the aggre-
gation of distributed actions of sepa-
rate agents), or neural networks (that
is, distributed, fault-tolerant, connec-
tionist, emergent, numeric computa-
tions).

Loosely speaking, computer vision
mirrors the methodological division
of AI: There are certainly classical
symbol manipulation (Brooks 1981),
statistical pattern classification, dis-
tributed competence, and connec-
tionist (Hinton 1981) paradigms. In
addition, there are at least two other
paradigms. The first paradigm is the
numeric processing of images, where
algorithms are linked to the geomet-
ric structure of the image and are
constrained by underlying theories of
the physical processes that gave rise
to the sense data (as in a theory of
surface shading [Horn 1975]). The
image-to-image transformations typi-
cal of this class of processes are not in
themselves intelligent (that is, they
usually only do a limited amount of
interpretation, as in suggesting possi-
ble edges). However, they can be con-
sidered a product of AI (Schank
1991). The processes might originally
have been intelligent—that is,
occurred as a result of explicit rule-
based reasoning—but later were com-
piled into pure algorithmic form, or
they might never have been, but the
actions of the algorithms can be con-
trolled by higher-level control input
(such as focus of attention).

The second paradigm is active per-

ception (Aloimonos 1989), wherein
the observer manipulates or maneu-
vers within the environment to pro-
duce constrained—and, thus, more
easily interpreted—perceptual effects,
such as the kinetic-depth process.

Computer vision also encompasses
a large number of special-purpose
application processes dedicated to
extracting a single, perhaps obscure
piece of information from a special-
ized type of image (for example, the
parametric shape of a range image
surface, the average intercellular dis-
tance in a particular tissue section, or
the postal code on a letter). These
specializations do not fit clearly into
the general vision architecture, just as
an expert chess player is generally
not considered a component of a
general AI program. Even so, the class
of transformation that these applica-
tions represent does not differ signifi-
cantly from the class of competences
expected to be found in a general
vision system.

AI and Computer 
Vision Share Domain 

Assumptions
Broadly speaking, the following
assumptions underpin AI and com-
puter vision perspectives. This list is
undoubtedly incomplete, but I tried
to elucidate beliefs that underlie most
research in the general sense—not
the individual research areas but,
rather, the themes that they share. I
introduce the key topics from an AI
perspective and then discuss how
computer vision fits within this per-
spective.

As can be seen, part of what influ-
ences the distinctiveness of computer
vision is the nature of raw sense data,
which is often underconstrained, is
always shaped by sensor characteris-
tics, and is corrupted by noise. It has
a regular geometric structure (for
example, images) that is closely
linked to the geometric ordering in
the sensed domain. However,
although both have a regular geome-
try, there is not necessarily an iso-
morphism because, for example, two-
dimensional images arise from the
projection of the three-dimensional
world. In fact, the relationship can be

obscure (as in a holographic image)
or inexact (as in a cartoon sketch).

The first AI topic is knowledge rep-
resentation.

Representable knowledge: Knowl-
edge is representable, usable, and
communicable, although the details
of how it is are unresolved as yet.
Computer vision programs embody
knowledge (for example, about
shape, reflectance, apparent struc-
ture) and increasingly make the
knowledge explicit in terms of geo-
metric-object model bases and rule
bases of information on how to rec-
ognize objects or when to apply vari-
ous operators.

Representation schemas: Symbols
can be used to represent some con-
cepts, and the manipulation of the
symbols can be used for reasoning
about a domain. Most high-level
vision programs manipulate symbolic
representations of model and data
features, usually attempting some
form of search for a correspondence
between the two. Intermediate-level
image-interpretation processes more
often have numeric image data as
input but produce symbolic descrip-
tions as their output.

Multiple descriptions: The charac-
terization of real domains (or envi-
ronments) requires many different
descriptors and points of view as well
as multiple levels of representation.
The computer vision community has
believed for at least a decade that the
description of the visual world
requires multiple descriptions, partic-
ularly through the concept of sketch-
es (Marr 1982) and intrinsic images
(Barrow and Tenenbaum 1978). These
descriptions are focused, special-pur-
pose representations of the world
from the viewer’s perspective that
describe how it is moving, how it is
illuminated, where its significant fea-
tures lie, and so on.

Underlying theories: Mathemati-
cal theories underlie some aspects of
knowledge and some domains (for
example, theory of mechanics,
physics, dynamics of a steam engine).
The theories can be used to model
and test hypotheses, interpret sense
data, or predict effects. Mathematical
theories of surface shape, motion and
image flow, geometry and geometric
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invariance, image formation, noise
processes, combinatorics, and physi-
cal theories of shading, mutual illu-
mination, color, and texture underlie
much of the successful recent vision
research. However, these theories
tend to be autonomous , that is,
require no insight, feedback, or con-
trol from later or other stages of the
vision system. Expressing the com-
plexities of algorithms that allow
these external interactions in mathe-
matical form can be difficult.

Common sense: Large amounts of
commonsense knowledge are
required for intelligent and effective
behavior in the real world. A
machine that can see the world as we
see it will require a visual memory of
thousands of objects and fragmentary
shapes. To exploit this memory, a
computer vision system will need to
be able to reason about the way in
which appearance can vary by posi-
tion and illumination, depth order-
ing, interaction between various
objects in a scene, and the way that
members of a class of shapes can
appear and deform (for example,
clothing, trees).

The second AI topic is reasoning.
Mechanization: Reasoning can be

mechanized, modeled, replicated,
and experimented with, particularly
through the use of computer systems.
Any working computer vision system
exemplifies the mechanization of
visual reasoning in that it is clearly
an algorithm implemented on a com-
puter system (in the broad sense,
allowing dedicated or hard-wired
electronic implementations) (Brooks
1991; Rosenschein and Kaelbling
1986).

Complexity: Reasoning is complex
and can require nondeterministic
decisions. Because of the difficulty of
interpreting data (because of noise or
low resolution or because local con-
straints exist to fully explain the
data), most real image-interpretation
systems (that is, systems that label
image features) embody some form of
expert system reasoner (Draper et al.
1988) that pursues alternative
hypotheses and quantifies the degree
of verification.

Heuristics: Heuristics are often
required to (1) model incompletely

understood phenomena, (2) simplify
computationally intractable algo-
rithms, or (3) provide a simple and
reliable tool when exact methods are
unnecessary or expensive. Most
object recognition is still in the
heuristic stage, except for simple geo-
metric solids (for example, polyhe-
dra). Even most edge detectors are
based on the heuristic that all edges
are intensity step edges, and most
uses for the edge information assume
that image edges correspond to
object edges (ignoring lighting, shad-
ows, specularities, and changes in
reflectance).

Uncertainty: Reasoning involves
uncertainty by virtue of incomplete
knowledge, perceptual noise, and
imperfect heuristics. Uncertain rea-
soning is needed to quantify the
belief in a sensor measurement and
to characterize the certainty of a
hypothesis (Durrant-Whyte 1987).
Recently, much computer vision
research has been using statistical
methods to represent measurement
and hypothesis uncertainty, particu-
larly through the use of the Kalman
filter. 

The third AI topic is behavior.
Humans: Human and other ani-

mal behavior can be studied and is
underpinned by intelligible but as yet
unknown computational processes.

Results in visual neurophysiology
from studies conducted over the last
40 years have shown that a large
number of neural structures exist for
the purpose of extracting visual infor-
mation, and testable theories for
some of these structures have been
developed (Marr 1982).

Because we are only well informed
about the complexity of human visu-
al perception, we cannot be sure of
the sophistication of other intelligent
systems. However, there is no doubt-
ing the visual intelligence of humans
when we observe our arts, particular-
ly the abstract, surreal, or cartoon
forms. Through these forms, we
move from a literal description of
shape and reflectance to a reduction-
ist symbolic representation of the
world expressed in functionally use-
ful concepts to a cultural dialogue in
which the form and content of the
image (or sculpture) are as much a

response to current historical, social,
and artistic context as a description
of a possible reality. As for accessibili-
ty, we know a little about human per-
ception from observers’ reports and
visual agnosia (“the inability to rec-
ognize objects even though elemen-
tary visual functions remain unim-
paired” [Farah 1990]) studies; about
other species, we know almost noth-
ing. Although the early stages of ani-
mal vision, the knowledge of the
active neurology in other species
might be greater because of the infor-
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mation obtained from live animal
experiments.

Complex behavior: Complex,
intelligent behavior is a consequence
of the complexity of the domain in
which the behavior occurs (for exam-
ple, the richness of human experi-
ence and imagination generates lin-
guistic complexity).

The complexity of visual behavior
is reflected in the complexity of the
programs that implement the behav-
ior. Almost any vision system that
does anything of consequence has
thousands of lines of code, at a mini-
mum. Systems that aspire to even
limited degrees of general-purpose
capability (Draper et al. 1988) have
more like hundreds of thousands of
lines of code and often involve the
use of complex reasoning mecha-
nisms, such as blackboards. Even
extracting simple information from a
real image (for example, counting
cells in a microscope slide view) is
complex because of the detail and
variability of the real world (for
example, different cell sizes, optical
constraints, placements, debris, adja-
cencies, variations in boundary
appearance and shape).

Intelligent perception: Intelligent
perception requires integrating many
different sources of information plus
using knowledge about what is being
perceived.

Intelligent vision, in particular,
requires integrating many different
sources of visual information, as gen-
erating a full understanding of com-
plex scenes seems to require different
representations of shape, position,
color, motion, and so on. For exam-
ple, although stereo gives informa-
tion about distance to, and shape of,
regions containing a lot of visual tex-
ture, extending the understanding to
nearby nontextured regions needs
other information, from, say, the
shading. We can also actively use
knowledge about the nature of the
world, such as when we reason about
how a pile of books that partially
hides a water glass affects the appear-
ance of the glass and how the optics
of the light passing through the glass
affects what we see through the glass
itself.

Multiple theories: No single theo-

ry explains all intelligent behaviors,
and an agent can use different behav-
iors, as is appropriate.

Computer vision is a perfect exam-
ple of where multiple types of behav-
ior are needed: Much low-level image
work is data driven, but most high-
level systems embody both data- and
model- driven reasoning. Most low-
level programs (that is, image-to-
image processing) are numeric, but
most high-level programs are purely
symbolic. Classical symbol manipula-
tion high-level vision systems can
interface with neural network low-
end modules. Active, or multicamera,
vision systems can sometimes acquire
data far more easily or reliably than
passive monocular vision systems.

Multiple skills: Truly intelligent
systems are capable of perception;
communication; memory; learning;
self-analysis; self-knowledge; decision
making; acting; planning; attention
focusing; and, undoubtedly, other
skills (in varying degrees). These skills
need to be integrated into a cohesive
system to generally be useful.

In computer vision, perceptual
results need to be encoded for use,
the shape and appearance of objects
must be known, and the shape and
appearance of new objects must be
learned. A vision system that can rea-
son and then move to obtain a better
viewpoint is more effective. Knowing
what results can be trusted can guide
when to proceed, and knowing how
well a set of computer vision process-
es works when applied to different
domains can guide the selection of
which process to apply.

Learning: Learning is required
because (1) the amount of knowledge
available is too immense for explicit
encoding by human designers, (2)
domains change over time, (3) new
concepts enter discourse, and (4)
agents enter new domains.

Model-based vision needs models;
these models are mostly constructed
by humans and, for complex objects,
rather slowly. Self-acquisition is the
only possibility for acquiring the
description of large numbers of
objects that must be known by com-
petent active agents. Visual descrip-
tions must change over time as a con-
sequence of seasons, aging, wear,

growth, or the encounter of new
objects.

Some models might be learned
using classical structural learning
methods adapted for visual represen-
tations. However, experience with
medical imaging suggests that some
patterns (for example, biological) are
too complex for compact description;
hence, the communication of these
patterns by other than example will
nearly be impossible. Thus, much as
a medical specialist learns to interpret
a class of image data by repeated
exposure over six months, so too will
machine vision systems learn, per-
haps in a connectionist manner.

AI and Computer Vision
Share Goals

Here I outline the goals of both AI
and computer vision. The main goals
of AI research are as follows:

First is to characterize intelligence
and intelligent behavior in general.
This characterization includes theo-
ries of the architectures for integrat-
ing the various intelligent skills into
single autonomous agents and coop-
erating systems of agents.

Second is to understand human
competence and computational pro-
cesses, in part by providing a
methodology for developing testable
theories.

Third is to develop tools that need
less human attention, embody
greater capability and compiled expe-
rience, and extend human control
over our environment (that is, envi-
ronment in the sense of our social,
biological, physical, and intellectual
context). The intelligence of the tools
is, in part, a consequence of their
complexity and reactive flexibility;
however, the real breakthrough is in
the embedding of intent in the tool.

Fourth is to develop epistemologies
suitable for representing different
knowledge domains.

Fifth is to develop tools for
advanced computer science and engi-
neering (for example, distributed pro-
cessing, programming languages, cor-
rectness proving, automatic
programming).

Sixth is to extend the
philosophical view of humanness to
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reconcile the physical operation of
the brain and its computational
structure with the concept of the
mind and the mental universe (for
example, Dennett [1992]).

The goals of computer vision are as
follows:

First is to understand the human
and other biological vision systems
through the building of testable mod-
els. This goal must also include
understanding the purposes of vision
(Gibson 1979; Sloman 1988), which
consists of multiple information-
extraction modules, providing visual
control (for example, motion) feed-
back as well as information extrac-
tion.

Second is to provide machines that
extend human perceptual abilities
into new domains or heighten them
in normal domains.

Third is to provide tools that
embody autonomous information-
extraction abilities (for example, need
not employ a human).

Fourth is to determine the key rep-
resentations needed for a visual and
spatial description of the real world
and to discover computational pro-
cesses that can reliably infer them.

Hence, it can be seen that comput-
er vision’s goals are largely specializa-
tions of AI’s goals. (Computer vision’s
goal 1 is a specialization of AI’s goal
2, computer vision’s goals 2 and 3 are
specializations of AI’s goal 3, and
computer vision’s goal 4 is a special-
ization of AI’s goal 4.)

AI and Computer Vision
Share a Common Intellec-

tual Context
We can also consider the relation of
AI and computer vision from the per-
spective of three aspects of their
shared intellectual context: (1) philo-
sophical support, (2) biological and
psychological support, and (3) shared
computational methodology.

Philosophical Support
No issue is more central to AI than
world representation, and perception,
through its direct external input from
the world, provides the basis for con-
structing these first, basic representa-
tions. The philosophy of perception

interpretations. As sensors are tuned
to sense particular modalities, the
results they report are biased by what
they expect to see. A sensor that
detects green must decide what is or
is not green, whereas the physical
spectrum is dense, and the light com-
ing off objects usually has compo-
nents at all frequencies. This compli-
cation is particularly acute with the
color brown, the perception of which
is affected by the relative lightness of
the surrounding colors. Hence, any
conceptual representation of the
world must have a relation to the
world but is not the world.

AI has its strongest linkage with
computer vision in those aspects of
vision that are distinctly human. Per-
haps the most distinct competence is
the partitioning of the sensed envi-
ronment into conceptual, named
entities. For example, an apple on a
table is a relatively distinct entity, yet
when still attached to a tree, it is part
of a larger entity. We decide which

deeper than a largely empirical, phys-
ical description.

Biological and 
Psychological Support
Vision is often naively considered a
monolithic sense, whereas actually,
many different information-extrac-
tion and information-interpretation
processes are involved. Neurophysiol-
ogists have identified separate regions
of the visual cortex that appear to
extract shape, motion, color, and
edges from our visual input. Alto-
gether, about 9 (including the retina)
distinct regions of visual processing
have been identified so far, many
with several processing layers; so,
something like 20+ different but as
yet unknown representations of the
world can be extracted. The neural
connectivity of some regions in the
early stages of processing is broadly
known (Zeki 1993; Hubel 1988), but
on the whole, their function is not.
Some activities are fully autonomous
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and mind shows strong connections
between AI and computer vision in
the attempts to understand the rela-
tionship between a physical reality
and our perceived understanding of
this world. Fundamental to the per-
ceptual view is that what we embody
is not a literal description of the
world as it is but an internalized and
abstracted representation of the
world encoded in terms that form
part of the internal states of the
agent. Without such an encoding,
the description would be of no use;
we would still need to analyze the
new description to extract useful
information (Sloman 1988). The full
nature of the actual representations
is unclear and is perhaps incomplete-
ly communicable between different
humans. What is clear is that it is a
representation, as opposed to the
real thing and, hence, impoverished.

These abstractions are necessarily

piece is the apple. Considering some
subset of the world as a distinct
nameable entity is often simply a
human convention and, thus, is suit-
able for AI. Of course, not all entities
are defined purely by convention
because biological and physical pro-
cesses clearly also play a major role
in physically defining the world.

Conceptual entities need not only
be objects; they can also be actions
(for example, when does a jog
become a run or a sprint) and
attributes (blue versus cyan), for
example. Of course, names are linked
to function; so, one physical object
might be referenced by different
names, according to the use that the
object has (for example, as a bowl,
cup, ashtray, paper clip holder). It is
clear that one must also know a lot
about human society and its concep-
tual structures to interpret the mean-
ing of the visual input at any level

Computer vision will need to explore more case-based
and opportunistic reasoning.



(for example, processing the full visu-
al field input), whereas other activi-
ties involve input from other centers
of the brain (for example, attention
focusing). Output of visual processing
are used in many places—helping
maintain balance, tracking moving
objects, or stabilizing our representa-
tion of the world while in motion;
ducking or blinking when danger
approaches; making local maps of
our environment; discriminating
between alternatives; and, the obvi-
ous, labeling the world.

From this list of visual functions, it
is clear that many biological visual
processes contribute to and define
the behavior of intelligent beings.
The linkage also goes in the reverse
direction in that intelligent processes
are needed to select what to attend
to, to record and extract visual mem-
ories, to provide the motion needed
for active vision (for example,
through motion parallax), to do spa-
tial reasoning, to make visual aesthet-
ic judgments, and so on.

Shared Computational
Methodology
The foundation behind the experi-
mental methodology of both AI and
computer vision is the computer.
However, many fields use computers,
so we must look deeper to the more
fundamental notion of the computer
a tool for theory testing, a tool for
empirical explorations, and a vehicle
for the embodiment of theories to
create usable artifacts (compared to
more conventional numeric calculat-
ing, text processing, and database-
transaction machines). Although the-
ories of mechanics or energy flow, for
example, lie behind the function of
other machines, the theory of com-
putational information processing
lies behind machines built for AI and
computer vision (Marr 1982). This
theory entails internal representa-
tions; reasoning based on, and trans-
formations between, representations;
constructions of these representa-
tions; and actions based on them.

The use of the computer is so per-
vasive in AI and computer vision
(and now in most other fields) that it
is taken for granted. More important
are the many shared tools and tech-

niques that exploit the computer
capabilities to achieve both AI and
computer vision. A nonexhaustive
list must include frame-representa-
tion techniques (Brooks 1981), expert
system machinery (Matsuyama
1990), probabilistic and uncertain
reasoning, search tree exploration
(Grimson 1990), generate-and-test
algorithms, constraint-satisfaction
systems (Brooks 1981; Waltz 1975),
hierarchical representations and rea-
soning methods (Fisher 1989), sym-
bolic and neural network (Hinton
1981) perspectives, and the embed-
ding of much domain-specific knowl-
edge. These shared techniques are
used mostly for what is loosely called
high-level vision, which is preoccupied
with symbol-to-symbol transforma-
tions.

Also shared by both domains is the
methodology of experimental pro-
gramming, in that the computer is
the ideal tool for performing experi-
ments to validate or explore intelli-
gent information-processing process-
es.

Conclusion
It is notable how easily the more gen-
eral characteristics of AI relate to the
more specific characteristics of com-
puter vision. Such a straightforward
characterization surely suggests that
the relationship is still strong. The
largely shared goals, plus the addi-
tional support of the shared interests
in philosophical underpinnings and
neurophysiological mechanisms and
processes, also strengthen the conclu-
sion.

To complete this essay, I look at a
few aspects of computer vision that
are intertwined with some of the cen-
tral issues of AI. To start with, let’s
consider nameability.

Computer vision at the highest lev-
els addresses recognition of objects
and actions. Because these entities are
not distinguishable merely by appear-
ance, this activity necessarily moves
into other areas of AI, such as natural
language for naming conventions,
commonsense reasoning, and
robotics (behavior). As the nameabili-
ty of the human world depends on
the humans that inhabit it, computer

vision must be based on the modes of
intelligence that provide the names.

However, once we have the names,
we also need some way to invoke
mental structures connected with the
names, that is, to select their model
from the visual description base that
potentially explains a set of visual
data. The details of how this selection
is done are not clear, but it is interest-
ing that the selection process regular-
ly appears in other subfields of AI,
such as the invoking of schema for
dialogue understanding, cases in
case-based reasoning, or appropriate
metalevel search heuristics.

Computer vision also requires
the ability to generalize and
reason about similarity. Sup-

pose we encounter a person whom
we have never seen before. We don’t
have to go sequentially: “Now, is this
a house, a dog, an apple, or …?” We
can directly generalize from the spe-
cific person’s appearance about the
general nature of the humanness. We
are not troubled much by new hair-
cuts or missing limbs. Somehow we
abstract into a space that compares
the generalizations.

Computer vision will need to
explore more case-based and oppor-
tunistic reasoning. It is well known
that people need a period of training
before they can achieve expert-level
performance at new, nonintuitive,
visual-interpretation tasks, such as x-
ray interpretation and radar-display
interpretation. It is also clear that
people sometimes use specific fea-
tures for search or identification—
cues (for example, the color of a book
or a scar distinguishing identical
twins). Some visual learning seems to
be largely iconic (for example, alpha-
betic letters, word groups). These
examples suggest the use of case
methods, with problem-specific com-
piled processes, rather than the use of
generic, high-level visual processes.
In addition, it is well-known that
people can compile explicit reasoning
into intuitive procedures, suggesting
that future vision systems might have
to apply their case-based reasoning in
both forms.
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Once our intelligent AI system is
capable of performing, it will need a
large visual knowledge base (a spe-
cialization of the general knowledge
base search [Lenat and Feigenbaum
1991]). For general expert perfor-
mance, a large corpus of common-
sense visual knowledge will be need-
ed, for example, how classes of
objects typically appear; how to dis-
criminate between specific classes;
and what an object’s material proper-
ties, likely contexts, and associations
are. The vision system will need to
build, extend, and generalize the
database from new examples. Models
of time, causality, general physical
principles, and uncertainty will be
needed to interpret the observations.

Through these themes, I am trying
to second-guess the future direction
for computer vision research. One
common thread is that there will be a
greater dependence on the methods
being developed for general AI sys-
tems: case-frame matching, case-
frame invocation, truth maintenance
systems, generalization, learning,
control of combinatorial search, and
so on. Some form of self-understand-
ing will be needed for feedback on
performance. Planning and focus-of-
attention mechanisms will be needed
to focus computational resources. At
the same time, computer vision will
become essential for a truly intelli-
gent autonomous AI machine, if only
for the ability to learn for itself (let
alone the philosophical contention
that an artifact cannot know the
world if it is incapable of acting in it
and, hence, sensing it). Hence, I must
conclude that the connections can
only grow stronger as the two fields
develop.

What is central to computer vision
are issues of how to represent what is
known and observable, how to rea-
son with this represented informa-
tion, and how to act on this knowl-
edge (controlling both internal and
external behavior). Because these will
always be three of the main founda-
tions of AI, there is no chance that
computer vision will ever drift far. In
the past decade, much computer
vision research has concentrated on
developing competent processes that
reliably extract useful low-level

descriptions of the world. As this
research matures, there will then be a
major increase in research that relates
these descriptions to stored represen-
tations of objects and situations,
again making clear the association
with AI.
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