
■ Does machine learning really work? Yes. Over the
past decade, machine learning has evolved from a
field of laboratory demonstrations to a field of sig-
nificant commercial value. Machine-learning algo-
rithms have now learned to detect credit card
fraud by mining data on past transactions, learned
to steer vehicles driving autonomously on public
highways at 70 miles an hour, and learned the
reading interests of many individuals to assemble
personally customized electronic newspapers. A
new computational theory of learning is begin-
ning to shed light on fundamental issues, such as
the trade-off among the number of training exam-
ples available, the number of hypotheses consid-
ered, and the likely accuracy of the learned
hypothesis. Newer research is beginning to explore
issues such as long-term learning of new represen-
tations, the integration of Bayesian inference and
induction, and life-long cumulative learning. This
article, based on the keynote talk presented at the
Thirteenth National Conference on Artificial Intel-
ligence, samples a number of recent accomplish-
ments in machine learning and looks at where the
field might be headed.

Ever since computers were invented, it has
been natural to wonder whether they
might be made to learn. Imagine comput-

ers learning from medical records to discover
emerging trends in the spread and treatment of
new diseases, houses learning from experience
to optimize energy costs based on the particu-
lar usage patterns of their occupants, or per-
sonal software assistants learning the evolving
interests of their users to highlight especially
relevant stories from the online morning news-
paper. A successful understanding of how to
make computers learn would open up many
new uses for computers. And a detailed under-
standing of information-processing algorithms
for machine learning might lead to a better

understanding of human learning abilities
(and disabilities) as well.

Although we do not yet know how to make
computers learn nearly as well as people learn,
in recent years, many successful machine-
learning applications have been developed,
ranging from data-mining programs that learn
to detect fraudulent credit card transactions to
information-filtering systems that learn users’
reading preferences to autonomous vehicles
that learn to drive on public highways. Along
with this growing list of applications, there
have been important advances in the theory
and algorithms that form the foundations of
this field.

The Niche for Machine Learning
One way to understand machine learning is to
consider its role within the more broad field of
computer science. Given the broad range of
software paradigms within computer science,
what is the niche to be filled by software that
learns from experience? Obviously, for com-
puter applications such as matrix multiplica-
tion, machine learning is neither necessary nor
desirable. However, for other types of prob-
lems, machine-learning methods are already
emerging as the software development method
of choice. In particular, machine learning is
beginning to play an essential role within the
following three niches in the software world:
(1) data mining, (2) difficult-to-program appli-
cations, and (3) customized software applica-
tions.

Data mining: Data mining is the process of
using historical databases to improve subse-
quent decision making. For example, banks
now analyze historical data to help decide
which future loan applicants are likely to be
credit worthy. Hospitals now analyze historical
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Data: 
Patient103 time = 1              → Patient103 time = 2          … → Patient103 time = n

Age: 23 Age: 23 Age: 23
FirstPregancy: no FirstPregancy: no FirstPregancy: no
Anemia: no Anemia: no Anemia: no
Diabetes: no Diabetes: YES Diabetes: no
PreviousPrematureBirth: no PreviousPrematureBirth: no PreviousPrematureBirth: no
Ultrasound: ? Ultrasound: abnormal Ultrasound: ?
Elective C-Section: ? Elective C-Section: no Elective C-Section: no
Emergency C-Section: ? Emergency C-Section: ? Emergency C-Section: Yes
… … …

Learned Rule: 
If No previous vaginal deliveray and 

Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admissions, and

Then Probability of Emrgency C-Section is 0.6

Training set accuracy: 26/41 - .63
Test set accuracy: 12/20 - .60

dar that customizes to the individual user’s
scheduling preferences. Because it is unrealistic
to manually develop a separate system for each
user, machine learning offers an attractive
option for enabling software to automatically
customize itself to individual users.

The following sections present examples of
successful applications of machine-learning
algorithms within each of these three niches.
As in any short summary of a large field, the
role of this article is to sample a few of the
many research projects and research directions
in the field to provide a feel for the current state
of the art and current research issues. More
lengthy treatments of the current state of
machine learning can be found in Dietterich’s
article (also in this issue) and in Mitchell
(1997). Treatments of various subfields of
machine learning are also available for topics
such as statistical learning methods (Bishop
1996), neural networks (Chauvin and Rumel-
hart 1995; Hecht-Nielsen 1990), instance-based
learning (Aha, Kibler, and Albert 1991), genetic
algorithms (Mitchell 1996; Forrest 1993); com-
putational learning theory (Kearns and Vazi-
rani 1994), decision tree learning (Quinlan
1993), inductive logic programming (Lavraĉ
and Dẑeroski 1994), and reinforcement learn-

data to help decide which new patients are
likely to respond best to which treatments. As
the volume of online data grows each year,
this niche for machine learning is bound to
grow in importance. See www.kdnuggets.com/
for a variety of information on this topic.

Difficult-to-program applications:
Machine-learning algorithms can play an
essential role in applications that have proven
too difficult for traditional manual program-
ming—applications such as face recognition
and speech understanding. The most accurate
current programs for face recognition, for
example, were developed using training exam-
ples of face images together with machine-
learning algorithms. In a variety of applica-
tions where complex sensor data must be
interpreted, machine-learning algorithms are
already the method of choice for developing
software.

Customized software applications: In
many computer applications, such as online
news browsers and personal calendars, one
would like a system that automatically cus-
tomizes to the needs of individual users after it
has been fielded. For example, we would like a
news browser that customizes to the individ-
ual user’s reading interests or an online calen-
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Figure 1. A Typical Data-Mining Application.
A historical set of 9714 medical records describes pregnant women over time. The top portion of the figure
illustrates a typical patient record, where ? represents that the feature value is unknown. The task here is to
identify classes of patients at high risk of receiving an emergency Cesarean section (C-section). The bottom
portion of the figure shows one of many rules discovered from these data using Schenley Park Research’s RULER

system. Whereas 7 percent of all pregnant women received emergency C-sections, this rule identifies a subclass
of high-risk patients, 60 percent of whom received emergency C-sections.



ing (Kaelbling, Littman, and Moore 1996; Bar-
to, Bradtke, and Singh 1995).

Data Mining: Predicting Medical 
Outcomes from Historical Data
Data mining involves applying machine-learn-
ing methods to historical data to improve
future decisions. One prototypical example is
illustrated in figure 1. In this example, histori-
cal data describing 9714 different pregnant
women have been provided, with each woman
described by a set of 215 attributes over time.
These attributes describe the woman’s health
history (for example, number of previous preg-
nancies), measurements taken at various times
during pregnancy (for example, ultrasound
results), the type of delivery (for example, nor-
mal, elective Cesarean sections [C-sections],
emergency C-section), and final health of
mother and baby.

Given such time-series data, one is often
interested in learning to predict features that
occur late in the time series based on features
that are known earlier. For example, given the
pregnancy data, one interesting problem is to
predict which future patients are at exception-
ally high risk of requiring an emergency C-sec-
tion. This problem is clinically significant
because most physicians agree that if they
know in advance that a particular patient is at
high risk of an emergency C-section, they will
seriously consider an elective C-section instead
to improve the expected clinical outcome for
the mother and child. The bottom half of fig-
ure 1 provides one typical rule learned from
these historical data. Whereas the risk of emer-
gency C-section for the entire population of
patients in this case was 7 percent, this rule
identifies a class of patients for which the risk
is 60 percent. The rule was learned by the RULER

program developed by Schenley Park Research,
Inc. The program used two-thirds of the avail-
able data as a training set, holding the remain-
ing one-third as a test set to verify rule accura-
cy. As summarized in the figure, a total of 41
patients in the training set match the rule con-
ditions, of which 26 received an emergency C-
section. A similar accuracy is found over the
test set (that is, of the 20 patients in the test set
who satisfy the rule preconditions, 12 received
emergency C-sections). Thus, this rule success-
fully identifies a class of high-risk patients,
both over the training data and over a separate
set of test data.

This medical example illustrates a prototyp-
ical use of machine-learning algorithms for
data mining. In this example, a set of time-
series data was used to learn rules that predict
later features in the series from earlier features.

Time-series prediction problems such as this
occur in many problem domains and data sets.
For example, many banks have time-series
data indicating which credit card transactions
were later found to be fraudulent. Many busi-
nesses have customer databases that indicate
which customers were later found to purchase
certain items. Universities have data on which
students were later found to successfully grad-
uate. Manufacturers have time-series data on
which process parameters later produced
flawed or optimal products. Figure 2 illustrates
a number of time-series prediction problems
with the same abstract structure as the preg-
nancy example. In all these cases, the problem
of discovering predictive relations between
earlier and later features can be of great value.

What is the current state of the art for such
problems? The answer is that we now have a
robust set of first-generation machine-learning
algorithms that are appropriate for many prob-
lems of this form. These include decision
tree–learning algorithms such as C4.5 (Quinlan
1993), rule-learning algorithms such as CN2
(Clark and Niblett 1989) and FOIL (Quinlan
1990), and neural network–learning algo-
rithms such as back propagation (Rummelhart
and McClelland 1986). Commercial imple-
mentations of many of these algorithms are
now available. At the same time, researchers
are actively pursuing new algorithms that
learn more accurately than these first-genera-
tion algorithms and that can use types of data
that go beyond the current commercial state of
the art. To give a typical example of this style
of research, Caruana, Baluja, and Mitchell
(1995) describe a multitask learning algorithm
that achieves higher prediction accuracy than
these other methods. The key to their success
is that their system is trained to simultaneous-
ly predict multiple features rather than just the
feature of interest. For example, their system
achieves improved accuracy for predicting
mortality risk in pneumonia patients by simul-
taneously predicting various lab results for the
patient.

What are good topics for new thesis research
in this area? There are many, such as develop-
ing algorithms for active experimentation to
acquire new data, integrating learning algo-
rithms with interactive data visualization, and
learning across multiple databases. Two of my
current favorite research topics in this area are
(1) learning from mixed-media data and (2)
learning using private data plus internet-acces-
sible data.

Learning from mixed-media data: Where-
as rule-learning methods such as the one dis-
cussed in figure 1 can be applied to data
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Customer Purchase Behavior
Customer103: (time = t0) Customer103: (time = t1)     … Customer103: (time = tn)

Sex: M Sex: M Sex: M
Age: 53 Age: 53 Age: 53
Income: $50k Income: $50k Income: $50k
Own House: Yes Own House: Yes Own House: Yes
MS Products: Word MS Products: Word MS Products: Word
Computer 386 PC Computer Pentium Computer Pentium
Purchase Excel?: ? Purchase Excel?: ? Purchase Excel?: Yes
… … …

Customer Retention:
Customer 103: (time = t0) Customer103: (time = t1) Customer103: (time = tn)

Sex: M Sex: M Sex: M
Age: 53 Age: 53 Age: 53
Income: $50K Income: $50K Income: $50K
Own House: Yes Own House: Yes Own House: Yes
Checking: $5k Checking: $20k Checking: $0
Savings: $15k Savings: $0 Savings: $0
Current-customer?: yes Current-customer?: yes Current-customer?: No

Process Optimization
Product72: (time = t0) Product72: (time = t1) Product72: (time = tn)

Stage: mix Stage: cook Stage: cool
Mixing-speed: 60 rpm Temperature: 325 Fan-speed: medium
Viscosity: 1.3 Viscosity: 3.2 Viscosity: 1.3
Fat content: 15% Fat content: 12% Fat content: 12%
Density: 2.8 Density: 1.1 Density: 1.2
Spectral peak: 2800 Spectral peak: 3200 Spectral peak: 3100
Product underweight?: ?? Product underweight?: ?? Product underweight?: Yes
… … …

advantage of these data. Research on new algo-
rithms that use such mixed-media data sets in
medicine and other domains could lead to sub-
stantially more accurate methods for learning
from available historical data and to substan-
tially more accurate decision-making aids for
physicians and other decision makers.

Learning using private data plus internet-
accessible data: To illustrate this topic, consid-
er a university interested in using historical
data to identify current students who are at
high risk of dropping out because of academic
or other difficulties. The university might col-
lect data on students over several years and
apply a rule-learning method similar to that
illustrated in figure 1. Such first-generation
learning methods might work well, provided
there is a sufficiently large set of training data
and a data set that captures the features that
are actually relevant to predicting student

described by numeric features (for example,
age) and symbolic features (for example, gen-
der), current medical records include a rich
mixture of additional media, such as images
(for example, sonogram images, x-rays), signals
from other instruments (for example, EKG sig-
nals), text (for example, notes made on the
patient chart), and even speech (for example,
in some hospitals, physicians speak into hand-
held recorders as they make hospital rounds).
Although we have machine-learning methods
that can learn over numeric and symbolic data,
other methods that can learn over images, and
other methods that can aid learning with
speech data, we have no principled methods
that can take advantage of the union of these
types of data. Put briefly, we are in a situation
where we already have available a rich, mixed-
media set of historical medical data but where
we lack the machine-learning methods to take
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Figure 2. Additional Examples of Time-Series Prediction Problems.



attrition. Now imagine a learning method that
could augment the data collected for this study
by also using the rich set information available
over the World Wide Web. For example, the
web might contain much more complete
information about the particular academic
courses taken by the student, the extracurricu-
lar clubs they joined, their living quarters, and
so on. The point here is that the internet can
provide a vast source of data that goes far
beyond what will be available in any given sur-
vey. If this internet information can be used
effectively, it can provide important additional
features that can improve the accuracy of
learned rules. Of course, much of this web-
based information appears in text form, and it
contains a very large number of irrelevant facts
in addition to the small number of relevant
facts. Research on new methods that utilize the
web and other public online sources (for exam-
ple, news feeds, electronic discussion groups)
to augment available private data sets holds
the potential to significantly increase the accu-
racy of learning in many applications.

Learning to Perceive: 
Face Recognition
A second application niche for machine learn-
ing lies in constructing computer programs
that are simply too difficult to program by
hand. Many sensor-interpretation problems
fall into this category. For example, today’s top
speech-recognition systems all use machine-
learning methods to some degree to improve
their accuracy. A second example is image-clas-
sification problems, such as the face-recogni-
tion task illustrated in figure 3. The face images
shown here have been used to train neural net-
works to classify new face images according to
the identity of the person, his/her gender, and
the direction in which he/she is looking. These
images are part of a larger collection contain-
ing 624 images of 20 different people (selected
students from Carnegie Mellon University’s
machine-learning class). For each person,
approximately 32 different grey-scale images
were collected, varying the person’s expres-
sion, the direction in which he/she is looking,
and his/her appearance with or without sun-
glasses. Given these data, students in the
machine-learning class were asked to train a
computer program to correctly recognize the
face in a new image. Students succeeded in
training a neural network to achieve this task
with an accuracy of 90 percent at recognizing
these faces compared to the 5-percent accuracy
that would be obtained by randomly guessing
which of the 20 people is in the image. In con-
trast, it is extremely difficult to manually con-

struct a face-recognition program of compara-
ble accuracy.

To illustrate the use of neural networks for
image classification, consider the slightly sim-
pler task of classifying these same images
according to the direction in which the person
is looking (for example, to his/her right or left
or up or straight ahead). This task can also be
accomplished with approximately 90-percent
accuracy by training the neural network shown
at the top left of figure 3. The input to the neur-
al network encode the image, and the output
classify the input image according to the direc-
tion in which the person is looking. More
specifically, the image is represented by a 30 ×
32 coarse-grained grid of pixel values, and each
of these 960 pixel values is used as a distinct
input to the network. The first layer of the net-
work shown in the figure contains 3 units, each
of which has the same set of 960 input. The
activation of each such unit is computed by
calculating a linear-weighted sum of the 960
input, then passing the result through a sig-
moid-squashing function that maps this linear
sum into the interval [0,1]. The activations of
these three units are then input to the final lay-
er of four output units. As shown in the figure,
each output unit represents one of the four pos-
sible face directions, with the highest-valued
output taken as the network prediction. This
network is trained using the back-propagation
algorithm (Rummelhart and McClelland 1986)
to adjust the weights of each network unit so
that the difference between the global network
output and the known correct value for each
training example is minimized.

One intriguing property of such multilayer
neural networks is that during training, the
internal hidden units develop an internal rep-
resentation of the input image that captures
features relevant to the problem at hand. In a
sense, the learning algorithm discovers a new
representation of the input image that captures
the most important features. We can examine
this discovered representation in the current
example by looking at the 960 input weights to
each of the 3 internal units in the network of
figure 3. Suppose we display the 960 weight
values (one for weighting each input pixel) in a
grid, with each weight displayed in the posi-
tion of the corresponding pixel in the image
grid. This visualization is exactly the visualiza-
tion of network weights shown to the right of
the network in the figure. Here, large positive
weights are displayed in bright white, large
negative weights in dark black, and near-zero
weights in grey. The topmost four blocks depict
the weights for each of the four output units,
and the bottom three large grids depict the
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Now consider the second hidden unit,
whose activation will cause the correct output
unit to activate. The weights for this unit are
depicted in the middle diagram of the large
weight diagrams directly below the output
unit diagrams. Which pixels in the input
image is this middle unit most sensitive to?
Note first that the largest weight values (bright
white and dark black) for this unit are associat-
ed with pixels that cover the face or body of
the person, and the smallest (light grey)
weights correspond to the image background.
Thus, the face classification will depend pri-
marily on this section of the image. Second,
notice the cluster of bright (positive) weight
values near the left side of the “face” and the
cluster of dark (negative) weight values near
the right side. Thus, this particular unit will
produce a large weighted sum when it is given
an input image with bright pixels overlapping

weights for the three internal, or hidden, units.
To understand these weight diagrams, con-

sider first the four blocks at the top right,
which describe the weights for the four output
units of the network. Let us look at the third
block, which encodes the weights for the third
output unit, which represents that the person
is looking to his/her right. This block shows
four weight values. The first (leftmost) of these
is the weight that determines the unit’s thresh-
old, and the remaining three are the weights
connecting the three hidden units to this out-
put unit. Note this “right” output unit has a
large positive (bright-white) weight connect-
ing to the middle hidden unit and a large neg-
ative (dark-black) weight connecting to the
third hidden unit. Therefore, this unit will pre-
dict that the person is facing to his/her right if
the second hidden unit has a high activation,
and the third hidden unit does not.
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Typical Input Images

30 x 32 Network Inputs

Learned WeightsLeft Start Right Up

Figure 3. Face Recognition.
A neural network (top left) is trained to recognize whether the person is looking to his/her left or right or straight ahead or up. Each of the
30 × 32 pixels in the coarse-grained image is a distinct input to the network. After training on 260 such images, the network achieves an
accuracy of 90 percent classifying future images. Similar accuracy is obtained when training to recognize the individual person. The dia-
grams on the top right depict the weight values of the learned network. These data and the learning code can be obtained at
www.cs.cmu.edu/~tom/faces.html.



these positive weights and dark pixels overlap-
ping these negative weights. One example of
such an image is the third face image shown at
the bottom of the figure, in which the person
is looking to his/her right. This unit will there-
fore have a high output when given the image
of the person looking to his/her right, whereas
it will have a low value when given an image
of a person looking to his/her left (for exam-
ple, the first image shown in the figure).

Neural network–learning algorithms such as
the back-propagation algorithm given here are
used in many sensor-interpretation problems.
If you would like to experiment for yourself
with this face-recognition data and learning
algorithm, the data, code, and documentation
are available at www.cs.cmu.edu/~tom/faces.
html.

What is the state of the art in applying
machine learning to such perception prob-
lems? In many perception problems, learning
methods have been applied successfully and
outperform nonlearning approaches (for
example, in many image-classification tasks
and other signal-interpretation problems).
Still, there remain substantial limits to the cur-
rent generation of learning methods. For
example, the straightforward application of
back propagation illustrated in figure 3
depends on the face occurring reliably in the
same portion of the image. This network can-
not easily learn to recognize faces independent
of translation, rotation, or scaling of the face
within the image. For an example of how such
neural network face-recognition systems can
be extended to accommodate translation and
scaling, see Rowley, Baluja, and Kanade (1996).

There is a great deal of active research on
learning in perception and on neural network
learning in general. One active area of new
research involves developing computational
models that more closely fit what is known
about biological perceptual systems. Another
active area involves attempts to unify neural
network–learning methods with Bayesian
learning methods (for example, learning of
Bayesian belief networks). One of my favorite
areas for new thesis topics is long-term learn-
ing of new representations. Because of the abil-
ity of neural networks to learn hidden-layer
representations, as illustrated in figure 3, they
form one good starting point for new research
on long-term learning of representations.

A Self-Customizing News Reader
A third niche for machine learning is comput-
er software that automatically customizes to its
users after it has been fielded. One prototypical
example is the NEWS WEEDER system (Lang
1995), an interface to electronic news groups
that learns the reading interests of its users.
Here, we briefly summarize NEWS WEEDER and its
learning method.

The purpose of NEWS WEEDER is to learn to fil-
ter the flood of online news articles on behalf
of its user. Each time the user reads an article
using NEWS WEEDER, he/she can assign it a rating
from 1 (very interesting) to 5 (uninteresting) to
indicate interest in the article. NEWS WEEDER

uses these training examples to learn a general
model of its user’s interests. It can then use this
learned interest model to automatically exam-
ine new articles, or articles from other news
groups, to assemble a “top 20” list for the user.
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Table 1. Results of NEWS WEEDER for One User.
After observing the user read approximately 1300 news articles, the system predicted ratings for approximately
600 new articles. The previous confusion matrix shows the relationship between NEWS WEEDER’s predictions and
the actual user ratings. For example, the 20 in the table indicates there were 20 articles for which NEWS WEEDER

predicted a rating of 4 but that the user rated a 3. Note the large numbers along the diagonal indicate correct
predictions.

True Rating Predicted Rating
1 2 3 4 5 Skip Total

1: 0 1 0 0 0 1 2
2: 1 15 6 4 0 15 41
3: 0 6 31 20 0 15 72
4: 0 6 8 42 0 20 76
5: 0 0 0 4 0 1 5
skip: 0 8 4 5 1 141 159



higher the conditional probabilities P(wj | Ci)
for the words wj that are actually encountered
in d, the greater the chance that Ci is the cor-
rect rating for d.

In fact, NEWS WEEDER’s learning method uses
a variant of this algorithm, described in Lang
(1995). One difference is that the document
length is taken into account in estimating the
probability of word occurrence. A second is
that the system combines the strength of its
predictions for each rating level, using a linear
combination of these predictions to produce
its final rating.

How well does NEWS WEEDER learn the user’s
interests? In one set of experiments, the sys-
tem was trained for one user using a set of
approximately 1900 articles. For each article
the user read, a rating of 1 to 5 was assigned.
Articles that the user chose not to read were
labeled skip. A subset of approximately 1300 of
these articles was used to train the system, and
its performance was then evaluated over the
remaining articles. NEWS WEEDER’s predicted rat-
ings are compared to the actual user ratings in
table 1. Note that numbers along the diagonal
of this confusion matrix indicate cases where
the predicted and true ratings were identical,
whereas off-diagonal entries indicate differ-
ences between these two. As is apparent from
table 1, NEWS WEEDER does a fairly good job of
predicting user interest in subsequent docu-
ments. Note that in many cases, its errors rep-
resent small differences between the predicted
and actual ratings (for example, many of its
errors when predicting a rating of 4 were arti-
cles that were actually rated 3 by the user).

NEWS WEEDER illustrates the potential role of
machine learning in automatically customiz-
ing software to users’ needs. It also illustrates
how machine learning can be applied to the
growing volume of text data found on elec-
tronic news feeds, the World Wide Web, and
other online sources. Because the initial exper-
iments with NEWS WEEDER were promising, a
second-generation system called WISE WIRE has
now been developed at WiseWire Corporation.
This system is available free of charge at
www.wisewire.com.

The current state of the art for learning to
classify text documents is fairly well represent-
ed by the naive Bayes text classifier described
here. An implementation of this algorithm for
text classification can be obtained at www.cs.
cmu.edu/~tom/ml-examples.html. Machine
learning over text documents is an active area
of current research. One interesting research
topic involves going beyond the bag-of-words
approach, representing the text by more lin-
guistic features such as noun phrases and par-

Given that there are thousands of news groups
available online and that most users read only
a few, the potential benefit is that the agent
can perform the task of sorting through the
vast bulk of uninteresting articles to bring the
few interesting ones to the attention of its user.

The key machine-learning question underly-
ing NEWS WEEDER is, How can we devise algo-
rithms capable of learning a general model of
user interests from a collection of specific text
documents? NEWS WEEDER takes an approach
that is based both on earlier work in informa-
tion retrieval and on Bayesian learning meth-
ods. First, each text article is re-represented by
a very long feature vector, with one feature for
each possible word that can occur in the text.
Given that there are approximately 50,000
words in standard English, this feature vector
contains approximately 50,000 features. The
value for each feature (for example, the feature
corresponding to the word windsurf) is the
number of times the word occurs in the docu-
ment. This feature-vector representation, based
on earlier work in information retrieval, is
sometimes called a bag of words representation
for the document because it omits information
about word sequence, retaining only informa-
tion about word frequency.

Once the document is represented by such a
feature vector, NEWS WEEDER applies a variant of
a naive Bayes classification learning method to
learn to classify documents according to their
interestingness rating. In the naive Bayes ap-
proach, the system assigns a rating to each new
article based on several probability terms that
it estimates from the training data, as describ-
ed in the following paragraph.

During training, the naive Bayes classifier
determines several probabilities that are used to
classify new articles. First, it determines the pri-
or probability P(Ci) for each possible rating Ci by
calculating the frequency with which this rat-
ing occurs over the training data. For example,
if the user assigned a top rating of 1 to just 9 of
the 100 articles he/she read, then P(Rating = 1)
= 0.9. Second, it estimates the conditional prob-
ability P(wj | Ci) of encountering each possible
word wj given that the document has a true rat-
ing of Ci. For example, if the word windsurf
occurs 11 times among the 10,000 words
appearing in articles rated 1 by the user, then
P(windsurf | Rating = 1) = .0011. A new text doc-
ument d is then assigned a new rating  by
choosing the rating Ci that maximizes

where Πwj∈ d P(wj | Ci) represents the product of
the various P(wj | Ci)  over all words wj  found
in the document d. As we might expect, the

P C P w Ci j
w d

i
j

( ) ( | )
∈

∏
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tial interpretations of the meaning of the text.
In addition to classifying text documents, oth-
er important text-learning problems include
learning to extract information from text (for
example, learning to extract the title, speaker,
room, and subject, given online seminar
announcements). Given the rapidly growing
importance of the World Wide Web and other
online text such as news feeds, it seems likely
that machine learning over text will become a
major research thrust over the coming years.

Where Next?
As the previous three examples illustrate,
machine learning is already beginning to have
a significant impact in several niches within
computer science. My personal belief is that the
impact of machine learning is certain to grow
over the coming years, as more and more data
come online, we develop more effective algo-
rithms and underlying theories for machine
learning, the futility of hand-coding increasing-
ly complex systems becomes apparent, and
human organizations themselves learn the val-
ue of capturing and using historical data.

Put in a long-term historical perspective,
computer science is a young field still in its first
50 years. Perhaps we will look back after the
first hundred years to see that the evolution of
computer science followed a predictable
course: During its first few decades, computer
science focused on fairly simple algorithms
and computer programs and developed a basic
understanding of data structures and computa-
tion. During the next several decades, it strug-
gled with the problem of how to construct
increasingly complex software systems but
continued to follow its early approach of man-
ually hand crafting each line of code. During
the second half of its first century (hopefully!),
a shift is seen to take place in which software
developers eventually abandon the goal of
manually hand crafting increasingly complex
software systems. Instead, they shift to a soft-
ware development methodology of manually
designing the global structure of the system
but using machine-learning methods to auto-
matically train individual software compo-
nents that cannot be found in a software
library and to optimize global performance. Of
course, we will have to wait to find out how
the second 50 years pans out, but at least for
the three niches discussed here, it is already
the case that machine learning competes
favorably with manual hand-crafted code.

As for us researchers, many exciting oppor-
tunities are available right now regardless of
how the next 50 years pan out. In addition to

some of the specific research directions noted
earlier, I believe there are several areas where
significant breakthroughs are possible. Below
are some of my speculations on which research
areas might produce dramatic improvements
in the state of the art of machine learning.

Incorporation of prior knowledge with
training data: One striking feature of the
learning methods described earlier is that they
are all tabula rasa methods; that is, they assume
the learner has no initial knowledge except for
the representation of hypotheses and that it
must learn solely from large quantities of train-
ing data. It is well understood that prior
knowledge can reduce sample complexity and
improve learning accuracy. In fact, machine-
learning algorithms such as explanation-based
learning (DeJong 1997) and, more recently,
Bayesian belief networks provide mechanisms
for combining prior knowledge with training
data to learn more effectively. Nevertheless, it
remains a fact that almost all the successful
uses of machine learning to date rely only on
tabula rasa approaches. More research is need-
ed to develop effective methods of combining
prior knowledge with data to improve the
effectiveness of learning.

Lifelong learning: Most current learning
systems address just one task. However, humans
learn many tasks over a long lifetime and seem
to use the accumulating knowledge to guide
subsequent learning. One interesting direction
in current research is to develop long-life agents
that accumulate knowledge and reuse it to
guide learning in a similar fashion. These agents
might learn new representations, as well as
facts, so that they can more effectively represent
and reason about their environment as they
age. Several researchers are already examining
this topic in the context of robot learning and
autonomous software agents.

Machine learning embedded in program-
ming languages: If one assumes that machine
learning will play a useful and routine role
within certain types of computer software,
then it is interesting to ask how future software
developers will incorporate learning into their
software. Perhaps it is time for the develop-
ment of new programming languages or pro-
gramming environments that allow develop-
ers to incorporate machine learning into their
software as easily as current environments
allow incorporating abstract data types and
other standard software constructs.

Machine learning for natural language:
One fact that seems certain to influence
machine learning is the fact that the majority
of the world’s online data is now text. Given
approximately 200,000,000 pages on the
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World Wide Web, and approximately
1,000,000,000 hyperlinks, it might be time to
consider machine learning for natural lan-
guage problems. Consider that each of these
billion hyperlinks is a kind of semisupervised
training example that indicates the meaning
of the words underlined by the hyperlink. For
example, the meaning of a hyperlink such as
my favorite vacation spot is indicated by the web
page to which it points. Given that there are
only 50,000 words in everyday English, the
1,000,000,000 hyperlinks produce, on average,
20,000 training examples of each word. If we
could invent learning algorithms that use this
kind of training data, we might be able to
make significant new progress on natural lan-
guage processing.
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