
■ Planning—the ability to synthesize a course of
action to achieve desired goals—is an important
part of intelligent agency and has thus received
significant attention within AI for more than 30
years. Work on efficient planning algorithms still
continues to be a hot topic for research in AI and
has led to several exciting developments in the
past few years. This article provides a tutorial
introduction to all the algorithms and approach-
es to the planning problem in AI. To fulfill this
ambitious objective, I introduce a generalized
approach to plan synthesis called refinement
planning and show that in its various guises,
refinement planning subsumes most of the algo-
rithms that have been, or are being, developed. It
is hoped that this unifying overview provides the
reader with a brand-name–free appreciation of
the essential issues in planning.

Planning is the problem of synthesizing a
course of action that, when executed,
takes an agent from a given initial state

to a desired goal state. Automating plan syn-
thesis has been an important research goal in
AI for more than 30 years. A large variety of
algorithms, with differing empirical trade-
offs, have been developed over this period.
Research in this area is far from complete,
with many exciting new algorithms continu-
ing to emerge in recent years.

To a student of planning literature, the wel-
ter of ideas and algorithms for plan synthesis
can at first be bewildering. I remedy this situ-
ation by providing a unified overview of the
approaches for plan synthesis. I describe a
general and powerful plan-synthesis paradigm
called refinement planning and show that a
majority of the traditional, as well as the new-
er, plan-synthesis approaches are special cases
of this paradigm. It is my hope that this uni-
fying treatment separates the essential trade-

offs from the peripheral ones (for example,
brand-name affiliations) and provides the
reader with a firm understanding of the exist-
ing work as well as a feel for the important
open research questions.

In this article, I briefly discuss the (classical)
planning problem in AI and provide a
chronology of the many existing approaches.
I then propose refinement planning as a way
of unifying all these approaches and present
the formal framework for refinement plan-
ning. Next, I describe the refinement strate-
gies that correspond to existing planners. I
then discuss the trade-offs among different
refinement-planning algorithms. Finally, I
describe some promising new directions for
scaling up refinement-planning algorithms.

Planning and Classical Planning
Intelligent agency involves controlling the
evolution of external environments in desir-
able ways. Planning provides a way in which
the agent can maximize its chances of achiev-
ing this control. Informally, a plan can be
seen as a course of action that the agent
decides on based on its overall goals, informa-
tion about the current state of the environ-
ment, and the dynamics of the evolution of
its environment (figure 1).

The complexity of plan synthesis depends
on a variety of properties of the environment
and the agent, including whether (1) the
environment evolves only in response to the
agent’s actions or also independently, (2) the
state of the environment is observable or par-
tially hidden, (3) the sensors of the agent are
powerful enough to perceive the state of the
environment, and (4) the agent’s actions have
deterministic or stochastic effects on the state

Articles

SUMMER 1997 67

Refinement Planning as a
Unifying Framework for

Plan Synthesis
Subbarao Kambhampati

Copyright © 1997, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1997 / $2.00

AI Magazine Volume 18 Number 2 (1997) (© AAAI)

tic effects on the state of the environment.
Plan synthesis under these conditions has
come to be known as the classical planning
problem.

The classical planning problem is thus
specified (figure 2) by describing the initial
state of the world, the desired goal state, and
a set of deterministic actions. The objective is
to find a sequence of these actions, which,
when executed from the initial state, lead the
agent to the goal state.

Despite its apparent simplicity and limited
scope, the classical planning problem is still
important in understanding the structure of
intelligent agency. Work on classical planning
has historically also helped our understand-
ing of planning under nonclassical assump-
tions. The problem itself is computationally
hard—P-space hard or worse (Erol, Nau, and
Subrahmanian 1995)—and a significant
amount of research has gone into efficient
search-based formulations.

Modeling Actions and States
We now look at the way the classical plan-
ning problem is modeled. Let us use a simple
example scenario—that of transporting two
packets from the earth to the moon, using a
single rocket. Figure 3 illustrates this prob-
lem.

States of the world are conventionally
modeled in terms of a set of binary state vari-
ables (also referred to as conditions). The ini-
tial state is assumed to be specified complete-
ly; so, negated conditions (that is, state-
variables with false values) need not be
shown. Goals involve achieving the specified
(true-false) values for certain state variables.

Actions are modeled as state-transforma-
tion functions, with preconditions and
effects. A widely used action syntax is Ped-
nault’s (1988) action description language
(ADL), where preconditions and effects are
first-order quantified formulas (with no dis-
junction in the effects formula because the
actions are deterministic).

We have three actions in our rocket
domain (figure 4): (1) Load, which causes a
package to be in the rocket; (2) Unload, which
gets it out; and (3) Fly, which takes the rocket
and its contents to the moon. Notice the
quantified and negated effects in the case of
Fly. Its second effect says that every box that
is in the rocket—before the Fly action is exe-
cuted—will be at the moon after the action. It
might be worth noting that the implication
in the second effect of Fly is not a strict logi-
cal implication but, rather, a shorthand nota-
tion for saying that when In(x) holds for any

of the environment. Perhaps the simplest
case of planning occurs when the environ-
ment is static (in that it changes only in
response to the agent’s actions) and observ-
able, and the agent’s actions have determinis-

Articles

68 AI MAGAZINE

Environment

Goals

(static)
(observable)

Perception
(perfect)

Action
(deterministic)

What action
next?

Figure 1. Role of Planning in Intelligent Agency.

I = initial state G = goal state Oi(prec) (effects)

[I] Oi Oj O k Om [G]

Figure 2. Classical Planning Problem.

Earth

At(A,E), At(B,E), At(R,E)

At(A,M),At(B,M)
¬In(A), ¬In(B)

A
po

llo
 1

3

Figure 3. Rocket Domain.

x in the state in which Fly is executed,
At(x,M) and ¬At(x,E) will be true in the state
resulting after the execution.

Action Application
As mentioned earlier, actions are seen as state-
transformation functions. In particular, an
action can be executed in any state where its
preconditions hold; on execution, the state is
modified such that state variables named in
the effects have the specified values, and the
remaining variables retain their values. The
state after the execution is undefined if the
preconditions of the action do not hold in the
current state. The left-hand side of figure 4
shows the result of executing the Fly() action
in the initial state of the rocket problem. This
process is also sometimes referred to as pro-
gressing a state through an action.

It is also useful to define the notion of
regressing a state through an action. Regressing
a state s through an action a gives the weakest
conditions that must hold before a was exe-
cuted, such that all the conditions in s hold
after the execution. A condition c regresses
over an action a to c if a has no effect corre-
sponding to c, regresses to true if a has an
effect c, and regresses to d if a has a condition-
al effect d => c. It regresses to false if a has an
effect ¬c (implying that there is no state of the
world where a can be executed to give rise to
c). Regression of a state over an action
involves regressing the individual conditions
over the action and adding the preconditions
of the action to the combined result. The
right-hand side of figure 4 illustrates the pro-
cess of regressing the final (goal) state of the

rocket problem through the action Fly().

Verifying a Solution
Having described how actions transform
states, I can now provide a straightforward
way of checking if a given action sequence is a
solution to the planning problem under con-
sideration. We start by simulating the applica-
tion of the first action of the action sequence
in the initial state of the problem. If the
action applies successfully, the second action
is applied in the resulting state, and so on.
Finally, we check to see if the state resulting
from the application of the last action of the
action sequence is a goal state (that is, whe-
ther the state variables named in the goal
specification of the problem occur in the state
with the specified values). An action sequence
fails to be a solution if either some action in
the sequence cannot be executed in the state
immediately preceding it or if the final state is
not a goal state. An alternate way of verifying
if the action sequence is a solution is to start
by regressing the goal state over the last
action of the sequence, regressing the result-
ing state over the second to the last action,
and so on. The action sequence is a solution if
all the conditions in the state resulting after
regression over the first action of the sequence
are present in the initial state, and none of
the intermediate states are inconsistent (have
the condition false in them).

Chronology of
Classical Planning Approaches
Plan generation under classical assumptions
has received widespread attention, and a

Articles

SUMMER 1997 69

Fly()

Progress Regress

Partial states

At(A,E)
At(R,E)
In(B)
At(B,E)

At(A,E)
At(R,M)
In(B)
At(B,M)

At(A,E)
At(R,E)
¬In(A)
In(B)

At(A,E)
At(B,M)Fly()

Figure 4. Progression and Regression of World States through Actions.

constraint-satisfaction problem have become
popular (Joslin and Pollack 1996; Kautz and
Selman 1996; Blum and Furst 1995).

One of my aims in this article is to put all
these approaches in a logically coherent
framework so that we can see the essential
connections among them. I use the refine-
ment planning framework to effect such a
unification.

Refinement Planning: Overview
Because a solution for a planning problem is
ultimately a sequence of actions, plan synthe-
sis in a general sense involves sorting our way
through the set of all action sequences until
we end up with a sequence that is a solution.
Thus, we have the essential idea behind
refinement planning, that is, the process of
starting with the set of all action sequences
and gradually narrowing it down to reach the
set of all solutions. The sets of action se-
quences are represented and manipulated in
terms of partial plans that can be seen as a
collection of constraints. The action se-
quences denoted by a partial plan, that is,
those that are consistent with its constraints,
are called its candidates. For technical reasons
that become clear later, we find it convenient
to think in terms of sets of partial plans
(instead of single partial plans). A set of par-

large variety of planning algorithms have
been developed (figure 5). Initial approaches
to the planning problem have attempted to
cast planning as a theorem-proving activity
(Green 1969). The inefficiency of first-order
theorem provers in existence at that time,
coupled with the difficulty of handling the
“frame problem”1 in first-order logic, has led
to search-based approaches in which the STRIPS

assumption—namely, the assumption that
any condition not mentioned in the effects
list of an action remains unchanged after the
action—is hard wired. Perhaps the first of
these search-based planners was STRIPS (Fikes
and Nilsson 1971), which searched in the
space of world states using means-ends analy-
sis (see Making State-Space Refinements Goal
Directed). Searching in the space of states was
found to be inflexible in some cases, and a
new breed of approaches formulated planning
as a search in the space of partially construct-
ed plans (Penberthy and Weld 1992;
McAllester and Rosenblitt 1991; Chapman
1987; Tate 1975). A closely related formula-
tion called hierarchical planning (Wilkins 1984;
Tate 1977; Sacerdoti 1972) allowed a partial
plan to contain abstract actions that can
incrementally be reduced to concrete actions.
More recently, encouraged by the availability
of high-performance constraint-satisfaction
algorithms, formulations of planning as a

Articles

70 AI MAGAZINE

Search in the space of
 Task networks (reduction

 of nonprimitive tasks)
(NOAH, 1975; NONLIN, 1977;

SIPE, 1985-; O-Plan, 1986)

Planning as Search
(1970 – 1990)

Search in the space of States
 (progression, regression, MEA)
(STRIPS, 1971; PRODIGY, 1987)

Search in the space of Plans
(total order, partial order,

protections, MTC)
(Interplan, 1975; Tweak, 1987;

SNLP, 1991; UCPOP, 1992)

Planning as (constraint) Satisfaction
(Graphplan, 1995; SATPLAN, 1996)

Planning as Theorem Proving
(Green’s planner, 1969)

Figure 5. A Chronology of Ideas in Classical Planning.

tial plans is called a plan set, and its con-
stituent partial plans are referred to as the
components. The candidate set of a plan set is
defined as the union of the candidate sets of
its components.

Plan synthesis in refinement planning
involves a “split and prune” search (Pearl
1980). The pruning is carried out by applying
refinement operations to a given plan set.
The aim is to incrementally get rid of nonso-
lutions from the candidate set. The splitting
part involves pushing the component partial
plans of a plan set into different branches of
the search tree. The motivation is to reduce
the cost of applying refinements and termina-
tion check to the plan set and to support
more focused pruning. Termination test
involves checking if the set of minimal-
length candidates of the current plan set con-
tains a solution.

To make these ideas precise, we now look
at the syntax and semantics of partial plans
and refinement operations.

Partial Plan Representation: Syntax
A partial plan can be seen as any set of con-
straints that together delineate which action
sequences belong to the plan’s candidate set
and which do not. One representation2 that
is sufficient for our purpose models partial
plans as a set of steps, ordering constraints
between the steps, and auxiliary constraints.3

Each plan step is identified with a unique
step number and corresponds to an action
(allowing two different steps to correspond to
the same action, thus facilitating plans con-
taining more than one instance of a given
action). There can be two types of ordering
constraint between a pair of steps: (1) prece-
dence and (2) contiguity. A precedence con-
straint requires one step to precede the sec-
ond step (without precluding other steps
from coming between the two), and a conti-

guity constraint requires that the two steps
come immediately next to each other.

Auxiliary constraints involve statements
about the truth of certain conditions over
certain time intervals. We are interested in
two types of auxiliary constraint: (1) interval-
preservation constraints (IPCs), which require
nonviolation of a condition over an interval
(no action having an effect ¬p is allowed in
an interval where the condition p is to be pre-
served), and (2) point-truth constraints, which
require the truth of a condition at a particular
time point.

A linearization of a partial plan is a permu-
tation of its steps that is consistent with all its
ordering constraints (in other words, a topo-
logical sort). A safe linearization is a lineariza-
tion of the plan that is also consistent with
the auxiliary constraints.

Figure 6 illustrates a plan from our rocket
domain: Step 0 corresponds to the beginning
of the plan. Step ∞ corresponds to the end of
the plan. By convention, the effects of step 0
correspond to the conditions that hold in the
initial state of the plan, and the precondi-
tions of step ∞ correspond to the conditions
that must hold in the goal state. There are
four steps other than 0 and ∞. Steps 1, 2, 3,
and 4 correspond respectively to the actions
Load(A), Fly(), Load(B), and Unload(A). The
steps 0 and 1 are contiguous, as are the steps
4 and ∞ (illustrated in the figure by putting
them next to each other); step 2 precedes 4;
and the condition At(R,E) must be preserved
between 0 and 3 (illustrated in figure 6 by a
labeled arc between the steps). Finally, the
condition In(A) must hold in the state preced-
ing the execution of step 2. The sequences 0-
1-2-3-4-∞ and 0-1-3-2-4-∞ are linearizations of
this plan. Of these, the second one is a safe
linearization, but the first one is not (because
step 2 will violate the interval-preservation
constraint on At(R,E) between 0 and 3).

Articles

SUMMER 1997 71

1: Load(A) 2: Fly() 4: Unload(A)0 ∞
In(A)@2

3: Load(B)

Contiguity
PrecedenceAt(R,E)

IPC

IPC = Interval preservation constraint.

Figure 6. An Example (Partial) Plan in the Rocket Domain.

another instance of the action Fly() that does
not respect the IPC on At(R,E).

Connecting Syntax and
Semantics of Partial Plans
Figure 8 summarizes the connection between
the syntax and the semantics of a partial
plan. Each partial plan has, at most, an expo-
nential number of linearizations, some of
which are safe with respect to the auxiliary
constraints. Each safe linearization corre-
sponds to a minimal candidate of the plan.
Thus, there are, at most, an exponential num-
ber of minimal candidates. A potentially
infinite number of additional candidates can
be derived from each minimal candidate by
padding it with new actions without violat-
ing auxiliary constraints. Minimal candidates
can thus be seen as the generators of the can-
didate set of the plan. The one-to-one corre-
spondence between safe linearizations and
minimal candidates implies that a plan with
no safe linearizations will have an empty can-
didate set.

Minimal candidates and solution extrac-
tion: Minimal candidates have another
important role from the point of view of
refinement planning. We see in the following
discussion that some refinement strategies
add new step constraints to a partial plan.
Thus, they simultaneously shrink the candi-
date set of the plan and increase the length of
its minimal candidates. This property pro-
vides an incremental way of exploring the
(potentially infinite) candidate set of a partial
plan for solutions: Examine the minimal can-
didates of the plan after each refinement to
see if any of them correspond to solutions.
Checking if a minimal candidate is a solution
can be done in linear time by simulating the
execution of the minimal candidate and

Partial Plan Representation: Semantics
The semantics of the partial plans are given
in terms of candidate sets. A candidate can be
seen as a model of the partial plan. An action
sequence belongs to the candidate set of a
partial plan if it contains the actions corre-
sponding to all the steps of the partial plan in
an order consistent with the ordering con-
straints on the plan, and it also satisfies all
auxiliary constraints. For the plan shown in
figure 6, the action sequences shown on the
left in figure 7 are candidates, but those on
the right are noncandidates.

Notice that the candidates might contain
more actions than are present in the partial
plan; thus, a plan’s candidate set can poten-
tially be infinite. We define the notion of
minimal candidates to let us restrict our
attention to a finite subset of the possibly
infinite candidate set. Specifically, minimal
candidates are candidates that only contain
the actions listed in the partial plan (thus,
their length is equal to the number of steps in
the plan other than 0 and ∞). The top candi-
date on the left of figure 9 is a minimal candi-
date, but the bottom one is not. There is a
one-to-one correspondence between the min-
imal candidates and the safe linearizations of
a plan. For example, the minimal candidate
on the top left of figure 7 corresponds to the
safe linearization 0-1-3-2-4-∞ (as can be
verified by translating the step names in the
latter to corresponding actions).

The sequences on the right of figure 7 are
noncandidates because both of them fail to
satisfy the auxiliary constraints. Specifically,
the first one corresponds to the unsafe lin-
earization 1-2-3-4-∞. The second noncandi-
date starts with the minimal candidate
[Load(A),Load(B),Fly(),Unload(A)] and adds

Articles

72 AI MAGAZINE

Candidates (∈ «P»)

 [Load(A),Load(B),Fly(),Unload(A)]

 [Load(A),Load(B),Fly(),
Unload(B),Unload(A)]

Noncandidates (∉ «P»)

 [Load(A),Fly(),Load(B),Unload(B)]

[Load(A),Fly(),Load(B),
Fly(),Unload(A)]

Minimal candidate. Corresponds to the
safe linearization [01324∞].

Corresponds to unsafe
 linearization [01234∞].

Figure 7. Candidate Set of a Plan.

checking to see if the final state corresponds
to a goal state (see Verifying a Solution).

Refinement Strategies
Refinements are best seen as canned proce-
dures that compute the consequences of the
metatheory of planning, and the domain the-
ory (in the form of actions), in the specific
context of the current partial plan. A refine-
ment strategy R maps a plan set P to another
plan set P9 such that the candidate set of P’ is
a subset of the candidate set of P. R is said to
be complete if P9 contains all the solutions of
P. It is said to be progressive if the candidate
set of P9 is a strict subset of the candidate set
of P. It is said to be strongly progressive if the
length of the minimal candidates increases
after the refinement. It is said to be systematic
if no action sequence falls in the candidate
set of more than one component of P9. We
can also define the progress factor of a
refinement strategy as the ratio between the
size of the candidate set of the refined plan
set and the size of the original plan set.

Completeness ensures that we don’t lose
solutions with the application of refinements.
Progressiveness ensures that refinement has
pruning power. Systematicity ensures that we
never consider the same candidate more than
once if we explore the components of the

plan set separately (see Introducing Splitting
into Refinement Planning).

Let us illustrate these notions with an
example. Figure 9 shows an example refine-
ment for our rocket problem. It takes the null
plan set, corresponding to all action
sequences, and maps it to a plan set contain-
ing three components. In this case, the
refinement is complete because no solution
to the rocket problem can start with any oth-
er action for the given initial state; progres-
sive because it eliminated action sequences
not beginning with Load(A), Load(B), or Fly()
from consideration; and systematic because
no action sequence will belong to the candi-
date set of more than one component (the
candidates of the three components will dif-
fer in the first action).

Refinement strategies are best seen as
canned inference procedures that compute
the consequences of the metatheory of plan-
ning, and the domain theory (in the form of
actions), in the specific context of the com-
mitments in the current partial plan. In this
case, given the theory of planning, which
says that solutions must have actions that are
executable in the states preceding them, and
the current plan set constraint that the state
of the world before the first step is the initial
state where the rocket and the packages are

Articles

SUMMER 1997 73

Partial Plan

Linearization 1 Linearization 2

Safe linearization 1 Safe linearization 2 ... Safe linearization m

Linearization 3 ... Linearization n

Minimal cand. 1 Minimal cand. 2 ... Minimal cand. m
+ + +

Derived
candidates

Reduce candidate set size.
Increase length of minimal candidates.Refinements

Syntax

Semantics

Derived
candidates

Derived
candidates

Figure 8. Relating the Syntax and the Semantics of a Partial Plan.

instantiations of this general refinement
planning template. However, most earlier
planners use a specialization of this template
that I discuss next.

Introducing Splitting into
Refinement Planning
Seen as an instantiation of split and prune
search, the previous algorithm does not do
any splitting. It is possible to add splitting to
the refinement process in a straightforward
way—to separate the individual components
of a plan set and handle them in different
search branches. The primary motivation for
this approach is to reduce the solution-extrac-
tion cost. After all, checking for solution in a
single partial plan is cheaper than searching
for a solution in a plan set. Another possible
advantage of handling individual compo-
nents of a plan set separately is that this tech-
nique, coupled with a depth-first search,
might make the process of plan generation
easier for humans to understand.

Notice that this search process will have
backtracking even for complete refinements.
Specifically, even if we know that the candi-
date set of a plan set P contains all the solu-
tions to the problem, we do not know how
they are distributed among the components
of P. We see later (see Trade-Off in Refinement
Planning) that the likelihood of the back-
tracking depends on the number and size of
the individual components of P, which can
be related to the nature of constraints added
by the refinement strategies.

The following algorithm template intro-
duces splitting into refinement planning:

Refine (P: Plan)

0*. If <<P>> is empty, Fail.

1. If SOL(P) returns a solution, terminate with
success.

2. Select a refinement strategy R.

on earth, the forward state-space refinement
infers that the only actions that can come as
the second step in the solution are Load(A),
Load(B), and Fly().

Planning Using Refinement Strategies
and Solution Extraction
Now, I present the general refinement plan-
ning template: It has three main steps. If the
current plan set has an extractable solu-
tion—which is checked by inspecting its min-
imal candidates to see if any of them is a
solution—we terminate. If not, we select a
refinement strategy R and apply it to the cur-
rent plan set to get a new plan set.

Refine (P: Plan set)

0*. If <<P>> is empty, Fail.

1. If a minimal candidate of P is a solution,
return it. End.

2. Select a refinement strategy R.
Apply R to P to get a new plan set P9.

3. Call Refine(P9).

As long as the selected refinement strategy
is complete, we never lose a solution. As long
as the refinements are progressive, for solvable
problems, we eventually reach a plan set, one
of whose minimal candidates is a solution.

The solution-extraction process involves
checking the minimal candidates (corre-
sponding to safe linearizations) of the plan to
see if any one of them are solutions. This pro-
cess can be cast as a model finding or satisfac-
tion process (Kautz and Selman 1996). Recall
that a candidate is a solution if each of the
actions in the sequence has its preconditions
satisfied in the state preceding the action.

As we see in Scale Up through Disjunctive
Representations and Constraint-Satisfaction
Techniques, some recent planners such as
GRAPHPLAN (Blum and Furst 1995) and SATPLAN

(Kautz and Selman 1996) can be seen as

Articles

74 AI MAGAZINE

 R

1: Load(A)0 ∞

1: Load(B)0 ∞

1: Fly()0 ∞

0 ∞

Figure 9. An Example Refinement Strategy (Forward State Space).

Apply R to P to get a new plan set P9.

3. Nondeterministically select a component
P9i of P9.

Call Refine(P9i).

It is worth noting the two new steps that
made their way. First, the components of the
plan set resulting after refinement are pushed
into the search space and are handled sepa-
rately (step 3). Thus, we confine the applica-
tion of refinement strategies to single plans.
Second, once we work on individual plans,
we can consider solution-extraction functions
that are cheaper than looking at all the mini-
mal candidates (as we see in the next sec-
tion).

This simple algorithm template forms the
main idea behind all existing refinement
planners. Various existing planners differ in
terms of the specific refinement strategies
they use in step 2. These refinement strategies
fall broadly into four types: (1) state space, (2)
plan space, (3) task reduction, and (4) tract-
ability. We now look at these four refinement
families in turn.

Existing Refinement Strategies
In this section, we look at the details of the
four different families of refinement strate-
gies. Before we start, it is useful to introduce
some additional terminology to describe the
structure of partial plans. Figure 10 shows an
example plan with its important structural
aspects marked. The prefix of the plan, that
is, the maximal set of steps constrained to be
contiguous to step 0 (more specifically, steps
s1, s2, ... sn such that 0*s1, s1*s2,...sn–1*sn) is
called the head of the plan. The last step of
the head is called the head step. Because we
know how to compute the state of the world
that results when an action is executed in a
given state, we can easily compute the state
of the world after all the steps in the head are
executed. We call this state the head state.
Similarly, the suffix of the plan is called the
tail of the plan, and the first step of the suffix
is called the tail step. The set of conditions
obtained by successively regressing the goal
state over the actions of the tail is called the
tail state. The tail state provides the weakest
conditions under which the actions in the
tail of the plan can be executed to result in a

Articles

SUMMER 1997 75

4: Fly()

3: Unload(A)0 ∞

In(B)

5: Load(B)

6: Unload(B)
Head Tail

Head fringe

Tail fringe

Head step tail step

In(A)
At(R,E)
At(B,E)
At(A,E)

Head state

Tail state

1: Load(A)

In(A,M)
At(B,M)
In(A)
¬In(B)

Figure 10. Nomenclature for Partial Plans.

with nonexecutable prefixes. It is also com-
plete because any solution must have an exe-
cutable prefix. It is systematic because each of
its components differs in the sequence of
steps in the plan head, and thus, their candi-
dates will have different prefixes. Finally, if
we are using only forward state-space refine-
ments, we can simplify the solution-extrac-
tion function considerably—we can termi-
nate as soon as the head state of a plan set
component contains its tail state. At that
point, the only minimal candidate of the
plan corresponds to a solution.

The version of the refinement we consid-
ered previously extends the head by one
action at a time, possibly leading to larger-
than-required number of components in the
resulting plan set. Consider the actions
Load(A) and Load(B), each of which is applica-
ble in the initial state, and both of which can
be done simultaneously because they do not
interact in any way. From the point of view of
search-space size, it would be cheaper in such
cases to add both actions to the plan prefix,
thereby reducing the number of components
in the resulting plan set. Simultaneous addi-
tion of multiple actions to the head can be
accommodated by generalizing the contiguity
constraints so that they apply to sets of steps.
In particular, we could combine the top two
components of the plan set in figure 11 into a
single plan component, with both Load(A)
and Load(B) made contiguous to step 0. More
broadly, the generalized forward state-space
refinement strategy should consider maximal
sets of noninteracting actions that are all
applicable in the current initial state together
(Drummond 1989). Here, we consider two
actions to interact if the preconditions of one
are deleted by the effects of the other.

goal state. The steps in the plan that neither
belong to its head nor belong to its tail are
called the middle steps. Among the middle
steps, the set of steps that can come immedi-
ately next to the head step in some lineariza-
tion of the plan is called its head fringe. Simi-
larly, the tail fringe consists of the set of
middle steps that can come immediately next
to the tail step in some linearization. With
this terminology, we are ready to describe
individual refinement strategies.

Forward State-Space Refinement
Forward state-space refinement involves
growing the prefix of a partial plan by intro-
ducing actions in the head fringe or the
action library into the plan head. Actions are
introduced only if their preconditions hold in
the current head state:

Refine-forward-state-space (P)

1. Operator selection: Nondeterministically
select a step t either from the operator
library or from the head fringe such that
the preconditions of t are applicable in the
head state.

2. Operator application: Add a contiguity
constraint between the current head step
and the new step t, which makes t the new
head step and updates the head state.

Figure 11 shows an example of this refine-
ment. On the top is a partial plan whose head
contains the single step 0, and the head state
is the same as the initial state. The head
fringe contains the single action Unload(A),
which is not applicable in the head state. The
action library contains three actions that are
applicable in the head state. Accordingly, for-
ward state-space refinement produces a plan
set with three components.

Forward state-space refinement is progres-
sive because it eliminates all action sequences

Articles

76 AI MAGAZINE

Compared to the forward state-space refinement, the backward
state-space refinement generates plan sets with a fewer number of
components because it concentrates only on those actions that are
relevant to current goals.

This focus on relevant actions, in turn, leads to a lower branch-
ing factor for planners that consider the plan set components in
different search branches.

Making State-Space
Refinements Goal Directed
Forward state-space refinement as stated con-
siders all actions executable in the state after
the prefix. In real domains, there might be a
large number of applicable actions, very few
of which are relevant to the top-level goals of
the problem. We can make the state-space
refinements goal directed in one of two ways:
(1) using means-ends analysis to focus for-
ward state-space refinement on only those
actions that are likely to be relevant to the
top-level goals or (2) using backward state-
space refinement that operates by growing
the tail of the partial plan. I elaborate on
these ideas in the next two subsections.

Means-Ends Analysis First, we can force
forward state-space refinement to consider
only those actions that are going to be rele-
vant to the top-level goals. The relevant
actions can be recognized by examining a
subgoaling tree of the problem, as shown in
figure 12. Here the top-level goal can poten-
tially be achieved by the effects of the
actions Unload(A) and Fly(). The precondi-
tions of these actions are, in turn, achieved
by the action Load(A). Because Load(A) is
both relevant (indirectly) to the top goals and
is applicable in the head state, the forward
state-space refinement can consider this
action. In contrast, an action such as Load(C)
will never be considered despite its applicabil-
ity because it does not directly or indirectly
support any top-level goals.

This way of identifying relevant actions is
known as means-ends analysis and was used
by one of the first planners, STRIPS (Fikes and
Nilsson 1971). One issue in using means-ends
analysis is whether the relevant actions are
identified afresh at each refinement cycle or
whether the refinement and means-ends
analysis are interleaved. STRIPS interleaved the
computation of relevant actions with forward
state-space refinement, suspending the
means-ends analysis as soon as an applicable
action has been identified. The action is then
made contiguous to the current head step,
thus changing the head state. The means-
ends analysis is resumed with respect to the
new state. In the context of the example
shown in figure 12, having decided that the
Fly() and Unload(A) actions are relevant for
the top-level goals, STRIPS introduces the Fly()
action into the plan head before continuing
to consider actions such as Load(A) that are
recursively relevant. Such interleaving can
sometimes lead to premature operator appli-
cation, which would have to be backtracked
over. In fact, many of the famous incomplete-

ness results related to STRIPS (Nilsson 1980) can
be traced to this particular interleaving. More
recently, McDermott (1996) showed that the
efficiency of means-ends–analysis planning
can be improved considerably by (1) deferring
operator application until all relevant actions
are computed and (2) repeating the computa-

Articles

SUMMER 1997 77

0 1: Unload(A) ∞

2: Load(A)0 ∞

2: Load(B)0 ∞

2: Fly()0 ∞1: Unload(A)

1: Unload(A)

1: Unload(A)

At(A,E)
At(B,E)
At(R,E)

Figure 11. Example of Forward State-Space Refinement.

At(A,M)

Unload(A)

In(A)

Fly()

 Load(A)

Αt(R,E)At(A,E)

¬In(A)

Figure 12. Using Means-Ends Analysis to
Focus Forward State-Space Refinement.

they can give some of the conditions of the
tail state without violating any others. The
Fly() action in the tail fringe is not applicable
because it can violate the ¬In(x) condition in
the tail state:

Compared to the forward state-space refine-
ment, the backward state-space refinement
generates plan sets with a fewer number of
components because it concentrates only on
those actions that are relevant to current
goals. This focus on relevant actions, in turn,
leads to a lower branching factor for planners
that consider the plan set components in dif-
ferent search branches. However, because the
initial state of a planning problem is com-
pletely specified, and the goal state is only
partially specified, the head state computed by
the forward state-space refinement is a com-
plete state, but the tail state computed by the
backward state-space refinement is only a par-
tial state description. Bacchus and Kabanza
(1995) argue that effective search-control
strategies might require the ability to evaluate
the truth of complex formulas about the state
of the plan and view this approach as an
advantage in favor of forward state-space
refinements because truth evaluation can be
done in terms of model checking rather than
theorem proving.

Position, Relevance, and
Plan-Space Refinements
The state-space refinements have to decide
both the position and the relevance of a new
action to the overall goals. Often times, we
might know that a particular action is rele-
vant but not know its exact position in the
eventual solution. For example, we know that
a fly action is likely to be present in the solu-
tion for the rocket problem but do not know
exactly where in the plan it will occur. Plan-
space refinement is motivated by the idea that
in such cases, it helps to introduce an action
into the plan without constraining its abso-
lute position.4 Of course, the disadvantage of
not fixing the position is that we will not
have state information, which makes it harder
to predict the states of the world during the
execution based on the current partial plan.

The difference between state-space and
plan-space refinements has traditionally been
understood in terms of least commitment,
which, in turn, is related to candidate-set size.
Plans with precedence relations have larger
candidate sets than those with contiguity
constraints. For example, it is easy to see that
although all three plans shown in figure 14
contain the single Fly action, the solution
sequence

tion of relevant actions afresh after each
refinement.

Backward State-Space Refinement
The second way of making state-space refine-
ments goal directed is to consider growing
the tail of the partial plan by applying actions
in the backward direction to the tail state. All
actions in the tail fringe or actions from the
plan library are considered for application.
An action is applicable to the tail state if it
does not delete any conditions in the tail
state (if it does, the regressed state will be
inconsistent) and adds at least one condition
in the tail state:

Refine-backward-state-space (P)

1. Operator selection: Nondeterministically
select a step t either from the operator
library or from the tail fringe such that at
least one of its effects is relevant to the tail
state, and none of its effects negates any
conditions in the tail state.

2. Operator application: Add a contiguity
constraint between the new step t and the
current tail step, which makes t the new
tail step and updates the tail state.

Figure 13 shows an example of backward
state-space refinement. Here, the tail contains
only the last step of the plan, and the tail
state is the same as the goal state (shown in
an oval on the right). Two library actions,
Unload(A) and Unload(B), are useful in that

Articles

78 AI MAGAZINE

0 ∞

0 ∞2: Unload(B)

2: Unload(A)1: Fly()

1: Fly()

At(A,M)
At(B,M)
¬In(A)
¬In(B)

0 1: Fly() ∞

Figure 13. Backward State-Space Refinement.

[Load(A), Load(B), Fly , Unload(A),
Unload(B)]

belongs only to the candidate set of the plan
with precedence constraints.

Because each search branch corresponds to
a component of the plan set produced by the
refinement, planners using state-space refine-
ments are thus more likely to backtrack from
a search branch. (It is, of, course worth not-
ing that the backtracking itself is an artifact
of splitting plan-set components into the
search space. Because all refinements are
complete, backtracking would never be
required had we worked with plan sets with-
out splitting.)

This brings us to the specifics of plan-space
refinement. As summarized here, the plan-
space refinement starts by picking any pre-
condition of any step in the plan and intro-
ducing constraints to ensure that the
precondition is provided by some step (estab-
lishment) and is preserved by the intervening
steps (declobbering):

Refine-Plan-Space(P)

1. Goal selection: Select a precondition <C,s>
of P.

2. Goal establishment: Nondeterministically
select a new or existing step t.

Establishment: Force t to come before s and
give C.

Arbitration: Force every step between t and
s to preserve C.

3. Bookkeeping: (optional)

Add IPC <t,C,s> to protect the establish-
ment.

Add IPC <t,¬C,s> to protect the contribu-
tor.

An optional bookkeeping step (also called
the protection step) imposes interval-preserva-
tion constraints to ensure that the established
precondition is protected during future
refinements. Plan-space refinement can have

several instantiations depending on whether
bookkeeping strategies are used and how the
preconditions are selected for establishment
in step 1.

Figure 15 shows an example of plan-space
refinement. In this example, we pick the pre-
condition At(A,M) of the last step. We add the
new step Fly() to support this condition. To
force Fly to give At(A,M), we add the condi-
tion In(A) as a precondition to it. This latter
condition is called a causation precondition. At
this point, we need to make sure that any step
possibly intervening between the step 2: Fly
and the step ∞ preserves At(A,M). In this
example, only Unload(A) intervenes, and it
does preserve the condition; so, we are done.
The optional bookkeeping step involves
adding interval preservation constraints to
preserve this establishment during subsequent
refinement operations (when new actions
might come between Fly and the last step). In
the example, the bookkeeping step involves
adding either one or both of the interval-
preservation constraints <2, At(A,M), ∞> and
<2, ¬At(A,M), ∞>. Informally, the first one
ensures that no action deleting At(A,M) will
be allowed between 2 and ∞. The second one
says that no action adding At(A,M) will be
allowed between 2 and ∞. If we add both
these constraints, we can show that the refine-
ment is systematic (McAllester and Rosenblitt
1991). As an aside, the fact that we are able to
ensure systematicity of the refinement with-
out fixing the positions of any of the steps
involved is technically quite interesting.

Figure 16 is another example where we
need to do both establishment and declob-
bering to support a precondition. Specifically,
we consider the precondition At(A,E) of step
∞ and establish it using the effects of the
existing step 0. No causation preconditions
are required because 0 gives At(A,E) directly.
However, the step 1: Fly() can delete the con-
dition At(A,E), and it is coming in between 0

Articles

SUMMER 1997 79

1: Fly()0 ∞
1: Fly()0 ∞

1: Fly()0 ∞

Pf

P
b

P
p

Figure 14. State-Space Refinements Attempt to Guess
Both the Position and the Relevance of an Action to a Given Planning Problem.

Plan-space refinements can consider relevance without committing to position.

if A is not in the rocket, then A’s position will
not change when the rocket is flown). These
three ways of shoring up the establishment
are called (1) promotion, (2) demotion, and
(3) confrontation, respectively.

Hierarchical (HTN) Refinement
The refinements that we have seen till now
treat all action sequences that reach the goal
state as equivalent. In many domains, the
users might have significant preferences
among the solutions. For example, when I
use my planner to make travel plans to go
from Phoenix to Portland, I might not want a
plan that involves bus rides. The question is
how do I communicate such biases to the
planner such that it will not waste any time
progressing toward unwanted solutions?
Although removing bus-ride action from the
planner’s library of actions is a possible solu-
tion, it might be too drastic. I might want to
allow bus travel for shorter itineraries, for
example.

One natural way is to introduce nonprimi-
tive actions and restrict their reduction to
primitive actions through user-supplied
reduction schemas. Consider the example in
figure 17. Here the nonprimitive action
Ship(o1) has a reduction schema that trans-
lates it to a plan fragment containing three
actions. Typically, there can be multiple pos-
sible legal reductions for a nonprimitive
action. The reduction schemas restrict the
planner’s access to the primitive actions and,
thus, stop progress toward undesirable solu-
tions (Kambhampati and Srivastava 1996). A
solution is considered desirable only if it can
be parsed by the reduction schemas. Com-
pleteness is ensured only with respect to
these desirable solutions (rather than all legal
solutions).

For this method to work, we need the
domain writer to provide us reduction
schemas over and above domain actions. This
requirement can be steep because the reduc-
tion schemas typically contain valuable con-
trol information that is not easily recon-
structed from limited planning experience.
However, one hope is that in domains where
humans routinely build plans, such reduction
knowledge can easily be elicited. Of course,
acquiring the knowledge and verifying its
correctness can still be nontrivial (Chien
1996).

Tractability Refinements
All the refinements we have looked at until
now are progressive in that they narrow the
candidate set of a plan to which they are

and ∞. To shore up the establishment, we
must either order step 1 to be outside the
interval [0 ∞] (which is impossible in this
case) or force step 1: Fly() to preserve At(A,E).
The latter can be done by adding the preser-
vation precondition ¬In(A) to step 1 (because

Articles

80 AI MAGAZINE

PSR

0 ∞

At(A,M)@ ∞

2: Fly() 3: Unload(A)0 ∞
In(A)@2

At(A,M)

At(A,M)@ ∞

causation
precondition
∀x In(x) ⇒ At(x,M)

¬At(A,M)

1:Unload(A)

Figure 15. Example of Plan-Space Refinement.

0 ∞
At(A,E)@∞
At(B,M)@∞

1:Fly()

At(A,E)@ ∞

0 ∞

At(A,E)

1: Fly()0 ∞

At(A,E)

1: Fly()0 ∞

At(A,E)

¬ In(A)@1

Promotion Demotion
Confrontation

0 ∞1:Fly()

At(A,E)

preservation
precondition

Establishment

De-clobbering

1: Fly()

Figure 16. Plan-Space Refinement Example Showing Both Establishment
and Declobbering Steps.

applied. Many planners also use a variety of
refinements that are not progressive (that is,
have no pruning power). The motivation for
their use is to reduce the plan-handling costs
further; thus, we call them tractability refine-
ments. Many of them can be understood as
deriving the consequences of plan set con-
straints alone (without recourse to domain
and planning theory) and splitting any dis-
junction among the plan constraints into the
search space.

We can classify the tractability refinements
into three categories: The first attempts to
reduce the number of linearizations of the
plan. In this category, we have preordering
refinements, which order two unordered steps,
and prepositioning refinements, which con-
strain the relative position of two steps.

Preordering refinements are illustrated in
figure 18. The single partially ordered plan at
the top of the figure is converted into two
totally ordered plans below. Planners using
preordering refinements include TOCL (Barrett
and Weld 1994) and TO (Minton, Bresina, and
Drummond 1994).

Prepositioning refinement is illustrated in
figure 19, where one refinement considers the
possibility of step 1 being contiguous to step
0, but the other considers the possibility of
step 1 being noncontiguous to step 0. Plan-
ners such as STRIPS and PRODIGY use preposi-
tioning refinements (to transfer the steps
from the means-ends–analysis tree to the
plan head; see Means-Ends Analysis).

The second category of tractability refine-
ments attempts to make all linearizations safe
with respect to auxiliary constraints. Here, we
have presatisfaction refinements, which split a
plan in such a way that a given auxiliary con-
straint is satisfied by all linearizations of the
resulting components. Figure 20 illustrates a
presatisfaction refinement with respect to the
interval preservation constraint <0, At(A,E),
∞>. To ensure that this constraint is satisfied
in every linearization, the plan shown at the
top is converted into the plan set with three
components shown at the bottom. The first
two components attempt to keep the step
Fly() from intervening between 0 and ∞. The
last component ensures that Fly() will be
forced to preserve the condition At(A,E).
Readers might note a strong similarity
between the presatisfaction refinements and
the declobbering phase of plan-space refine-
ment (see Position, Relevance, and Plan-Space
Refinements). The important difference is
that declobbering is done with respect to the
condition that is established in the current
refinement to ensure that the established

condition is not deleted by any step that is
currently present in the plan. There is no
guarantee that the steps that will be intro-
duced by future refinements will continue to
respect this establishment. In contrast, presat-
isfaction refinements are done to satisfy the
interval-preservation constraints (presumably
added by the bookkeeping phase of the plan-
space refinement to protect an established
condition). As long as the appropriate inter-
val-preservation constraints are present, they
will be enforced with respect to both existing
steps and any steps that might be introduced

Articles

SUMMER 1997 81

Ship(o
1
)

At(o1,M)

At(o1,E), At(R,E)

Load(o1)

Fly()

Unload(o1)

Figure 17. Using Nonprimitive Tasks, Which Are Defined in
Terms of Reductions to Primitive Tasks.

1: Fly()0 ∞

1: Fly()
0 ∞

2: Load(A)

2: Load(A)0 ∞1: Fly()

2: Load()

Preordering

Figure 18. Preordering Refinements.

refinement, which converts a plan containing
a nonprimitive action into a set of plans,
each containing a different reduction of the
nonprimitive action. Figure 21 illustrates the
prereduction refinements. The plan at the top
contains a nonprimitive action, Ship(A),
which can, in principle, be reduced in a vari-
ety of ways to plan fragments containing
only primitive actions. To reduce this uncer-
tainty, prereduction refinements convert this
plan to a plan set each of whose components
corresponds to different ways of reducing
Ship(A) action (in the context of figure 20, it
is assumed that only one way of reducing
Ship(A), viz., that shown in figure 17, is avail-
able).

Although tractability refinements as a
whole seem to have weaker theoretical moti-
vations than progressive refinements, it is
worth noting that most of the prominent dif-
ferences between existing algorithms boil
down to differences in the use of tractability
refinements. This point is illustrated in table
1, which characterizes several plan-space
planners in terms of the specifics of the plan-
space refinements they use (protection strate-
gies, goal-selection strategies) and the type of
tractability refinements they use.

Interleaving Different Refinements
One of the advantages of the treatment of
refinement planning that I presented is that it
naturally allows for interleaving of a variety of
refinement strategies in solving a single prob-

by future refinements. Many plan-space plan-
ners, including SNLP (McAllester and Rosen-
blitt 1991), UCPOP (Penberthy and Weld 1992),
and NONLIN (Tate 1977) use presatisfaction
refinements.

The third category of tractability refine-
ments attempts to reduce uncertainty in the
action identity. An example is prereduction

Articles

82 AI MAGAZINE

1: Fly()0 ∞2: Load(A)

1: Fly()
0 ∞

2: Load(A)

(0 and 1 noncontiguous)

1: Fly()
0 ∞

2: Load(A)

Figure 19. Prepositioning Refinements.

1: Fly()0 ∞

At(A,E)

1: Fly()0

At(A,E)

Promotion

∞

1: Fly()0 ∞

At(A,E)

Demotion

1: Fly()0 ∞

At(A,E)

¬ In(A)@1
Confrontation

Figure 20. Presatisfaction Refinements.

lem. From a semantic viewpoint, because dif-
ferent refinement strategies correspond to dif-
ferent ways of narrowing the candidate sets, it
is perfectly legal to interleave them. We can
formally guarantee completeness of planning
if each of the individual refinement strategies
is complete. Figure 22 illustrates the solving of
our rocket problem with the use of several
refinements: We start with backward state
space, then plan space, then forward state

space, and then a preposition refinement.
Based on the specific interleaving strategy

used, we can devise a whole spectrum of
refinement planners, which differ from the
existing single refinement planners. Our
empirical studies (Kambhampati and Srivasta-
va 1996, 1995) show that interleaving
refinements this way can sometimes lead to
superior performance over single-refinement
planners.

Articles

SUMMER 1997 83

How Important Is Least Commitment?

One of the more hotly debated issues related to refinement planning algorithms is the role
and importance of least commitment in planning. Informally, least commitment refers to
the idea of constraining the partial plans as little as possible during individual
refinements, with the intuition that overcommitting can eventually make the partial plan
inconsistent, necessitating backtracking. To illustrate, in figure 16 we saw that individual
components of state-space refinements tend to commit regarding both the absolute posi-
tion and the relevance of actions inserted into the plan, but plan-space refinements com-
mit to the relevance, leaving the position open by using precedence constraints.

Perhaps the first thing to understand about least commitment is that it has no special
exclusive connection to ordering constraints (as is implied in some textbooks, where the
phrase least commitment planning is used synonymously with partial order or plan-space
planning). For example, a plan-space refinement that does (the optional) bookkeeping by
imposing interval-preservation constraints is more constrained than a plan-space
refinement that does not. Similarly, a hierarchical refinement that introduces an abstract
action into the partial plan is less committed than a normal plan-space refinement that
introduces only primitive actions (because a single abstract action can be seen as a stand-
in for all the primitive actions that it can eventually be reduced to).

The second thing to understand about least commitment is that its utility depends on
the nature of the domain. In general, commitment makes it easier to check if a partial
plan contains a solution but increases the chance of backtracking. Thus, least commit-
ment can be a winner in domains of low solution density and a loser in domains of high
solution density.

The final, and perhaps the most important, thing to note about least commitment is
that it makes a difference only when the planner splits the components of the plan sets
into the search space. Although most traditional refinement planners do split plan set
components, many recent planners such as GRAPHPLAN (Blum and Furst 1995; see Scale Up
through Disjunctive Representations and Constraint-Satisfaction Techniques) handle plan
sets without splitting, pushing most of the computation into the solution-extraction
phase. In such planners, backtracking during refinement is not an issue (assuming that all
refinements are complete), and thus, the level of commitment used by a refinement strate-
gy does not directly affect the performance. What matters instead is the ease of extracting
the solutions from the plan sets produced by the different refinements (which, in turn,
might depend on factors such as the pruning power of the refinement, that is, how many
candidates of the parent plan it is capable of eliminating from consideration) and the ease
of propagating constraints on the plan set (see Scale Up through Disjunctive Representa-
tions and Constraint-Satisfaction Techniques).

Trade-Offs in
Refinement Planning

I described a parameterized refinement plan-
ning template that allows for a variety of
specific algorithms depending on which
refinement strategies are selected and how

It must be noted, however, that the issue of
how one selects a refinement is largely open.
We have tried refinement selection based on
the number of components produced by each
refinement, or the amount of narrowing of a
candidate set each refinement affords, with
some success.

Articles

84 AI MAGAZINE

1: Ship(A)0 ∞

At(A,E) At(A,M)

1: Load(A)0 ∞

At(A,E) At(A,M)

2: Fly() 3: Unload(A)

Figure 21. Prereduction Refinements.

∞0

1: Unload(A)0 ∞

2: Fly() 1: Unload(A)0 ∞

BSR

PSR

FSR

2: Fly() 1: Unload(A)0 3: Load(A) ∞

2: Fly() 1: Unload(A)0 ∞3: Load(A)

Preposition

At(A,M)@∞

Figure 22. Interleaving Refinements.

they are instantiated. We now attempt to
understand the trade-offs governing some of
these choices and see how one can go about
choosing a planner, given a specific popula-
tion of problems to solve. I concentrate here
on the trade-offs in refinement planners that
split plan set components into search space
(see Introducing Splitting into Refinement
Planning).

Asymptotic Trade-Offs
Let us start with an understanding of the
asymptotic trade-offs in refinement planning.
I use an estimate of the search-space size in
terms of properties of the plans at the fringe
of the search tree (figure 23). Suppose K is the
total number of action sequences (to make K
finite, we can consider all sequences of or
below a certain length). Let F be the number
of nodes on the fringe of the search tree gen-
erated by the refinement planner and k be the
average number of candidates in each of the
plans on the fringe. Let ρ be the number of
times a given action sequence enters the can-
didate sets of fringe plans and p be the
progress factor, the fraction by which the can-
didate set narrows each time a refinement is
done. We then have

F = pd × K × ρ/k .

Because F is approximately the size of the
search space, it can also be equated to the
search-space size derived from the effective
branching factor b and the effective depth d
of the generated search tree. Specifically,

F = pd × K × ρ/k = bd .

The time complexity of search can be written
out as C × F, where C is the average cost of
handling plan sets. C itself can be broken

down into two components: (1) CR, the cost
of applying refinements, and (2) CS, the cost
of extracting solutions from the plan. Thus,

T = (CS + CR) F .

These formulas can be used to understand the
asymptotic trade-offs in refinement planning,
as shown in figure 23.

For example, using refinement strategies
with lower commitment (such as plan-space
refinements as opposed to state-space
refinements or plan-space refinements with-
out bookkeeping strategies as opposed to
plan-space refinements with bookkeeping
strategies) leads to plans with higher candi-
date-set sizes and, thus, reduces F, but it can
increase C. Using tractability refinements
increases b and, thus, increases F but might
reduce C by reducing CS (because the
tractability refinements reduce the variation
among the linearizations of the plan, thereby
facilitating cheaper solution extractors). The
protection (bookkeeping) strategies reduce
the redundancy factor ρ and, thus, reduce F.
However, they might increase C because pro-
tection is done by adding more constraints,
whose consistency needs to be verified.

Although instructive, the analysis of this
section does not make conclusive predictions
on practical performance because perfor-
mance depends on the relative magnitudes of
change in F and C. To predict performance,
we look at empirical evaluation.

Empirical Study of Trade-Offs in
Refinement Planning
The parameterized and unified understanding
of refinement planning provided in this arti-
cle allows us to ask specific questions about

Articles

SUMMER 1997 85

Planner Goal Selection Protection Tractability refinements
TWEAK (Chapman
1987)

Based on modal truth
criterion

none None

SNLP (McAllester and
Rosenblitt 1991), UCPOP
(Penberthy and Weld
1992)

Arbitrary IPCs to protect the
established condition as
well as its negation

presatisfaction

TOCL (Barrett and Weld,
1994)

Arbitrary IPCs to protect the
established condition as
well as its negation

preordering

UA, TO (Minton, Bresina,
and Drummond 1994)

Based on modal truth
criterion

none preordering (UA orders
only interacting steps,
but TO orders all pairs of
steps)

IPC = interval-preservation constraint.

Table 1. A Spectrum of Plan-Space Planners.

the plan set components completely into the
search space). We are, of course, interested in
selecting a planner for which the given popu-
lation of problems is easy. Thus, we need to
relate the problem and planner characteristics
to the ease of solving the problem by the
planner. If we make the reasonable assump-
tion that planners will solve a conjunctive
goal problem by solving the individual sub-
goals serially (that is, develop a complete
plan for the first subgoal and then extend it
to also cover the second subgoal), we can
answer this question in terms of the interac-
tions between subgoals. Intuitively, two sub-
goals are said to interact if the planner might
have to backtrack over a plan that it made for
one subgoal to achieve both goals.

A subplan for a subgoal is a partial plan all
of whose linearizations will execute and
achieve the goal. Figure 24 shows two sub-
plans for the At(A,M) goal in the rocket prob-
lem. Every refinement planner R can be asso-
ciated with a class PR of subplans it is capable
of producing for a subgoal. For example, for
the goal At(A,M), a planner using purely
state-space refinements will produce prefix
plans of the sort shown at the top of figure
24, which have steps only in the head, but a
pure plan-space planner will produce elastic

the utility of specific design choices and
answer them through normalized empirical
studies. Here, we look at two choices—(1)
tractability refinements and (2) bookkeeping
(protection) strategies—because many exist-
ing planners differ along these dimensions.

Empirical results (Kambhampati, Knoblock,
and Yang 1995) show that tractability
refinements lead to reductions in search time
only when the additional linearization they
cause as a side effect also reduces the number
of establishment possibilities. This reduction
happens in domains where there are condi-
tions that are asserted and negated by many
actions. Results also show that protection
strategies affect performance only in the cases
where solution density is so low that the
planner looks at the full search space.

In summary, for problems with normal
solution density, performance differentials
between planners are often attributable to
differences in tractability refinements.

Selecting among Refinement Planners
Using Subgoal Interaction Analysis
Let us now turn to the general issue of select-
ing among refinement planners given a popu-
lation of problems (constraining our atten-
tion once again to those planners that split

Articles

86 AI MAGAZINE

Eager solution extraction: C↑ F↓ (d↑)

Effect of ...

Tractability refinements: C↓ F↑ (b↑)
Protection–bookkeeping: C↑ F↓ (ρ↓)

Least commitment: C↑ F↑ (k↑)
k Avg cand set size of
 fringe plan
F Fringe size
ρ Redundancy factor (≥ 1)
p Progress factor (≤ 1)

K Cand set size of null plan

b Branching factor (# comp.)
d depth (# refinements)

C Plan handling costs

Fringe

K

k k

k

T = C * F

Size of explored
search space:

Time complexity:

F =

K * r

k
=

pd
* O bd

Figure 23. Asymptotic Trade-Offs in Refinement Planning.

plans of the sort shown on the bottom,
which only have steps in the middle, and
new steps can be introduced in between exist-
ing ones.

The key question in solving two subgoals
G1 and G2 serially is whether a subplan for G1
in the given plan class is likely to be extended
to be a subplan for the conjunctive goal G1
and G2. Two goals G1 and G2 are said to be
trivially serializable (Kambhampati, Ihrig, and
Srivastava 1996; Barrett and Weld 1994) with
respect to a class of plans PR if every subplan
of one goal belonging to PR can eventually be
refined into a subplan for solving both goals.
If all goals in a domain are pairwise trivially
serializable with respect to the class of plans
produced by a planner, then clearly, plan syn-
thesis in this domain is easy for the planner
(because the complexity will be linear in the
number of goals).

It turns out that the level of commitment
inherent in a plan class is an important factor
in deciding serializability. Clearly, the lower
the commitment of plans in a given class is,
the higher the chance for trivial serializabili-
ty. For example, the plan at the top of figure
24 cannot be extended to handle the subgoal
At(B,M), but the plan at the bottom can. Low-
er commitment explains why many domains
with subgoal interactions are easier for plan-
space planners than for state-space planners
(Barrett and Weld 1994).

The preceding discussion does not imply a
dominance of state-space planners by plan-
space planners, however. In particular, the
lower the commitment is, the higher the cost
of handling plans in general is. Thus, the best
guideline is to select the refinement planner
with the highest commitment, and with
respect to which class of (sub)plans, most goals
in the domain are trivially serializable. Empiri-
cal studies show this strategy to be effective
(Kambhampati, Ihrig, and Srivastava 1996).

Scaling Up Refinement Planners
Although refinement planning techniques
have been applied to some complex real-
world problems, such as beer brewing
(Wilkins 1988), space-observation planning
(Fuchs et. al. 1990), and spacecraft assembly
(Aarup et. al., 1994), their widespread use has
been inhibited to some extent by the fact
that most existing planners scale up poorly
when presented with large problems. Thus,
there has been a significant emphasis on
techniques for improving the efficiency of
plan synthesis. One of these techniques
involves improving performance by cus-
tomizing the planner’s behavior toward the
problem population, and the second involves
using disjunctive representations. Let me now
survey the work in these directions.

Scale Up through Customization
Customization can be done in a variety of
ways. The first way is to bias the search of the
planner with the help of control knowledge
acquired from the user. As we discussed earli-
er, nonprimitive actions and reduction
schemas are used, for the most part, to sup-
port such customization in the existing plan-
ners. There is now more research on the pro-
tocols for acquiring and analyzing reduction
schemas (Chien 1996).

There is evidence that not all expert con-
trol knowledge is available in terms of reduc-
tion schemas. In such cases, incorporating
the control knowledge into the planner can
be tricky. One intriguing idea is to fold the
control knowledge into the planner by auto-
matically synthesizing planners—from
domain specification and the declarative the-
ory of refinement planning—using interac-
tive software synthesis tools. I have started a
project on implementing this approach using
the KESTREL interactive software synthesis sys-
tem, and the preliminary results have been

Articles

SUMMER 1997 87

Load(A) Fly Unload(A)0 ∞

Load(A) Fly Unload(A)0 •

Figure 24. Different Partial Plans for Solving the Same Subgoal.

Articles

88 AI MAGAZINE

The GRAPHPLAN algorithm developed by Blum and Furst
(1995) has generated a lot of excitement in the plan-
ning community on two counts: (1) it was by far the
most efficient domain-independent planner on several
benchmark problems and (2) its design seemed to have
little in common with the traditional state-space and
plan-space planners.

Within our general refinement planning framework,
GRAPHPLAN can be seen as using forward state-space
refinements without splitting the plan set components.
We can elaborate this relation in light of our discussion
of disjunctive representations. On the left of the figure
is a state tree generated by a forward state-space planner
that uses full splitting. On the right is the plan-graph
structure generated by GRAPHPLAN for the same problem.
Note that the plan graph can roughly be seen as a dis-
junction of the branches of the tree on the left.
Specifically, the ovals representing the plan-graph
proposition lists at a particular level can be seen as
approximately the union of the states in the state-space
tree at this level. Similarly, the actions at a given level in
the plan graph can be seen as the union of actions on
the various transitions at the level in the state tree. It is
important to note that the relation is only approximate;
for example, the action a9 in the second action level
and the proposition T in the third level do not have any
correspondence with the search tree. As explained in
Refining Disjunctive Parts, this approximation is part of
the price we pay for refining disjunctive plans directly.
However, the propagation of mutual exclusion con-
straints allows GRAPHPLAN to keep a reasonably close cor-

respondence with the state tree without incurring the
exponential space requirements of the state tree.

Viewing GRAPHPLAN in terms of our generalized
refinement planning framework clarifies its sources of
strength. For example, although Blum and Furst seem
to suggest that an important source of GRAPHPLAN’s
strength is its ability to consider multiple actions at
each time step, thereby generating parallel plans, this
ability in itself is not new. As described in Forward
State-Space Refinement, it is possible to generalize for-
ward state-space refinement to consider sets of nonin-
terfering actions simultaneously. Indeed, GRAPHPLAN’s
big win over traditional state-space planners (that do
full splitting of plan set components into the search
space) comes from its handling of plan set components
without splitting, which, in turn, is supported by its
use and refinement of disjunctive plans. Experiments
with GRAPHPLAN confirm this hypothesis (Kambhampati
and Lambrecht 1997).

The strong connection between forward state-space
refinement and GRAPHPLAN also suggests that techniques
such as means-ends analysis that have been used to
focus forward state-space refinement can also be used to
focus GRAPHPLAN. Indeed, we found that despite its
efficiency, GRAPHPLAN can easily fail in domains where
many actions are available, and only a few are relevant
to the top-level goals of the problem. Thus, it would be
interesting to deploy the best methods of means-ends
analysis (such as the greedy regression graph proposed
by McDermott [1996]) to isolate potentially relevant
actions and only use them to grow the plan graph.

Plan graph = Disjunctive plan set
Plan graph growing = Refinement
Backward search of plan graph = Search for min. cand.
 corresponding to solutions

P

Q

R

Q

R

W

M

Q

P

M

Q

W

P

S

a
1

a2

a3

a4

a5

a
6

P

Q

R

Q

P

S

R

W

M

P
Q

a1

a2

a
3

a4

a
9

a5

a
6

T

~ Union of states
 at third level

~ union of
 actions at
 3rd level

Understanding the GRAPHPLAN Algorithm as a Refinement Planner
Using State-Space Refinements over Disjunctive Partial Plans.

Understanding Graphplan

promising (Srivastava and Kambhampati
1996).

Another way to customize is to use learn-
ing techniques and make the planner learn
from its failures and successes. The object of
learning might be the acquisition of search-
control rules that advise the planner what
search branch to pursue (Kambhampati,
Katukam, and Qu 1996; Minton et. al. 1989)
or the acquisition of typical planning cases
that can then be instantiated and extended to
solve new problems (Ihrig and Kambhampati
1996; Veloso and Carbonell 1993; Kambham-
pati and Hendler 1992). This area of research
is active, and a sampling of papers can be
found in the machine-learning sessions from
the American Association for Artificial Intelli-
gence conference and the International Joint
Conference on Artificial Intelligence.

Scale Up through Disjunctive
Representations and
Constraint-Satisfaction Techniques
Another way to scale up refinement planners
is to directly address the question of search-
space explosion. Much of this explosion is
because all existing planners reflexively split

the plan set components into the search space.
We saw earlier with the basic refinement plan-
ning template that splitting is not required for
completeness of refinement planning.

Let us examine the consequences of not
splitting plan sets. Of course, we reduce the
search-space size and avoid the premature
commitment to specific plans. We also sepa-
rate the action-selection and action-sequenc-
ing phases, so that we can apply scheduling
techniques for the latter.

There can be two potential problems, how-
ever. First, keeping plan sets together can lead
to unwieldy data structures. The way to get
around this problem is to internalize the dis-
junction in the plan sets so that we can repre-
sent them more compactly (see later discus-
sion). The second potential problem is that
we might just be transferring the complexity
from one place to another—from search-
space size to solution extraction. However,
solution extraction can be cast as a model-
finding activity, and there have been a slew of
efficient search strategies for propositional
model finding (Crawford and Auton 1996;
Selman, Mitchell, and Levesque 1992). I now
elaborate on these ideas.

Articles

SUMMER 1997 89

1: Load(A)0 ∞

1: Load(B)0 ∞

1: Fly(R)0 ∞

1: Load(A)

2: Load(B)0 ∞

3: Fly(R)

In(A)

In(B)

At(R,M)

or

or

Figure 25. Disjunction over State-Space Refinements.

1: Load(A)0 ∞

1: Load(B)0 ∞

In(x)@ ∞

In(x)@ ∞

In(B)

In(A)

1: Load(A)

0 ∞
or

2 : Load(B)

< 1,In(A),∞ > V < 2 ,In(B),∞ >

At(A,E)@1 V At(B,E)@2

Figure 26. Disjunction over Plan-Space Refinements.

not know which actions should next be
applied to the plan prefix. Similarly, for the
disjunctive plan in figure 26, we don’t know
whether steps 1 or 2 or both will be present
in the eventual plan. Thus, a plan-space
refinement won’t know whether it should
work on the At(A,E) precondition or the
At(B,E) precondition or both.6

One way of refining such plans is to handle
the uncertainty in a conservative fashion. For
example, for the plan in figure 25, although
we do not know the exact state after the first
(disjunctive) step, we know that it can only
be a subset of the union of conditions in the
effects of the three steps. Knowing that only
1, 2, or 3 can be the first steps in the plan
tells us that the state after the first step can
only contain the conditions In(A), In(B), and
At(R,M). Thus, we can consider a generaliza-
tion of forward state-space refinement that
adds only those actions whose preconditions
are subsumed by the union of the effects of
the three steps.

This variation is still complete but will be
less progressive than the standard version
that operates on nondisjunctive plan sets. It
is possible that even though the precondi-
tions of an action are in the union of effects,
there is no real way for the action to take
place. For example, although the precondi-
tions of the “unload at moon” action might
seem satisfied, it is actually never going to
occur as the second step in any solution
because Load() and Fly() cannot be done at
the same time. This example brings up an
important issue: Disjunctive plans can be
refined at the expense of some of the progres-
sivity of the refinement.

Although the loss of progressivity cannot
be avoided, it can be reduced to a significant
extent by generalizing that refinements infer
more than action constraints. In the example,
the refinement can infer that steps 1 and 3
cannot both occur in the first step (because
their preconditions and effects are interact-
ing). This interference tells us that the second
state might have either In(A) or At(R,M) but
not both. Here, the interaction between steps
1 and 3 propagates to make the conditions
In(A) and At(R,M) mutually exclusive in the
next disjunctive state. Thus, any action that
needs both In(A) and At(R,M) can be ignored
in refining this plan. This example uses con-
straint propagation to reduce the number of
refinements generated. The particular strategy
shown here is used by Blum and Furst’s
(1995) GRAPHPLAN algorithm (see the sidebar).

Similar techniques can be used to refine
the disjunctive plan in figure 26. For exam-

Disjunctive Representations The gener-
al idea of disjunctive representations is to
allow disjunctive step, ordering, and auxiliary
constraints into a plan. Figures 25 and 26
show two examples that illustrate the com-
paction we can get through them. The three
plans on the left in figure 25 can be com-
bined into a single disjunctive step with dis-
junctive contiguity constraints. Similarly, the
two plans in figure 26 can be compacted
using a single disjunctive step constraint, a
disjunctive precedence constraint, a disjunc-
tive interval-preservation constraint, and a
disjunctive point-truth constraint.

Candidate-set semantics for disjunctive
plans follow naturally: The presence of the
disjunctive constraint c1 ~ c2 in a partial plan
constrains its candidates to be consistent with
either the constraint c1 or the constraint c2.

Disjunctive representations clearly lead to a
significant increase in the cost of plan han-
dling. For example, in the disjunctive plan in
figure 25, we don’t know which of the steps
will be coming next to 0, and thus, we don’t
know what the state of the world will be after
the disjunctive step. Similarly, in the disjunc-
tive plan in figure 26, we don’t know whether
steps 1 or 2 or both will be present in the
eventual plan. Thus, we don’t know whether
we should work on the At(A,E) precondition
or the At(B,E) precondition.

This uncertainty leads to two problems:
First, how are we to refine disjunctive partial
plans? Second, how are we to extract solu-
tions from the disjunctive representation? We
discuss the first problem in the following sec-
tion. The second problem can be answered to
some extent by posing the solution-extrac-
tion phase as a constraint-satisfaction prob-
lem (such as propositional satisfiability) and
using efficient constraint-satisfaction engines.
Recall that solution extraction merely
involves finding a minimal candidate of the
plan that is a solution (in the sense that the
preconditions of all the steps, including the
final goal step, are satisfied in the states pre-
ceding them).

Refining Disjunctive Plans To handle
disjunctive plans directly, we need to general-
ize the particulars of the refinement strategies
because the standard refinement strategies are
clearly developed only for partial plans with-
out disjunction (see Existing Refinement
Strategies). For example, for the disjunctive
plan on the right in figure 26, we don’t know
which of the steps will be coming next to 0,
and thus, we don’t quite know what the state
of the world will be after the disjunctive step.
Thus, the forward state-space refinement will

Articles

90 AI MAGAZINE

ple, knowing that either 1 or 2 must precede
the last step and give the condition In(x) tells
us that if 1 doesn’t, then 2 must. This infer-
ence reduces the number of establishment
possibilities that plan-space refinement has to
consider at the next iteration.

Open Issues in Planning with Disjunc-
tive Representations In the last year or
so, several efficient planners have been devel-
oped that can be understood in terms of dis-
junctive representations. These planners
include GRAPHPLAN (Blum and Furst 1995), SAT-
PLAN (Kautz and Selman 1996), DESCARTES

(Joslin and Pollack 1996), and UCPOP-D (Kamb-
hampati and Yang 1996).

However, many issues need careful atten-
tion (Kambhampati 1997). For example, a
study of the constraint-satisfaction literature
shows that propagation and refinement can
have synergistic interactions. A case in point
is the eight-queens problem, where constraint
propagation becomes possible only after we
commit to the placement of at least one
queen. Thus, the best planners might be
doing controlled splitting of plan sets (rather
than no splitting at all) to facilitate further
constraint propagation. The following gener-
alized refinement planning template supports
controlled splitting of plan sets:

Refine (P: [a disjunctive] plan set)

0*. If <<P>> is empty, Fail.

1. If a minimal candidate of P is a solution,
terminate.

2. Select a refinement strategy R.
Apply R to P to get a new plan set P9.

3. Split P9 into k plan sets.

4. Simplify plan sets by doing constraint
propagation.

5. Nondeterministically select one of the plan
sets P9i.

Call Refine (P9i).

Step 3 in the algorithm splits a plan set
into k components. Depending on the value
of k, as well as the type of refinement strategy
selected in step 2, we can get a spectrum of
refinement planners, as shown in table 2. In
particular, the traditional refinement plan-
ners that do complete splitting can be mod-
eled by choosing k to be equal to the number
of components of the plan set. Planners such
as GRAPHPLAN that do not split can be modeled
by choosing k to be equal to 1.

In between are the planners such as
DESCARTES and UCPOP-D that split a plan set into
some number of branches that is less than the
number of plan set components. One imme-
diate question is exactly how many branches
should a plan set be split into? Because the
extent of propagation depends on the amount
of shared substructure between the disjoined
plan set components, one way of controlling
splitting would be to keep plans with shared
substructure together.

The relative support provided by various
types of refinement for planning with dis-
junctive representations needs to be under-
stood. The trade-off analyses described in
Trade-Offs in Refinement Planning need to be
generalized to handle disjunctive representa-
tions. The analyses based on commitment
and ensuing backtracking are mostly inade-
quate when we do not split plan set compo-
nents. Nevertheless, specific refinement
strategies can have a significant effect on the
performance of disjunctive planners. As an
example, consider the fact that although
GRAPHPLAN, which does forward state-space
refinement on disjunctive plans, is efficient,
no comparable planner does backward state-
space refinements.

Finally, the interaction between the
refinements and the solution-extraction pro-
cess needs to be investigated more carefully.

Articles

SUMMER 1997 91

Planner Refinement Splitting (k)
UCPOP (Penberthy and Weld 1992), SNLP (McAllester
and Rosenblitt 1991)

Plan space k = #Comp

TOPI (Barrett and Weld 1996) Backward state space k = #Comp
GRAPHPLAN (Blum and Furst, 1995) Forward state space k = 1
UCPOP-D (Kambhampati and Yang 1996), DESCARTES
(Joslin and Pollack 1996)

Forward state space 1 < k < #Comp

Table 2. A Spectrum of Refinement Planners.

Articles

92 AI MAGAZINE

Recently, Kautz et. al. (Kautz and Selman 1996;
Kautz, McAllester, and Selman 1996) have advocated
solving planning problems by encoding them first as
SAT problems and then using efficient SAT solvers such
as GSAT to solve them. Their approach involves gener-
ating a SAT encoding, all models of which will corre-
spond to k-length solutimons to the problem (for
some fixed integer k). Model finding is done by
efficient SAT solvers such as GSAT (Selman, Levesque,
and Mitchell 1992). Kautz et. al. propose to start with
some arbitrary value of k and increase it if they do
not find solutions of this length. They have consid-
ered a variety of ways of generating the encodings.

In the context of the general refinement planning
framework, I can offer a rational basis for the genera-
tion of the various encodings. Specifically, the natural
place where SAT solvers can be used in refinement
planning is in the solution-extraction phase. As illus-
trated in the first figure, after doing k complete and
progressive refinements on a null plan, we get a plan
set whose minimal candidates contain all k-length
solutions to the problem. Thus, picking a solution
boils down to searching through the minimal candi-
dates—which can be cast as a SAT problem. This
account naturally relates the character of the encod-
ings to what refinements are used in coming with the
k-length plan set and how the plan sets themselves
are represented (recall that disjunctive representations
can reduce the progressivity of refinements).

Kautz and his colleagues concentrate primarily on
direct translation of planning problems to SAT

encodings, sidelining refinement planning. I believe

that such an approach confounds two orthogonal
issues: (1) reaching a compact plan set whose mini-
mal candidates contain all the solutions and (2)
posing the solution extraction as a SAT problem. The
issues guiding the first are by and large specific to
planning and are best addressed in terms of refining
disjunctive plans. The critical issue in posing the
solution extraction as a SAT problem is to achieve
compact SAT encodings. The techniques used to
address this issue—such as converting n-ary predi-
cates into binary predicates or compiling out depen-
dent variables—are generic and are only loosely tied
to planning.

It is thus best to separate plan set construction
and its compilation into a SAT instance. Such a sepa-
ration allows SATPLAN techniques to exploit, rather
than reinvent, (disjunctive) refinement planning.
Their emphasis can then shift toward understanding
the trade-offs offered by SAT encodings based on dis-
junctive plans derived by different types of refine-
ment. In addition, basing encodings on kth-level
plan sets can also lead to SAT instances that are small-
er on the whole. Specifically, the pruning done by
disjunctive refinements can also lead to a plan set
with a fewer number of minimal candidates and,
consequently, a tighter encoding than can be
achieved by direct translation. This conjecture is
supported to some extent by the results reported in
Kautz and Selman (1996) that show that SAT encod-
ings based on k-length planning graphs generated by
GRAPHPLAN can be solved more efficiently than the
linear encodings generated by direct translation.

If R1, R2,...,Rk are all complete
 (and progressive)
 Then,
 Minimal candidates of Pk will
 contain all k-length solutions

Shape of the encoding depends on
 – Refinements Ri
 – Representations for plan sets
 – Disjunctive–nondisjunctive

Is there a minimal candidate of Pk

that is a solution to the problem?

Can be encoded as a
SAT–CSP instance

 P1

P2

R
1

R2

Pk

Rk

Null plan set

Relating Refined Plan at the kth Level to SATPLAN Encodings.

Refinement Planning versus
Encoding Planning as Satisfiability

As I indicated in the preceding discussion, if
we have access to efficient solution-extraction
procedures, we can, in theory, reduce the role
of refinements significantly. For example, the
disjunctive plan in figure 25 can be refined by
simply assuming that every step is a disjunc-
tion of all the actions in the library. The solu-
tion-extraction function will then have to
sort through the large disjunctions and find
the solutions. To a first approximation, this is
the way the state-space and plan-space en-
codings of SATPLAN (Kautz and Selman 1996)
work. The approach we sketched involves
using the refinement strategies to reduce the
amount of disjunction, for example, to realize
that the second step can only be drawn from
a small subset of all library actions, and then
using SAT methods to extract solutions from
the resulting plan. I speculate that this
approach will scale up better by combining
the forces of both refinement and efficient
solution extraction.

Conclusion and
Future Directions

Let me conclude by reiterating that
refinement planning continues to provide the
theoretical backbone for most of the AI plan-
ning techniques. The general framework I
presented in this article allows a coherent
unification of all classical planning tech-
niques, provides insights into design trade-
offs, and outlines avenues for the develop-
ment of more efficient planning algorithms.

Perhaps equally important, a clearer under-
standing of refinement planning under classi-
cal assumptions will provide us valuable
insights into planning under nonclassical
assumptions. Indeed, the operation of several
nonclassical planners described in the litera-
ture can be understood from a refinement
planning point of view. These planners
include probabilistic least commitment plan-
ners such as BURIDAN (Kushmerick, Hanks, and
Weld 1995) and planners dealing with partial-
ly accessible environments such as XII (Gold-
en, Etzioni, and Weld 1996).

A variety of exciting avenues are open for
further research in refinement planning
(Kambhampati 1997). First, we have seen that
despite the large number of planning algo-
rithms, there are really only two fundamen-
tally different refinement strategies: (1) plan
space and (2) state space. It would be interest-
ing to see if there are novel refinement strate-
gies with better properties. To some extent,
this formulation of new refinements can
depend on the type of representations we use

for partial plans. In a recent paper, Ginsberg
(1996) describes a partial plan representation
and refinement strategy that differs sig-
nificantly from the state-space and plan-space
strategies, although its overall operation con-
forms to the framework of refinement fol-
lowed by the solution extraction described
here. It will be interesting to see how it
relates to the classical refinements.

We also do not understand enough about
what factors govern the selection of specific
refinement strategies. We need to take a fresh
look at trade-offs in plan synthesis, given the
availability of planners using disjunctive rep-
resentations. Concepts such as subgoal inter-
action do not make too much sense in these
scenarios.

Finally, much can be gained by porting the
refinement planning techniques to planning
under nonclassical scenarios. For example,
how can we use the analogs of hierarchical
refinements, and disjunctive representations,
to make planning under uncertainty more
efficient?

Further Reading
For the ease of exposition, I have simplified
the technical details of the refinement plan-
ning framework in some places. For a more
formal development of the syntax and
semantics of refinement planning, see Kamb-
hampati, Knoblock, and Yang (1995). For the
details of unifying and interleaving state-
space, plan-space, and hierarchical refine-
ments, see Kambhampati and Srivastava
(1996). For a more technical discussion of the
issues in disjunctive planning, see Kambham-
pati and Yang (1996) and Kambhampati
(1997). Most of these papers can be found at
rakaposhi.eas.asu.edu/yochan.html. A more
global overview of the areas of planning and
scheduling can be found in Dean and Kamb-
hampati (1996).

Pednault (1994) is the best formal intro-
duction to the syntax and semantics of ADL.
Barrett and Weld (1994) report on a compre-
hensive analysis of the trade-offs between
state-space and plan-space planning algo-
rithms. Minton, Bresina, and Drummond
(1994) compare partial-order and total-order
plan-space planning algorithms. This study
focuses on the effect of preordering tractabili-
ty refinements. Kambhampati, Knoblock, and
Yang (1995) provide some follow-up results
on the effect of tractability refinements on
planner performance.

There are also several good sources for
more detailed accounts of individual

Perhaps
equally
important,
a clearer
understanding
of refinement
planning
under
classical
assumptions
will provide
us valuable
insights into
planning
under
nonclassical
assumptions.

Articles

SUMMER 1997 93

ence Foundation (NSF) (research initiation
award IRI-9210997; NSF Young Investigator
award IRI-9457634), the Advanced Research
Projects Agency (ARPA) Planning Initiative
under Tom Garvey’s management (F30602-
93-C-0039, F30602-95-C-0247), and an ARPA
AASERT grant (DAAHO4-96-1-0231).

Notes
1. In the context of planning, the frame problem
refers to the idea that a first-order logic–based
description of actions must not only state what
conditions are changed by an action but also what
conditions remain unchanged after the action. In
any sufficiently rich domain, many conditions are
left unchanged by an action, thus causing two sep-
arate problems: First, we might have to write the
so-called frame axioms for each of the action-
unchanged condition pairs. Second, the theorem
prover has to use these axioms to infer that the
unchanged conditions in fact remained the same.
Although the first problem can be alleviated using
domain-specific frame axioms (Haas 1987) that
state for each condition the circumstances under
which it changes, the second problem cannot be
resolved so easily. Any general-purpose theorem
prover would have to explicitly use the frame
axioms to prove the persistence of conditions.

2. It is perhaps worth repeating that this represen-
tation for partial plans is sufficient but not neces-
sary. I use it chiefly because it subsumes the partial
plan representations used by most existing plan-
ners. For a significantly different representation of
partial plans, which can also be given candidate
set–based semantics, the reader is referred to some
recent work by Ginsberg (1996).

3. As readers familiar with partial-order–planning
literature will note, I am simplifying the represen-
tation by assuming that all actions are fully instan-
tiated, thus ignoring codesignation and noncodes-
ignation constraints between variables.
Introduction of variables does not significantly
change the nature of refinement planning.

4. David Chapman’s influential 1987 paper on the
foundations of nonlinear planning has unfortu-
nately caused some misunderstandings about the
nature of plan-space refinement. Specifically, Chap-
man’s account suggests that the use of a modal
truth criterion is de rigeur for doing plan-space
planning. A modal truth criterion is a formal
specification of the necessary and sufficient condi-
tions for ensuring that a state variable will have a
particular value in the state preceding (or follow-
ing) a given action in a partially ordered plan (that
is, a partial plan containing actions ordered by
precedence constraints). Chapman’s idea is to make
the truth criterion the basis of plan-space
refinement. This idea involves first checking to see
if every precondition of every action in the plan is
true according to the truth criterion. For each pre-
condition that is not true, the planner then consid-
ers adding all possible combinations of additional
constraints (steps, orderings) to the plan to make
them true. Because interpreting the truth criterion

refinement planning algorithms. Weld (1994)
is an excellent tutorial introduction to partial
order planning. Erol (1995) provides theoreti-
cally clean formalization of the hierarchical
planning algorithms. Penberthy and Weld
(1994) describe a refinement planner that can
handle deadlines and continuous change.
Wellman (1987) proposes a general template
for planning under uncertainty based on
dominance proving that is similar to the
refinement planning template discussed here.

Although we concentrated on plan synthe-
sis in classical planning, the theoretical mod-
els developed here are also helpful in expli-
cating the issues in replanning and plan reuse
as well as the interleaving of planning and
execution. For a more global account of the
area of automated planning that meshes well
with the unifying view described in this arti-
cle, you might refer to the online notes from
the graduate-level course on planning that I
teach at Arizona State University. The notes
can be found at rakaposhi.eas.asu.edu/plan-
ning-class.html.

In addition to the national and interna-
tional AI conferences, planning-related
papers also appear in the biannual Interna-
tional Conference on AI Planning Systems
and the European Conference (formerly Euro-
pean Workshop) on Planning Systems. There
is a mailing list for planning-related discus-
sions and announcements. For a subscription,
e-mail a message to planning@asu.edu.

Acknowledgments
This article is based on an invited talk given
at the 1996 American Association for
Artificial Intelligence Conference in Portland,
Oregon. My understanding of refinement
planning issues has matured over the years
because of my discussions with various col-
leagues. Notable among these are Tony Bar-
rett, Mark Drummond, Kutluhan Erol, Jim
Hendler, Eric Jacopin, Craig Knoblock, David
McAllester, Drew McDermott, Dana Nau, Ed
Pednault, David Smith, Austin Tate, Dan
Weld, and Qiang Yang. My own students and
participants of the Arizona State University
planning seminar have been invaluable as
sounding boards and critics of my half-baked
ideas. I would especially like to acknowledge
Bulusu Gopi Kumar, Suresh Katukam, Biplav
Srivastava, and Laurie Ihrig. Amol Mali, Lau-
rie Ihrig, and Jude Shavlik read a version of
this article and provided helpful comments.
Finally, I want to thank Dan Weld and Nort
Fowler for their encouragement on this line
of research. Some of this research has been
supported by grants from the National Sci-

Articles

94 AI MAGAZINE

turns out to be NP-hard when the actions in the
plan can have conditional effects, Chapman’s work
has led to the belief that the cost of an individual
plan-space refinement can be exponential.

The fallacy in this line of reasoning becomes
apparent when we note that checking the truth of
a proposition in a partially ordered plan is never
necessary for solving the classical planning prob-
lem (whether by plan-space or some other
refinement) because the solutions to a classical
planning problem are action sequences! The partial
ordering among steps in a partial plan constrains
the candidate set of the partial plan and is not to
be confused with action parallelism in the solu-
tions. Our account of plan-space refinement avoids
this pitfall by not requiring the use of a modal
truth criterion in the refinement. For a more elabo-
rate clarification of this and other formal problems
about the nature and role of modal truth criteria,
the reader is referred to Kambhampati and Nau
(1995).

5. A common misrepresentation of the state-space
and plan-space refinements in the early planning
literature involved identifying plan-space
refinements with plans where the actions are par-
tially ordered and identifying state-space
refinements with plans where the actions are total-
ly ordered. As the description here shows, the dif-
ference between state-space and plan-space
refinements is better understood in terms of prece-
dence and contiguity constraints. These constraints
differ primarily in whether new actions are allowed
to intervene between a pair of ordered actions:
Precedence relations allow an arbitrary number of
additional actions to intervene, but contiguity rela-
tions do not.

A planner employing plan-space refinement—
and, thus, using precedence relations—can produce
totally ordered partial plans if it uses preordering
based tractability refinements (see Tractability
Refinements). Examples of such planners include
TOCL (Barrett and Weld 1994) and TO (Minton,
Bresina, and Drummond 1994). Similarly, a planner
using state-space refinements can produce partial
plans with some actions unordered with respect to
each other if it uses the generalized state-space
refinement that considers sets of noninterfering
actions together in one plan set component rather
than in separate ones (see Forward State-Space
Refinement).

6. As I noted earlier, hierarchical refinement intro-
duces nonprimitive actions into a partial plan. The
presence of a nonprimitive action can be interpret-
ed as a disjunctive constraint on the partial
plan—effectively stating that the partial plan must
contain all the primitive actions corresponding to
at least one of the eventual reductions of the non-
primitive task. Despite this apparent similarity, tra-
ditional HTN planners differ from the disjunctive
planners discussed here in that they eventually
split disjunction into the search space with the
help of prereduction refinements, considering each
way of reducing the nonprimitive task in a differ-
ent search branch. Solution extraction is done only
on nondisjunctive plans. The utility of the disjunc-

tion in this case is primarily to postpone the
branching to lower levels of the search tree. In con-
trast, disjunctive planners can (and perhaps
should) do solution extraction directly from dis-
junctive plans.

References
Aarup, M.; Arentoft, M. M.; Parrod, Y.; and Stokes,
I. 1994. OPTIMUM-AIV: A Knowledge-Based Planning
and Scheduling System for Spacecraft AIV. In Intel-
ligent Scheduling, eds. M. Fox and M. Zweben,
451–470. San Francisco, Calif.: Morgan Kaufmann.

Bacchus, F., and Kabanza, F. 1995. Using Temporal
Logic to Control Search in a Forward-Chaining
Planner. In Proceedings of the Third European Work-
shop on Planning. Amsterdam: IOS.

Barrett, A., and Weld, D. 1994. Partial-Order Plan-
ing: Evaluating Possible Efficiency Gains. Artificial
Intelligence 67(1): 71–112.

Blum, A., and Furst, M. 1995. Fast Planning
through Plan-Graph Analysis. In Proceedings of the
Thirteenth International Joint Conference on
Artificial Intelligence. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Chapman, D. 1987. Planning or Conjunctive
Goals. Artificial Intelligence 32(3): 333–377.

Chien, S. 1996. Static and Completion Analysis for
Planning Knowledge Base Development and
Verification. In Proceedings of the Third International
Conference on AI Planning Systems, 53–61. Menlo
Park, Calif.: AAAI Press.

Crawford, J., and Auton, L. 1996. Experimental
Results on the Crossover Point in Random 3SAT.
Artificial Intelligence 81.

Dean, T., and Kambhampati, S. 1996. Planning and
Scheduling. In CRC Handbook or Computer Science
and Engineering. Boca Raton, Fla.: CRC Press.

Drummond, M. 1989. Situated Control Rules. In
Proceedings of the First International Conference on
Knowledge Representation and Reasoning, 103–113.
San Francisco, Calif.: Morgan Kaufmann.

Erol, K. 1995. Hierarchical Task Network Planning
Systems: Formalization, Analysis, and Implementa-
tion. Ph.D. diss., Department of Computer Science,
University of Maryland.

Erol, K.; Nau, D.; and Subrahmanian, V. 1995.
Complexity, Decidability, and Undecidability
Results for Domain-Independent Planning.
Artificial Intelligence 76(1–2): 75–88.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A New
Approach to the Application of Theorem Proving
to Problem Solving. Artificial Intelligence 2(3–4):
189–208.

Fuchs, J. J.; Gasquet, A.; Olalainty, B. M.; and Cur-
rie, K. W. 1990. PLANERS-1: An Expert Planning Sys-
tem for Generating Spacecraft Mission Plans. In
Proceedings of the First International Conference
on Expert Planning Systems, 70–75. Brighton, U.K.:
Institute of Electrical Engineers.

Ginsberg, M. 1996. A New Algorithm for Genera-
tive Planning. In Proceedings of the Fifth Internation-
al Conference on Principles of Knowledge Representa-

Articles

SUMMER 1997 95

Systems, 125–133. Menlo Park, Calif.: AAAI Press.

Kambhampati, S.; Katukam, S.; and Qu, Y. 1996.
Failure-Driven Dynamic Search Control for Partial-
Order Planners: An Explanation-Based Approach.
Artificial Intelligence 88(1–2): 253–315.

Kambhampati, S.; Knoblock, C.; and Yang, Q. 1995.
Planning as Refinement Search: A Unified Frame-
work for Evaluating Design Tradeoffs in Partial-
Order Planning. Artificial Intelligence 76(1–2):
167–238.

Kautz, H., and Selman, B. 1996. Pushing the Enve-
lope: Planning Propositional Logic and Stochastic
Search. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, 1194–1201.
Menlo Park, Calif.: American Association for
Artificial Intelligence.

Kautz, H.; McAllester, D.; and Selman, B. 1996.
Encoding Plans in Propositional Logic. In Proceed-
ings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning, 374–385.
San Francisco, Calif.: Morgan Kaufmann.

Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An
Algorithm for Probabilistic Least Commitment
Planning. Artificial Intelligence 76(1–2).

McAllester, D., and Rosenblitt, D. 1991. Systematic
Nonlinear Planning. In Proceedings of the Ninth
National Conference on Artificial Intelligence,
634–639. Menlo Park, Calif.: American Association
for Artificial Intelligence.

McDermott, D. 1996. A Heuristic Estimator for
Means-Ends Analysis in Planning. In Proceedings of
the Third International Conference on AI Planning Sys-
tems, 142–149. Menlo Park, Calif.: AAAI Press.

Minton, S.; Bresina, J.; and Drummond, M. 1994.
Total-Order and Partial-Order Planning: A Compar-
ative Analysis. Journal of Artificial Intelligence
Research 2:227–262.

Minton, S.; Carbonell, J. G.; Knoblock, C.; Kuokka,
D. R.; Etzioni, O.; and Gil, Y. 1989. Explanation-
Based Learning: A Problem-Solving Perspective.
Artificial Intelligence 40:363–391.

Nilsson, N. 1980. Principles of Artificial Intelligence.
San Francisco, Calif.: Morgan Kaufmann.

Pearl, J. 1984. Heuristics. Reading, Mass.: Addison-
Wesley.

Pednault, E. 1994. ADL and the State-Transition
Model of Action. Journal of Logic and Computation
4(5): 467–512.

Pednault, E. 1988. Synthesizing Plans That Contain
Actions with Context-Dependent Effects. Computa-
tional Intelligence 4(4): 356–372.

Penberthy, S., and Weld, D. 1994. Temporal Plan-
ning with Continuous Change. In Proceedings of
the Twelfth National Conference on Artificial Intel-
ligence, 1010–1015. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Penberthy, S., and Weld, D. 1992. UCPOP: A Sound,
Complete, Partial-Order Planner for ADL. In Pro-
ceedings of the Third International Conference on
the Principles of Knowledge Representation,
103–114. San Francisco, Calif.: Morgan Kaufmann.

Sacerdoti, E. 1975. The Non-Linear Nature of Plans.

tion and Reasoning, 186–197. San Francisco, Calif.:
Morgan Kaufmann.

Golden, K.; Etzioni, O.; and Weld, D. 1996. XII:
Planning with Universal Quantification and
Incomplete Information, Technical Report, Depart-
ment of Computer Science and Engineering, Uni-
versity of Washington.

Green, C. 1969. Application of Theorem Proving to
Problem Solving. In Proceedings of the First Inter-
national Joint Conference on Artificial Intelligence,
219–239. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Haas, A. 1987. The Case for Domain-Specific Frame
Axioms. In The Frame Problem in Artificial Intelli-
gence: Proceedings of the 1987 Workshop, ed. F. M.
Brown. San Francisco, Calif.: Morgan Kaufmann.

Ihrig, L., and Kambhampati, S. 1996. Design and
Implementation of a Replay Framework Based on a
Partial-Order Planner. In Proceedings of the Thir-
teenth National Conference on Artificial Intelli-
gence, 849–854. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Joslin, D., and Pollack, M. 1996. Is “Early Commit-
ment” in Plan Generation Ever a Good Idea? In
Proceedings of the Thirteenth National Conference
on Artificial Intelligence, 1188–1193. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Kambhampati, S. 1997. Challenges in Briding Plan
Synthesis Paradigms. In Proceedings of the Fif-
teenth International Joint Conference on Artificial
Intelligence. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence. Forthcom-
ing.

Kambhampati, S., and Hendler, J. 1992. A Valida-
tion Structure–Based Theory of Plan Modification
and Reuse. Artificial Intelligence 55(2–3): 193–258.

Kambhampati, S., and Lambrecht, E. 1997. Why
Does GRAPHPLAN Work? Technical Report, ASU CSE
TR 97-005, Department of Computer Science, Ari-
zona State University.

Kambhampati, S., and Nau, D. 1995. The Nature
and Role of Modal Truth Criteria in Planning.
Artificial Intelligence 82(1–2): 129–156.

Kambhampati, S., and Srivastava, B. 1996. Unifying
Classical Planning Approaches, Technical Report,
96-006, Department of Computer Science and Engi-
neering, Arizona State University.

Kambhampati, S., and Srivastava, B. 1995. Univer-
sal Classical Planner: An Algorithm for Unifying
State-Space and Plan-Space Planning. In Proceedings
of the Third European Workshop on Planning. Amster-
dam: IOS.

Kambhampati, S., and Yang, X. 1996. On the Role
of Disjunctive Representations and Constraint
Propagation in Refinement Planning. In Proceedings
of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning, 35–147. San
Francisco, Calif.: Morgan Kaufmann.

Kambhampati, S.; Ihrig, L.; and Srivastava, B. 1996.
A Candidate Set–Based Analysis of Subgoal Interac-
tion in Conjunctive Goal Planning. In Proceedings
of the Third International Conference on AI Planning

Articles

96 AI MAGAZINE

In Proceedings of the Fourth International Joint
Conference on Artificial Intelligence, 206–214.
Menlo Park, Calif.: International Joint Conferences
on Artificial Intelligence.

Selman, D.; Levesque, H. J.; and Mitchell, D. 1992.
GSAT: A New Method for Solving Hard Satisfiability
Problems. In Proceedings of the Tenth National
Conference on Artificial Intelligence, 440–446.
Menlo Park, Calif.: American Association for
Artificial Intelligence.

Srivastava, B., and Kambhampati, S. 1996. Synthe-
sizing Customized Planners from Specifications,
Technical Report, 96-014, Department of Computer
Science and Engineering, Arizona State University.

Tate, A. 1977. Generating Project Networks. In Pro-
ceedings of the Fifth International Joint Confer-
ence on Artificial Intelligence, 888–893. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Tate, A. 1975. Interacting Goals and Their Use. In
Proceedings of the Fourth International Joint Con-
ference on Artificial Intelligence, 215–218. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Veloso, M., and Carbonell, J. 1993. Derivational
Analogy in PRODIGY: Automating Case Acquisition,
Storage, and Utilization. Machine Learning
10:249–278.

Weld, D. 1994. An Introduction to Least Commit-
ment Planning. AI Magazine 15(4): 27–61.

Wellman, M. 1987. Dominance and Subsumption
in Constraint-Posting Planning. In Proceedings of
the Tenth International Joint Conference on
Artificial Intelligence, 884–890. Menlo Park, Calif.:
International Joint Conferences on Artificial Intelli-
gence.

Wilkins, D. 1988. Practical Planning. San Francisco,
Calif.: Morgan Kaufmann.

Wilkins, D. E. 1984. Domain-Independent Plan-
ning: Representation and Plan Generation.
Artificial Intelligence 22(3).

Subbarao Kambhampati is an
associate professor at Arizona
State University, where he directs
the Yochan Research Group,
investigating planning, learning,
and case-based reasoning. He is a
1994 National Science Founda-
tion Young Investigator awardee.
He received his B.Tech from the

Indian University of Technology, Madras, and his
M.S. and Ph.D. from the University of Maryland at
College Park. His e-mail address is rao@asu.edu.

Proceedings of the Eighth
Midwest AI and Cognitive

Science Conference

Dayton, Ohio, May 30 - June 1, 1997

Edited by Eugene Santos, Jr.

The Midwest Artificial Intelligence and Cogni-
tive Science Conference (MAICS) is a general
forum for research in both of the above-men-

tioned fields and provides an opportunity for in-
terdisciplinary cooperation and discussion
between these two fields. Like the previous seven
annual meetings, the Eighth MAICS has encour-
aged submissions and participation from those
new to the research community.

The papers presented in 1997 can be roughly
categorized into the following eight subfields in AI
and cognitive science: knowledge representation,
intelligent tutoring systems, uncertainty, knowl-
edge and data mining, virtual environments and
intelligent actors, vision, language and interface,
and self-organizing maps.

Technical Report CF-97-01
128 pp., $25.00. ISBN 1-57735-023-5

The AAAI Press
445 Burgess Drive

Menlo Park, California, 94025
(415) 328-3123 (telephone) (415) 321-4457 (fax)

Articles

SUMMER 1997 97

98 AI MAGAZINE

