
■ The University of Chicago’s robot, CHIP, is part of
the Animate Agent Project, aimed at understand-
ing the software architecture and knowledge rep-
resentations needed to build a general-purpose
robotic assistant. CHIP’s strategy for the Office
Cleanup event of the 1995 Robot Competition
and Exhibition was to scan an entire area system-
atically and, as collectible objects were identified,
pick them up and deposit them in the nearest
appropriate receptacle. This article describes CHIP

and its various systems and the ways in which
these elements combined to produce an effective
entry to the robot competition.

The University of Chicago’s robot, CHIP, is
part of the Animate Agent Project,
aimed at understanding the software

architecture and knowledge representations
needed to build a general-purpose robotic
assistant (Firby et al. 1995). The Animate
Agent Project defines two primary levels of
knowledge representation: (1) the skill level
consisting of modular processes that can be
configured in a variety of ways and (2) the
reactive task-execution level consisting of a
goal interpreter and a library of reactive
action packages (RAPs), or reactive plans, that
describe ways of achieving system goals.

One of the primary goals of the Animate
Agent Project is to develop a vocabulary of
skills and plans that can be used to achieve a
wide variety of everyday tasks. Thus, while
addressing the Office Cleanup event of the
1995 Robot Competition and Exhibition, we
were attempting to build generic skills and
RAPs that could be reused as building blocks
in RAPs for future tasks.

CHIP went into the cleanup competition
with a general-purpose strategy for cleaning
up a room. Broadly, the strategy was to scan

an entire area systematically and, as col-
lectible objects were identified, pick them up
and deposit them in the nearest appropriate
receptacle. This plan for cleaning up a room is
built from a collection of more general-pur-
pose operations, such as find-object-type,
move-to-target, and pick-up-target. In this
sense, only CHIP’s highest-level goals were pro-
grammed specifically for the robot competi-
tion, which was held in conjunction with the
Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI-95); the rest are
generic and are the building blocks for CHIP’s
future behavior.

CHIP the Robot
CHIP is the working robot at the Animate
Agent Laboratory at the University of Chica-
go. As illustrated in figure 1, CHIP is built on a
Real-World Interface three-wheeled synchro-
drive mobile base. This base is surrounded by
an octagonal bumper and supports a body
roughly three feet high. Around the middle of
the body is a ring of eight sonar sensors and
on top is a pair of color cameras mounted on
a computer-controlled pan-tilt platform.
Mounted in front of CHIP’s body where it can
reach the floor is a Heathkit Hero robot arm
that has been augmented with force and con-
tact sensors to get tactile feedback from the
gripper. On board, CHIP carries a 68000 com-
puter to manage the sensors and control the
arm and a 68030 computer to run the action
skills discussed later. Video from CHIP’s cam-
eras is broadcast off board to a DataCube
image-processing system attached to a SPARC-
20 workstation, where all vision processing is
done.

The software used for CHIP consists of a

Articles

SPRING 1996 71

Programming CHIP
for the IJCAI-95

Robot Competition

R. James Firby, Peter N. Prokopowicz,
Michael J. Swain, Roger E. Kahn, and David Franklin

Copyright © 1996, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1996 / $2.00

AI Magazine Volume 17 Number 1 (1996) (© AAAI)

variety of connected systems. The low-level
motor and sensor-processing software is writ-
ten in C and runs on board. The concurrent,
perceptual-motor skills that make up CHIP’s
modular control system are written in CRL

(Firby 1994a), with some running on board
the robot and others running off board on a
MACINTOSH computer. The on-board and off-
board components are linked by a radio Eth-
ernet. The RAP system (Firby 1995, 1994b,
1989) for task-level sequencing of the modu-
lar skills is written in LISP and runs off board
on the MACINTOSH where it interfaces with the
CRL skill system. Vision processing (Kahn and
Swain 1995) is done off board on the SPARC-20
and communicates with other skills and the
RAP system on the Ethernet. The vision sys-
tem, the perceptual-motor skills, and the RAP
task-execution system make up the animate
agent architecture for intelligent, real-time
robot control, as shown in figure 2.

The Animate Agent Architecture
The RAP system is designed to deal with
achieving goals in a dynamic environment.
Each RAP task description encodes a set of
methods for carrying out the task in different
situations, a success check to tell when the
task has accomplished its purpose, and nota-
tions that describe when things are not going
as expected. At run time, a RAP task examines
its methods and selects one that is appropri-
ate in the current situation. By doing method
selection at run time, RAPs are more likely to
select the best method, even if the world is
changing or contains details that cannot be
predicted in advance. RAP methods can also
include other RAP tasks as subgoals, and the
resulting hierarchy helps the system to cope
with complexity by specializing actions
through many different levels of detail. RAP
methods also include annotations that speci-
fy assumed constraints and expected subtask
results. These annotations are monitored dur-
ing the execution of the method and cause
the method to fail when they are not met.
Monitoring expectations helps the system to
recognize early that a selected method has
become invalid because of changing circum-
stances or unexpected events. To further
increase robustness, a RAP task includes a suc-
cess test to confirm that a method has suc-
ceeded in achieving its goal. If the success test
is false after a method has completed, the
RAP task continues to run, selecting alterna-
tive methods until the success test is satisfied,
or there are no methods to try. This tenacious
execution allows a task to recover when the

Articles

72 AI MAGAZINE

Figure 1. CHIP the Robot.

RAP Executor

Perception
Skills

Action
Skills

RAP
Library

World
Model

World

Tasks

RequestsRequests
Results

Figure 2. The Animate Agent Architecture.

information it uses to select a method is
incorrect, when actions don’t have their
intended effects, or when the situation
changes while a method is executing.

The skill system is designed to deal with
soft real-time control of the robot’s actuators.
The skill system is a network of sensing and
action processes, defined by separate pro-
grams, that can be enabled or disabled at will.
When a skill is enabled, it receives a set of
parameters and begins to run. Running skills
can access current sensor values, control actu-
ator set points, and communicate with one
another through global channels. The actual
behavior of the robot at any given moment is
the result of the enabled skills acting on
input from the environment. Thus, the
behavior of the robot (that is, its apparent
immediate goal) can be changed by changing
the set of active processes.

The RAP system refines tasks into com-
mands that program the skill system. These
commands enable skills and connect them
into control networks to carry out activities
in the situations encountered at run time.
Goal-directed behavior results from task
refinements that generate a sequence of dif-
ferent skill-system configurations.

Basic Skills
The basic skills used by CHIP during the com-
petition can be broken down into perception
skills for extracting visual information from
the world and action skills for effecting
changes in the world. While CHIP is carrying

out a given activity, a combination of these
skills will typically be running concurrently
and working together to control the robot.

Perception
One of the key features of the architecture
that makes the trash cleanup task possible is
the ability to easily use different sensing
strategies for different tasks. This feature is
particularly important when building a sys-
tem that uses vision for a wide variety of
tasks because different tasks will typically
require visual data to be processed in differ-
ent ways. For the office cleanup task, CHIP

used three different vision-processing algo-
rithms: (1) an algorithm for finding and clas-
sifying small objects on the floor, (2) an algo-
rithm for tracking a selected small object, and
(3) an algorithm for finding objects against
more complex backgrounds.

Finding and Tracking Trash CHIP can
recognize a broad class of small objects when
seen against a relatively clean background.
The algorithm for this process has four steps:
First, an edge operator is run over the visual
scene to create an edge image, which is then
segmented into regions that might be possi-
ble objects (figure 3). Second, the size, aspect
ratio, edge density, average color, fraction of
white, and contour regularity are computed
for each possible object. Third, the resulting
feature vector for each object is classified
against a set of fuzzy exemplars by choosing
the nearest neighbor within a maximal dis-
tance. We entered the competition with

Articles

SPRING 1996 73

Figure 3. Trash: Raw Image, Edge Image, and Filtered Image.

and segmenting out a single object region.
The region is assumed to correspond to the
piece of trash being tracked, and the tracker
returns its location. This process is repeated
as fast as possible so that as CHIP moves, the
piece of trash stays within the small search
region of the tracker. If the tracker fails to
find a possible segmented object in the small
search region, it doubles the size of the search
region and tries again, repeating the process
until it finds an object, or it has searched the
whole scene.

Finding Trash Cans During the competi-
tion, trash cans could not be segmented easi-
ly from the background using edge data alone
because they were along the walls in the of-
fice near corners, furniture, and other objects.
To find and recognize objects that are not eas-
ily separated from the background, CHIP used
a two-step algorithm, illustrated in figure 5.
First, the scene was examined using color-his-
togram back projection (Swain and Ballard
1991) to find areas containing the same col-
ors as the object. An edge operator was then
applied to these areas followed by a soft edge-
template–matching algorithm that includes
adjustments for viewpoint transform. This
algorithm uses the Haussdorff distance (Hut-
tenlocher and Rucklidge 1992) to compare
different possible template matches, and the
best match gives the exact location, size, and
pose of the object. For the competition, we
used the distinctive colors of the trash can
and recycling bin labels to locate possible
cans and a set of six known views of the
object to match against (figure 6). Unfortu-
nately, even using fast color back projection
to reduce the area searched by the Haussdorff
template matcher, this algorithm took several
tens of seconds.

The same problems of low resolution and
calibration error that arise when finding trash
also arise when finding trash cans. Trash can
locations from the template-matching rou-
tine are only approximate and must be
refined as CHIP gets closer and lines up to drop
in a piece of trash. For this process, the same
template-matching skill is used but at a much
lower resolution. Starting with a lower-resolu-
tion image speeds the matching process sig-
nificantly but prevents CHIP from seeing the
trash can unless it is close at hand.

Action
The basic skills that CHIP uses for taking action
fall into three categories: (1) skills for moving
CHIP’s arm, (2) skills for moving CHIP from one
place to another, and (3) skills for moving the
pan-tilt head that carries CHIP’s cameras.

exemplars for generic cans that could handle
essentially any drink can, cups (either white
or colored), and balls of paper—a vestige of
the 1994 competition. Finally, the relative
location of each object with respect to the
robot is calculated using the camera height,
orientation with respect to CHIP’s body, and
the location of the object in the image. The
end result is that CHIP knows the type and the
location of all the pieces of trash in the cur-
rent scene.

However, the location calculated for each
piece of trash is only approximate. Calibra-
tion errors and low visual resolution combine
to make a trash location more uncertain the
farther away it is. Furthermore, as CHIP moves
toward a piece of trash, actuator error has the
effect of increasing the uncertainty of the
piece’s location. To compensate for these
errors, CHIP must track the piece of trash it is
approaching while it is moving.

The visual process for tracking a piece of
trash is simpler than for identifying trash
because we want the process to run as fast as
possible. The trash tracker uses two heuristics
to reduce processing time. First, CHIP knows
roughly where the piece of trash is supposed
to be (from the previous algorithm), so the
tracking algorithm only looks at a small por-
tion of the image around that area (figure 4).
Second, the trash tracker only performs the
first step of the trash-finding algorithm, com-
puting the edge image over the small region

Articles

74 AI MAGAZINE

Figure 4. Tracking Trash: Target and Next Search Area.

Manipulating Objects The skills used to
control CHIP’s arm include a skill to move the
wrist to a given point in front of CHIP, a skill
to tilt and twist the wrist, and several skills to
open and close the gripper. Multiple gripper
skills are used because of the variety of differ-
ent stopping conditions required in different
situations. For example, a generic skill for set-
ting the gripper width to a specific value is
used to open the gripper in preparation for
picking up a piece of trash. This skill will
open or close the gripper to get to the desired
width and will signal when the goal is
reached or when the gripper gets stuck and

can’t move. Another skill is used to grasp
objects by closing the gripper until a specific
pressure is generated. A different skill is used
to let go of an object by opening the gripper
until either its finger sensors signal the grip-
per is empty, the gripper is open as far as it
will go, or the gripper gets stuck and can’t
move. A fourth skill is used to close the grip-
per until the fingers touch so that the arm
can be tucked away while CHIP is moving with
its hand empty. The skills associated with
CHIP’s arm do not currently use visual feed-
back or account for obstacles in the arm’s
work space.

Articles

SPRING 1996 75

Figure 5. Trash Cans: Original Scene with Color Areas Boxed, Edges for Areas of Interest, and Haussdorff Match.

Figure 6. Trash Can Haussdorff Models.

Once CHIP is aligned with a piece of trash,
the arm is down near the ground, and the
gripper is open, another skill is used to move
CHIP straight forward until the gripper detects
an object between its fingers. This skill signals
completion when an object is detected in the
gripper, when a certain distance has been tra-
versed without detecting an object, or when
the fingers bump into something.

Moving to Locations CHIP uses two basic
skills for moving from place to place: (1) one
to turn to a particular heading and (2) one to
move to a particular location. The turn skill
turns CHIP in the appropriate direction and
signals completion when CHIP is facing the
right way. It also monitors the sonar sensors

CHIP’s arm can only move in a vertical
plane directed forward; so, CHIP must be lined
up precisely with objects on the floor to be
able to reach them. This requirement is met
by a special skill for aligning the center of
CHIP’s body with a target location at a precise
standoff distance. The skill signals when the
alignment is good or when the robot cannot
move without hitting something. This skill
relies on other skills to generate the target
location, and it can be used to align with a
variety of objects or even a dead-reckoned
location. We use the trash-tracking skill to
align with a piece of trash and the low-resolu-
tion Haussdorf template-matching skill to
align with a trash can.

Articles

76 AI MAGAZINE

R

R

T

T

Figure 7. Areas Searched for Trash during Competition.
The trash cans and recycling bins are marked as squares. A known can is also shown as a dot.

and moves CHIP backward, if possible, to
avoid bumping the arm while turning. If CHIP

cannot move without bumping the arm or
backing into something, the skill signals that
CHIP is stuck. The move skill drives CHIP

toward the goal location, monitors sonar val-
ues, and uses a simple potential field obstacle-
avoidance strategy as it goes. This skill signals
when CHIP reaches the goal or when the
obstacle-avoidance strategy gets stuck. Like
the aligning skill, both turning and moving
rely on other skills to supply the target for
their actions. In this manner, different target-
generating skills can be used to get CHIP to
perform different actions at different times.
For example, a target generated by dead reck-
oning can be used to move CHIP to a particu-
lar location in space, or a visual-tracking skill
can be used to get CHIP to approach a specific
object and follow it if it moves.

Moving the Head Skills for moving the
pan-tilt head come in both feedback and
nonfeedback-driven varieties. There is a skill
for moving the head to a specified pan,
which signals when the movement is com-
plete, and a skill for panning the head to a
goal direction generated by another skill.
Combining this latter skill with a visual-track-
ing skill keeps the head pointed toward a
moving target. There are similar skills for
controlling tilt.

Map Building and
Object Memory

The basic algorithm used by CHIP for picking
up trash is to look for a piece of trash, pick it
up, look for a trash can, drop off the trash,
and repeat. However, we also want CHIP to
remember the locations of trash and trash
cans and be able to tell when all the trash is
gone. In a small office such as that used in
the competition, people don’t need to
remember where trash is because they can
quickly scan the entire floor to see if any is
around. The same scan also tells them when
the task is done because the entire floor is
clean. However, CHIP is nearsighted and can-
not accurately identify a piece of trash more
than eight feet away. Therefore, CHIP must
rely on memory to know where trash has
already been seen and which areas of the
office have already been cleaned up.

Mapping Areas Searched
To remember where CHIP has looked for trash
and trash cans, a binary grid in global coordi-
nates is maintained for both trash and cans.
Each time CHIP uses the visual skill for finding

trash, the wedge of floor space imaged by the
skill is recorded in the grid by setting the
points covered by the image. The grid is then
used by CHIP to search the office systematical-
ly for trash. When CHIP knows of no piece of
trash on the floor, it consults the grid to find
the nearest area that has not yet been exam-
ined. CHIP then moves to bring this area into
view and execute the trash-finding visual
skill. The visible area is updated in the grid,
and the next time CHIP is searching for trash,
a different, unexplored area is selected to look
at. Simple heuristics are used to prefer to
explore areas that can be seen by turning the
pan-tilt head; then those that can be explored
by turning the robot; and, finally, those that
require moving to a new vantage point. A
similar algorithm is used for keeping track of
where trash cans have been sought. The grid
showing where CHIP looked for trash during
the final event of the competition is shown
in figure 7.

Mapping Accessible Areas
In addition to keeping track of where visual
skills have looked, CHIP uses a simple occu-
pancy-grid technique to map office obstacles
using sonar data (Borenstein and Koren 1991;
Elfes 1989). This mapping happens passively,
in parallel with the basic task of cleaning the
office, and results in the construction of a
map of reachable areas. This map is used to
ensure that all vantage points chosen by the
algorithm for looking for trash and trash cans
are actually accessible. Furthermore, because
the office environment was sealed by walls
and closed doorways, once CHIP had checked
every accessible area for trash, it knew that
no more trash existed in the office, and the
task was complete. During the competition,
CHIP further constrained where it needed to
look for trash using the knowledge that the
office held four trash cans in the four corners.
Thus, once three trash cans were found, a
rectangle enclosing those cans marked the
area enclosed by the office. This heuristic also
helped to tell CHIP when to stop cleaning up,
even if a door was open, and there was acces-
sible space outside the office area. The occu-
pancy grid generated during the final event of
the competition is shown in figure 8.

Remembering Item Locations
Of course, along with remembering those
areas that have been explored, CHIP also
remembers where it has seen trash and trash
cans. The locations of these items are record-
ed in a simple database that supports looking
up the closest item of a particular type. CHIP

Articles

SPRING 1996 77

locations of trash pieces and trash cans were
recorded in the database as a direct result of
using the corresponding visual routines.

Putting It All Together
The skills and mapping processes described
earlier are not enough to do the trash cleanup
task by themselves. The RAP task-execution
system is used to decide what action CHIP

should perform next and, hence, chooses the
sequence of active skills that actually control
CHIP’s activities.

The RAP library used for the cleanup task is

then uses the heuristic of picking up trash it
knows about before exploring new areas.

Unlike pieces of trash, CHIP can see trash
cans all the way across the office and knew
that there were exactly two trash cans and
two recycling bins. This information led to
the heuristic that CHIP use a known trash can
if it was facing toward one after picking up a
piece of trash or that it look around first if it
was facing away from a known can, and some
trash cans had not yet been found. The result
of this heuristic was that CHIP found all four
trash cans early and then always moved to
the closest can of the appropriate type. The

Articles

78 AI MAGAZINE

R

R

T

T

Figure 8. Occupancy Grid Generated during Competition.

organized as much as possible around
reusable subtasks that can be used in future
tasks as well. These subtasks include moving
the robot from place to place, searching for
items in the world, manipulating objects, and
doing the trash cleanup task itself.

Moving to a New Location
The basic RAP plans for moving CHIP to a giv-
en goal location consist of sequences of the
turning, moving, and tracking skills described
previously. These plans are variations on the
following sequence:

Step 1: Enable a skill to track the goal loca-
tion using odometry and dead reckoning. Use
this skill as the target generator for the skills
to follow.

Step 2: If CHIP is not facing within 30
degrees of the goal location, enable the turn
skill to turn CHIP in roughly the correct
direction. Signal completion when facing the
correct way.

Step 3: Enable the skill to move CHIP

toward the goal location. Signal completion
when CHIP is close to the goal.

Step 4: If CHIP is not facing toward the goal,
enable the turn skill again to turn CHIP in the
correct direction. Signal completion when
facing the correct way.

Step 5: Disable the dead-reckoning skill
that generates the target location for the
motion skills.

For the office cleanup task, all goal loca-
tions are either object locations from the item
database or vantage points for areas yet to
explore. However, in other situations, differ-
ent goal-tracking skills can be used in step 1
to get CHIP to follow a visual target or
approach a moving object.

These RAP methods can fail if the goal
location cannot be reached. In particular,
when moving to an unexplored area, CHIP

might encounter new obstacles that prevent
achieving the goal. The movement skill rec-
ognizes this condition by monitoring
progress toward a goal and signaling when
progress is not being made. The RAPs used in
the competition simply fail in this case.

Searching for Trash and Trash Cans
One of the key aspects of the office cleanup
task is the need to search the world for trash
and trash cans. This behavior is encoded in
CHIP as a collection of RAPs that use the spa-
tial memory described previously to execute
the following basic plan:

Step 1: Select an unexplored area nearby
using the memory of areas already explored
looking for this object type.

Step 2: Use the movement subtasks
described earlier to move to a good vantage
point for viewing the area.

Step 3: Execute the appropriate visual skill
for finding the desired item, and continue
when the skill completes.

Step 4: If an item of the correct type was
added to memory, succeed; else, repeat.

Steps 1 and 4 in this plan are actions on
memory, step 2 is an instantiation of a RAP
subtask, and step 3 enables a visual skill and
waits for its completion.

This basic method can fail if there are no
unexplored, accessible areas for the object or
if the selected area cannot be reached. In the
first case, the searching RAP simply reports
failure because there is nowhere left to look.
In the second case, the searching RAP catch-
es the movement failure and simply repeats.
The mapping processes will have detected
the obstacles blocking progress, and the next
iteration of the RAP will select a new area
that is accessible based on this new informa-
tion as well.

Picking Up and Dropping Off Trash
Once a piece of trash or a trash can has been
found and approached, the next step is to
pick up the trash or drop it off. The sequence
of activities required to pick up a nearby
piece of trash are as follows:

Step 1: Begin tracking the piece of trash
with the visual trash tracker, and use output
of this skill as the goal for aligning the robot
near enough for a good grasp.

Step 2: Lower the arm near the ground,
keeping the wrist horizontal, and open the
gripper as wide as possible.

Step 3: Move forward until the object
comes between the fingers of the gripper.

Step 4: Close the gripper until an appropri-
ate pressure is reached.

Step 5: Move the arm up into the position
for holding the trash while moving.

The first step is accomplished with a collec-
tion of concurrent skills for tracking the
object and orienting the robot. The next step
is really three steps done in parallel by acti-
vating concurrent skills for moving the arm,
the wrist, and the gripper. The third, fourth,
and fifth steps each correspond to activating
individual skills and waiting for them to sig-
nal completion or some problem. As with the
movement RAPs, this plan is parameterized
by object type, and step 1 can select different
tracking skills for different object types.
Therefore, the plan can be used for a variety
of objects besides trash.

Possible problems with this basic plan are

Articles

SPRING 1996 79

ble and simply asks for help.

The Complete Cleanup Task
The top-level RAP methods for the cleanup
task define the following plan:

Step 1: Select a piece of trash. If one is
known in the database, use it; else, search.

Step 2: Go to the trash.
Step 3: Pick it up.
Step 4: Select an appropriate trash can. If a

good one is known, use it; else, search.
Step 5: Go to the trash can.
Step 6: Drop off the trash.
Step 7: Repeat.
All these steps are parameterized by object

type and correspond to the instantiation of
RAP tasks already described. In particular, the
tasks of going to a piece of trash, a trash can,
or a search vantage point all instantiate the
same RAP methods. Selecting and searching
for trash and trash cans also use the same
underlying methods.

This basic plan can have a number of prob-
lems: No pieces of trash might be found, a
piece of trash might be unreachable, pickup
might fail, the trash might be dropped while
CHIP moves, or there might not be an accessi-
ble trash can. The first problem is caught by
this plan as a failure of the first step, and it
means the cleanup task is complete. The sec-
ond problem is dealt with by removing the
piece of trash from the memory database and
going back to step 1. If pickup fails, or the
piece of trash is dropped, the plan simply
restarts at step 1. If no trash cans can be
found, then the plan fails and so does the
cleanup task itself.

Summary
This task required implementing algorithms
for robot navigation; simple object manipula-
tion; and visual sensing for finding, identify-
ing, and tracking objects on the floor. It also
required integrating these pieces into coher-
ent plans to systematically pick up all the
trash in the office and deal with con-
tingencies such as missing a grasp, dropping
something that is being carried, or seeing
ghost trash or trash cans because of sensing
errors. The resulting implementation used 34
skills and 80 RAPs. Of these, only three top-
level RAPs were specific to the cleanup task.
We believe most of the RAPs and skills are
reusable in other tasks because they encode
relatively generic actions such as finding an
object, picking an object up, and moving to a
new location while coping with changes and
failures in a real-world environment.

that the trash tracker might lose the target
object, moving forward might miss placing
the object in the gripper, or closing the grip-
per might squeeze the object out from
between the fingers. In the first case, losing
track of the object probably means that some-
one snatched it away; so, the object is
removed from the memory database, and the
RAP fails. The second case can also be the
result of someone taking the object, or it can
be an alignment error. If someone took the
object, it should be removed from memory,
but if its an alignment error, CHIP should try
to pick it up again. At the competition, we
treated both of these cases as if the object had
vanished and removed it from the database.
We also did the same thing in the third case,
when the gripper closes without actually get-
ting the object. By treating all these failures
as the same, CHIP will “forget” about problem
pieces of trash and never try to pick them up
again. What should happen is that the area of
the world in which a grasp failure occurs
should be reexamined after the failure to see
if the piece of trash in question is still there.

A similar sequence of RAP steps is used to
drop the trash into the trash can once the
can is nearby:

Step 1: Begin tracking the trash can with
the low-resolution template tracker, and use
output of this skill as the goal for aligning the
robot.

Step 2: Raise the arm high enough to clear
the trash can, keeping the wrist horizontal.

Step 3: Move forward enough to remove
the offset between the hand and the trash
can put there by the aligning skill.

Step 4: Open the gripper until nothing is
between the fingers.

Step 5: Back up the same distance moved
forward.

Step 6: Move the arm and wrist down, and
close the gripper to get things ready for look-
ing around again.

Again, each of these steps corresponds to a
set of one or more skills being enabled to
actually control the activity.

This plan is subject to the same potential
tracking failure as the pickup plan while it is
aligning with the trash can. If the tracker loses
its target, the trash can in question is
assumed to have moved or, more likely, to
have been something incorrectly recognized
as a trash can. Thus, the trash can is removed
from the memory database, and the method
fails. Another possible error is that the piece
of trash being held does not drop from the
gripper when it is opened. With a piece of
trash stuck in its gripper, CHIP is really in trou-

Articles

80 AI MAGAZINE

By
treating
all these
failures

as the
same,

CHIP

will
“forget”

about
problem

pieces
of trash

and
never try

to pick
them up

again.

References
Borenstein, J., and Koren, Y. 1991. The Vector Field
Histogram—Fast Obstacle Avoidance for Mobile
Robots. IEEE Transactions on Robotics and Automa-
tion 7(3): 278–288.

Elfes, A. 1989. Using Occupancy Grids for Mobile
Robot Perception and Navigation. IEEE Computer
22(6): 46–57.

Firby, R. J. 1995. The RAP Language Manual, Ani-
mate Agent Project Working Note, AAP-6, Version
1, Computer Science Department, University of
Chicago.

Firby, R. J. 1994a. The CRL Manual, Animate Agent
Project Working Note, AAP-3, Version 1, Computer
Science Department, University of Chicago.

Firby, R. J. 1994b. Task Networks for Controlling
Continuous Processes. In Proceedings of the Second
International Conference on AI Planning Systems,
49–54. Menlo Park, Calif.: AAAI Press.

Firby, R. J. 1989. Adaptive Execution in Complex
Dynamic Worlds, Technical Report, YALEU/CSD/RR
#672, Computer Science Department, Yale Univer-
sity.

Firby, R. J.; Kahn, R. E.; Prokopowicz, P. N.; and
Swain, M. J. 1995. An Architecture for Vision and
Action. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, 72–79. San
Francisco, Calif.: Morgan Kaufmann.

Huttenlocher, D. P., and Rucklidge, W. J. 1992. A
Multi-Resolution Technique for Comparing Images
Using the Haussdorf Distance, Technical Report,
CUCS TR 92-1321, Department of Computer Sci-
ence, Cornell University.

Kahn, R. E., and Swain, M. J. 1995. Understanding
People Pointing: The PERSEUS System. In Proceedings
of the International Symposium on Computer
Vision, 569–574. Washington, D.C.: IEEE Computer
Society.

Swain, M. J., and Ballard, D. H. 1991. Color Index-
ing. International Journal of Computer Vision 7:11–32.

R. James Firby is an assistant
professor in the Department of
Computer Science at the Univer-
sity of Chicago. He received his
Ph.D. in computer science from
Yale University in early 1989 and
worked as a member of the tech-
nical staff at the Jet Propulsion
Laboratory through 1990. Firby’s

primary research interest is the development of
intelligent agents designed to work with humans in
complex environments. His work in this area is
embodied in several projects aimed at understand-
ing activities that require the real-time integration
of sensing, reactivity, goal-directed planning, and
situated natural language understanding.

Peter N. Prokopowicz is a post-
doctoral fellow in the AI Labora-
tory at the University of Chicago.
He is currently working on the
development of a new software
platform for active vision in
mobile robots. He received his
Ph.D. from the Institute for the
Learning Sciences at Northwest-

ern University and his M.S. and B.S. from the Uni-
versity of Michigan. His thesis presented a compu-
tational neural model of perceptual integration
across eye movements. He was a member of the
technical staff at AT&T Bell Laboratories for several
years. Recently, he cofounded Perceptual Robotics,
Inc., which develops custom Internet-based remote
video technology, and the Electronic Community,
Inc., which provides the NETHOMES World Wide Web
publishing service.

Michael J. Swain received his
Ph.D. in computer science from
the University of Rochester in
1990. He is now assistant profes-
sor of computer science at the
University of Chicago. Swain’s
current research interests include
active vision, gesture recognition,
and content-based indexing into

image and video databases. Swain organized the
1991 National Science Foundation Workshop on
Active Vision and edited the International Journal of
Computer Vision special issues on active vision in
1993 and 1994.

Roger E. Kahn is a graduate stu-
dent in the AI Lab at the Univer-
sity of Chicago. He attended Kala-
mazoo College from 1987 to 1991
and studied at the Eotvos Lorand
University on the Budapest
Semesters in Mathematics pro-
gram. His current research
involves developing PERSEUS, a

real-time robot vision platform, and using it to rec-
ognize gestures.

David Franklin received his B.S.
in computer science from the
University of Washington in
1994. He is currently a Ph.D. stu-
dent at the University of Chicago,
where his current research
interests include autonomous
mobile robotics and the represen-
tation of action.

Articles

SPRING 1996 81

