
■ I review current statistical work on syntactic pars-
ing and then consider part-of-speech tagging,
which was the first syntactic problem to successful-
ly be attacked by statistical techniques and also
serves as a good warm-up for the main topic—sta-
tistical parsing. Here, I consider both the simplified
case in which the input string is viewed as a string
of parts of speech and the more interesting case in
which the parser is guided by statistical informa-
tion about the particular words in the sentence. Fi-
nally, I anticipate future research directions.

Syntactic parsing is the process of assigning
a phrase marker to a sentence, that is, the
process that given a sentence such as “the

dog ate” produces a structure like that in figure
1. In this example, I adopt the standard abbre-
viations: s for sentence, np for noun phrase, vp
for verb phrase, and det for determiner.

It is generally accepted that finding the sort
of structure shown in figure 1 is useful in de-
termining the meaning of a sentence. Consid-
er a sentence such as “salespeople sold the dog
biscuits.” Figure 2 shows two structures for
this sentence. Note that the two have different
meanings: On the left, the salespeople are sell-
ing dog biscuits, but on the right, they are sell-
ing biscuits to dogs. Thus, finding the correct
parse corresponds to determining the correct
meaning.

Figure 2 also exemplifies a major problem in
parsing, syntactic ambiguity—sentences with two
or more parses. In such cases, it is necessary for
the parser (or the understanding system in
which the parser is embedded) to choose the
correct one among the possible parses. 

However, this example is misleading in a fun-
damental respect: It implies that we can assign
at least a semiplausible meaning to all the pos-
sible parses. For most grammars (certainly for
the ones statistical parsers typically deal with),
this is not the case. Such grammars would as-

sign dozens, possibly hundreds, of parses to this
sentence, ranging from the reasonable to the
uninterpretable, with the majority at the unin-
terpretable end of things. To take but one exam-
ple, a grammar I have been using has the rule

np → np np  .

This rule would be used in the analysis of a
noun phrase such as “10 dollars a share,”
where the two nps 10 dollars and a share are
part of the same np. The point here is that this
rule would allow the third parse of the sen-
tence shown in figure 3, and this parse has no
obvious meaning associated with it—the best I
can do is an interpretation in which biscuits is
the name of the dog. In fact, most of the parses
that wide-coverage grammars find are like this
one—pretty senseless.

A usually unstated, but widely accepted, as-
sumption in the nonstatistical community has
it that some comparatively small set of parses
for a sentence are legitimate ambiguities and
that these parses have interpretations associat-
ed with them, albeit pretty silly ones some-
times. Furthermore, it is assumed that deciding
between the legitimate parses is the responsi-
bility not of the parser but, rather, of some syn-
tactic disambiguation unit working either in
parallel with the parser or as a postparsing
process. Thus, our hypothetical nonstatistical
traditionalist might say that the parser must
rule out the structure in figure 3 but would be
within its rights to remain undecided between
those in figure 2.

By contrast, statistical parsing researchers as-
sume that there is a continuum and that the
only distinction to be drawn is between the
correct parse and all the rest. The fact that we
were able to find some interpretation for the
parse in figure 3 supports this continuum view.
To put it another way, in this view of the prob-
lem, there is no difference between parsing on
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Let us now express our algorithm in more
mathematical terms, not so much to illumi-
nate the algorithm as to introduce some math-
ematical notation. We ignore for the moment
the possibility of seeing a new word. Let t vary
over all possible tags. Then the most common
tag for the ith word of a sentence, wi, is the one
that maximizes the probability p(t | wi). To put
it another way, this algorithm solves the tag-
ging problem for a single word by finding

(1)

Here, arg maxt says “find the t that maxi-
mizes the following quantity,” in this case, the
probability of a tag given the word. We could
extend this scheme to an entire text by looking
for the sequence of tags that maximize the
product of the individual word probabilities:

(2)

Here, we are looking for the sequence of n tags
t1,n that maximizes the probabilities. 

As I said, this simple algorithm achieves 90-
percent accuracy; although this accuracy rate is
not bad, it is not too hard to get as high as 96
percent, and the best taggers are now creeping
toward 97 percent.1 The basic problem with
this algorithm is that it completely ignores a
word’s context, so that in “the can will rust,”
the word can is tagged as a modal rather than a
noun, even though it follows the word the.

To allow a bit of context, suppose we collect
statistics on the probability of tag ti following
tag ti–1. Now consider a tagger that follows the
equation

(3)

As before, we are taking the product over the
probabilities for each word, but where before we
considered the probability of each word out of
context, here we use two probabilities: (1) p(ti |
ti–1) is the probability of a tag (ti) given the pre-
vious tag (ti–1) as context and (2) p(wi | ti) relates
the word to its possible tags. This second prob-
ability, the probability of a word given a possi-
ble tag, might look odd, but it is correct. Many
would assume that we would want p(ti | wi), the
probability of the tag given the word, but if we
were to derive equation 3 from first principles,
we would see that the less intuitive version
shown here is correct. It is also the case that if
you try the system with both equations, equa-
tion 3 outperforms the seemingly more intu-
itive one by about 1 percent in accuracy. I note
this difference because of the moral that a bit of
mathematical care can improve program per-
formance, not merely impress journal referees.

Expressions such as equation 3 correspond
to a well-understood mathematical construct,
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the one hand and syntactic disambiguation on
the other: it’s parsing all the way down. 

Part-of-Speech Tagging 
The view of disambiguation as inseparable
from parsing is well illustrated by the first nat-
ural language–processing task to receive a thor-
oughgoing statistical treatment—part-of-
speech tagging (henceforth, just tagging). A
tagger assigns to each word in a sentence the
part of speech that it assumes in the sentence.
Consider the following example: 

The can will rust
det modal-verb modal-verb noun

noun noun verb
verb verb

Under each word, I give some of its possible
parts of speech in order of frequency; the cor-
rect tag appears in bold. Typically, for English,
there will be somewhere between 30 and 150
different parts of speech, depending on the
tagging scheme. Although most English words
have only one possible part of speech (thus it
is impossible to get them wrong), many words
have multiple possible parts of speech, and it is
the responsibility of a tagger to choose the cor-
rect one for the sentence at hand. 

Suppose you have a 300,000-word training
corpus in which all the words are already
marked with their parts of speech. (At the end
of this section, we consider the case when no
corpus is available.) You can parlay this corpus
into a tagger that achieves 90-percent accuracy
using a simple algorithm. Record for each
word its most common part of speech in the
training corpus. To tag a new text, simply as-
sign each word its most common tag. For
words that do not appear in the training cor-
pus, guess proper-noun. (Although 90 percent
might sound high, it is worth remembering
that if we restricted consideration to words
that have tag ambiguity, the accuracy figures
would be much lower.) 
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np vp

det noun verb

the dog ate

Figure 1. A Simple Parse.



hidden Markov models (HMMs) (Levinson, Ra-
biner, and Sondhi 1983). Basically, an HMM is
a finite automaton in which the state transi-
tions have probabilities and whose output is
also probabilistic. For the tagging problem as
defined in equation 3, there is one state for
each part of speech, and the output of the ma-
chine is the words of the sentence. Thus, the
probability of going from one state to another
is given by p(ti | ti–1), and for state ti, the prob-
abilistic output of the machine is governed by
p(wi | ti). 

Figure 4 shows a fragment of an HMM for
tagging. We see the state for det and from it
transitions to adjective (adj) and noun with rel-
atively high probabilities (.218 and .475, re-
spectively) and a transition returning to det
with fairly low probability (.0016), the latter re-
flecting that two determiners in a row are un-
usual in English. We also see some possible out-
put of each state, along with their probabilities.

From this point of view, the tagging prob-
lem is simply this: Given a string of words, find
the sequence of states the machine went
through to output the sentence at hand. The
HMM is hidden in the sense that the machine
could have gone through many possible state
sequences to produce the output, and thus, we
want to find the set of states with the highest
probability. Again, this state sequence is exact-
ly what is required in equation 3.

The important point here is that there are
many well-understood algorithms for dealing
with HMMs. I note two of them: First, there is
a simple algorithm for solving equation 3 in
linear time (the Viterbi algorithm), even
though the number of possible tag sequences
to be evaluated goes up exponentially in the
length of the text. Second, there is an algo-
rithm (the forward-backward algorithm) for

adjusting the probabilities on the states and
output to better reflect the observed data. 

It is instructive to consider what happens in
this model when we allow unknown words in
the input. For such words, p(wi | ti) is zero for all
possible tags, which is not good. This is a spe-
cial case of the sparse-data problem—what to do
when there is not enough training data to cov-
er all possible cases. As a practical issue, simply
assigning unknown words some low probabil-
ity for any possible tag lets the tagger at least
process the sentence. It is better to base one’s
statistics on less detailed information. For ex-
ample, word endings in English give part-of-
speech clues; for example, words ending in ing
are typically progressive verbs. One can collect
statistics on, say, the last two letters of the
word and use them. More generally, this
process is called smoothing, and it is a major re-
search problem in its own right. 

The tagger we just outlined is close to what
might be called the canonical statistical tagger
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 s

vp

np

np           npnp

noun       verb  det  noun   noun

Salespeople  sold  the  dog   biscuits

s

vp

npnpnp

noun      verb det  noun   noun

Salespeople  sold  the   dog    biscuits

s

np

noun

vp

verb det noun  noun

Salespeople    sold  the  dog     biscuits

Figure 2. Two Structures for an Ambiguous Sentence.

Figure 3. A Third Structure for an Ambiguous Sentence.



plied rule 1, which of the other rules does the
best job of correcting the remaining mistakes.
This is rule 2. We keep doing this until the
rules have little effect. The result is an ordered
list of rules, typically numbering 200 or so, to
apply to new examples we want tagged. 

Besides illustrating the diversity of statistical
parsers, transformation tagging has several
nice properties that have not been duplicated
in the conventional version. One is speed.
Roche and Schabes (1995) report a method for
turning the transformational tagger’s rule list
into a finite automaton and compiling the au-
tomaton into efficient code. This tagger can
tag at the rate of about 11,000 words/sec-
ond—effectively the speed at which the pro-
gram is able to look up words in its dictionary.
This rate contrasts with 1200 words/second for
Roche and Schabe’s implementation of the
standard HMM tagger. (From my experience,
1200 words/second is a fast implementation
indeed of an HMM tagger.) 

Another way in which the transformational
version seems superior has to do with the as-
sumption I made at the outset, that we have at
our disposal a 300,000-word hand-tagged cor-
pus. Is it possible to do without such a corpus?
The current answer to this question is confus-
ing. As already noted, the standard tagger uses
HMM technology, and there are standard tech-
niques for training HMMs, that is, for adjusting
their parameters to fit the data better even
when the data are not marked with the answers
(the tags). Unfortunately, Merialdo (1994) re-
ports that HMM training does not seem to im-
prove HMM taggers. For example, suppose you
start out with a dictionary for the language but
no statistics. Thus, you know the possible parts
of speech for the words but know neither their
relative frequency nor probabilities such as p(ti

(Weischedel 1993; Church 1988). There are,
however, many different ways of using statisti-
cal information to make part-of-speech tagging
decisions. Let us consider a second such
method, transformational tagging. It loosens the
grip of this first example on our imagination,
and it also has interesting properties of its own.
(An analogous transformational approach to
parsing [Brill 1993] is not covered here.) 

The transformational scheme takes as its
starting point the observation that a simple
method, such as choosing the most common
tag for each word, does well. It then proposes
and evaluates rules for altering the tags to oth-
ers we hope are more accurate. Rule formats
are kept simple to make them easy to learn. For
example, in Brill (1995), one of the formats is

Change the tag of a word from X to Y if
the tag of the previous word is Z .

We already noted that in “the can will rust,”
the trivial algorithm chooses the modal mean-
ing of can. A rule in the previous format that
would fix this problem is “change modal-verb to
noun after det.” More generally, if we have, say,
40 possible parts of speech (a common number),
then this rule format would correspond to 403 =
6.4 3 104 possible rules if we substitute each pos-
sible part of speech for X, Y, and Z. (In fact, all
possible rules need not be created.) 

The system then uses the training data as
follows: It measures the initial accuracy (about
90 percent, as noted previously) and then tries
each possible rule on the training data, mea-
suring the accuracy that would be achieved by
applying the rule across the board. Some rules
make things worse, but many make things bet-
ter, and we pick the rule that makes the accu-
racy the highest. Call this rule 1. 

Next we ask, given that we have already ap-
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.0016

det
a .245

the .586

adj
large .004
small .005

noun
house .001
stock .001

.45.218

.475

Figure 4. A Fragment of a Hidden Markov Model for Tagging.



| ti–1). With this information, HMM training
gets little higher than the 90 percent achieved
by the trivial algorithm. However, Brill (1995)
reports on a learning mechanism for a transfor-
mational tagger using untagged data that
achieve a 95-percent to 96-percent level of per-
formance. At first glance, the algorithm looks a
lot like the traditional HMM training algorithm
adapted to a transformational milieu. Why it
works, although training the statistic version
with standard HMM training does not, is cur-
rently unexplained. 

Statistical Parsing
We started our discussion of statistical taggers
by assuming we had a corpus of hand-tagged
text. For our statistical parsing work, we as-
sume that we have a corpus of hand-parsed
text. Fortunately, for English there are such
corpora, most notably the Penn tree bank
(Marcus 1993). In this article, I concentrate on
statistical parsers that use such corpora to pro-
duce parses mimicking the tree-bank style. Al-
though some work has used tree banks to learn
a grammar that is reasonably different from
that used in the corpus (Briscoe and Waegner
1993; Pereira and Schabes 1992), this has
proved more difficult and less successful than
the tree-bank–mimicking variety.

Deciding to parse in the tree-bank style ob-
viously makes testing a program’s behavior
easier—just compare the program output to
the reserved testing portion from the tree
bank. However, we still need to define precise-
ly how to measure accuracy. In this article, I
concentrate on two such measures: (1) labeled
precision and (2) labeled recall. Precision is the
number of correct constituents found by the
parser (summed over all the sentences in the
test set) divided by the total number of nonter-
minal constituents the parser postulated. Re-
call is the number correct divided by the num-
ber found in the tree-bank version. (We
consider the parts of speech to be the terminal
symbols in this counting and, thus, ignore
them. Otherwise, we would be conflating pars-
ing accuracy with part-of-speech tagging accu-
racy.) A constituent is considered correct if it
starts in the right place, ends in the right place,
and is labeled with the correct nonterminal. 

For example, suppose our tree bank has the
following parse: 

(s (np(det The) (noun stranger)) 
(vp (verb ate)

(np (det the) (noun doughnut))
(pp (prep with) (np (det a) (noun fork))))),

and our parser instead comes up with
(s (np(det The) (noun stranger))

(vp (verb ate)

(np(det the) (noun doughnut)
(pp (prep with) (np (det a) (noun fork)))))).

The parser has postulated six nonterminals (1 s,
3 nps, 1 vp, and 1 prepositional phrase [pp]), of
which all are correct except the np headed by
doughnut, which should have ended after dough-
nut but instead ends after fork. Thus, the preci-
sion is 5/6, or .83. Because the tree-bank version
also has 6 nonterminals, the recall is also .83. 

To give some idea of how good current
parsers are according to these measures, if we
give a parser just the parts of speech and ask it
to parse the sentence (that is, if it does not see
the actual words in the sentence), a good sta-
tistical parser that does not try to do anything
too fancy can achieve about 75-percent–aver-
age precision-recall. However, a state-of-the-art
parser that has access to the actual words and
makes use of fine-grained statistics on how par-
ticular English words fit into parses achieves la-
beled precision-recall rates of about 87 percent
to 88 percent. These figures are for the Penn
Wall Street Journal corpus mentioned earlier.
This corpus contains the text of many articles
taken from the Wall Street Journal without
modification, except for the separation of
punctuation marks from the words they ad-
join. The average sentence length is 23 words
and punctuation. I have not measured how
many parses there typically are for these sen-
tences, and of course, it would depend on the
grammar. However, I would guess that for the
kinds of grammar we discuss in the following
pages, a million parses to a sentence would be
conservative. At any rate, we are not talking
about toy examples. 

Statistical parsers work by assigning proba-
bilities to possible parses of a sentence, locating
the most probable parse, and then presenting
the parse as the answer. Thus, to construct a
statistical parser, one must figure out how to (1)
find possible parses, (2) assign probabilities to
them, and (3) pull out the most probable one. 

One of the simplest mechanisms for this is
based on probabilistic context-free grammars
(PCFGs), context-free grammars in which
every rule is assigned a probability (Charniak
1993). The probabilities are to be interpreted as
the probability of expanding a constituent, say
an np, using this particular rule, as opposed to
any of the other rules that could be used to ex-
pand this kind of constituent. For example,
this toy PCFG generates the three parses for
our ambiguous sentence from figures 2 and 3
(figure 5). Note, for example, how the proba-
bilities of all the rules for np sum to one. 

Given the probability of individual rules, we
calculate the probability of an entire parse by
taking the product of the probabilities for each

Statistical
parsers 
work by 
assigning
probabilities
to possible
parses 
of a 
sentence, 
locating 
the most 
probable
parse, 
and then 
presenting 
the parse 
as the 
answer.
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grammar in PCFG form such that new (pre-
sumably novel) sentences have parses accord-
ing to the grammar, (2) a parser that applies
the PCFG to a sentence and finds some or all of
the possible parses for the sentence, and (3)
the ability to find the parses with the highest
probability according to equation 4. 

As noted at the end of the last section, there
are well-understood and reasonably efficient
algorithms for points 2 and 3, so these are not
pressing problems. This leaves point 1. 

There is a trivial way to solve point 1. Sup-
pose we are not concerned about parsing novel
sentences and only want to make sure that we
produce a grammar capable of assigning one or
more parses to all the training data. This is easy.
All we need do is read in the parses and record
the necessary rules. For example, suppose the
leftmost parse in figure 2 is in our tree bank. Be-
cause this parse has an s node with np and vp
immediately below it, our grammar must there-
fore have the rule s → np vp. Similarly, because
there are three noun phrases, two consisting of
a det followed by a noun and one with a det
noun pp, our grammar would need the rules np
→ det noun and np → det noun pp. 

It is possible to read off all the necessary rules
in this fashion. Furthermore, we can assign
probabilities to the rules by counting how often
each rule is used. For example, if the rule np →
det noun is used, say, 1,000 times, and overall
np rules are used 60,000 times, then we assign
this rule the probability 1,000/60,000 = .017.

I evaluate tree-bank grammars of this sort
in Charniak (1996), and a generalization of
them is used in Bod (1993). They seem to be
reasonably effective. That is to say, grammars
of this sort achieve an average of about 75-
percent labeled precision and recall, the per-
centage mentioned previously as pretty good
for grammars that only look at the parts of
speech for the words.

In some respects, this result is surprising. It
was widely assumed that reading off a gram-

of the rules used therein. That is, if s is the en-
tire sentence, π is a particular parse of s, c
ranges over the constituents of π, and r(c) is the
rule used to expand c, then

(4)

In discussing the parses for “the salespeople
sold the dog biscuits,” we were particularly
concerned about the nonsensical parse that
considered the dog biscuits to be a single noun
phrase containing two completely distinct
noun phrases inside. Note that if, as in the pre-
vious grammar, the rule np → np np has a fair-
ly low probability, this parse would be ranked
low. According to our PCFG fragment, the left-
most parse of figure 2 has probability 1.0 3 .3
3 .8 3 .15 = .036, whereas that of figure 3 has
probability .0018.

PCFGs have many virtues. First and fore-
most, they are the obvious extension in the sta-
tistical domain of the ubiquitous context-free
grammars that most computer scientists and
linguists are already familiar with. Second, the
parsing algorithms used for context-free pars-
ing carry over to PCFGs (in particular, all possi-
ble parses can be found in n3 time, where n is
the length of the sentence). Also, given the
standard compact representation of CFG pars-
es, the most probable parse can be found in n3

time as well, so PCFGs have the same time
complexity as their nonprobabilistic brethren.
There are more complicated but potentially
useful algorithms as well (Goodman 1996b;
Stolcke 1995; Jelinek 1991). Nevertheless, as we
see in the following sections, PCFGs by them-
selves do not make particularly good statistical
parsers, and many researchers do not use them. 

Obtaining a Grammar 
Suppose that we do want to use a PCFG as our
statistical parsing mechanism and that, as we
said earlier, we have a tree bank. To parse a new
sentence, we need the following: (1) an actual

p s p r c
c

( , ) ( ( )).π = ∏

s → np vp (1.00) np → det noun (0.5)
vp → verb np (0.8) np → noun (0.3)
vp → verb np np (0.2) np → det noun noun (0.15)

np → np np (0.05)
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Figure 5. The Three Parses for the Ambiguous Sentence from Figures 2 and 3.



mar in this fashion would not lead to accurate
parsing. The number of possible grammatical
constructions is large, and even the Penn tree
bank, with its nearly 50,000 hand-parsed sen-
tences, is not large enough to contain them all,
especially because the tree-bank style is rela-
tively flat (constituents often contain little
substructure). Thus, one would expect new
sentences to require rules not in the derived
grammar. Although this indeed happens, the
rules not in the tree bank are so rare that miss-
ing them has little effect on parsing, and when
the tree-bank grammar is missing a rule used
in the correct parse, the ambiguity we talked
about earlier ensures that there will be lots of
incorrect parses that are just a little off. Thus,
the missing rules have little effect on statistical
measures such as average precision-recall. 

To get some idea of how these grammars
perform, we give a real example in figure 6
cleaned up only by removing all the parts of
speech from the words to concentrate our at-
tention on the nonterminals. The parser gets
things correct except for the area around the
phrase due out tomorrow, which seems to con-
fuse it, leading to the unintuitive adjectival
phrase (adjp) “the August merchandise trade
deficit due.” In terms of precision-recall, the
parse got 7 constituents correct of the 9 it pro-
posed (precision = 7/9) and of the 10 found in
the tree-bank version (recall = 7/10).

Nevertheless, it is troubling that a tree-
bank grammar is doomed from the start to
misparse certain sentences simply because it
does not have the correct rule. An alternative
that has been used in two state-of-the-art sta-

tistical parsers (Collins 1996; Magerman
1995) are Markov grammars. (I made up this
term; neither Magerman [1995] nor Collins
[1996] uses it.) 

Rather than storing explicit rules, a Markov
grammar stores probabilities that allow it to in-
vent rules on the fly. For example, to invent np
rules, we might know the probability that an
np starts with a determiner (high) or a prepo-
sition (low). Similarly, if we are creating a noun
phrase, and we have seen a determiner, we
might know what the probability is that the
next constituent is an adjective (high) or an-
other determiner (low). It should be clear that
we can collect such statistics from the tree
bank in much the same way as we collected
statistics about individual rules. Having col-
lected these statistics, we can then assign a
probability that any sequence of constituents
is any part of speech. Some of these probabili-
ties will be high (for example, np → det adj
noun), but most of them will be low (for exam-
ple, np → preposition). 

To formalize this idea slightly, we capture
the idea of using the probability of adj appear-
ing after det inside an np with probabilities of
the form p(ti | l, ti–1), where ti–1 is the previous
constituent, and l is the constituent type we
are expanding. Naturally, this is but one way to
try to capture the regularities; we could condi-
tion instead on l and the two previous con-
stituents. 

We can relate this scheme to our more tradi-
tional rule-based version by noting that the
probability of a rule is the product of the prob-
abilities of its individual components.

Rather 
than 
storing 
explicit 
rules, a
Markov 
grammar
stores 
probabilities
that allow 
it to 
invent 
rules 
on the 
fly.
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(s (np The (adjp most troublesome) report) 
(vp may 

(vp  be 
(np  (np the August merchandise trade deficit) 

(adjp due (advp out) (np tomorrow))))) 
(. .))

(s (np The (adjp most troublesome) report) 
(vp may 

(vp be 
(adjp (np the August merchandise trade deficit) 

due) 
(pp out (np tomorrow)))) 

(. .))

Figure 6. A Real Tree-Bank Example and the Parse Found by a Tree-Bank Grammar.



heads of phrases to the heads of all their sub-
phrases. (A different scheme for lexicalization
is proposed by Bod [1993], but its efficacy is
still under debate [Goodman 1996a].)

Lexicalized statistical parsers collect, to a
first approximation, two kinds of statistics.
One relates the head of a phrase to the rule
used to expand the phrase, which we denote
p(r | h), and the other relates the head of a
phrase to the head of a subphrase, which we
denote p(h | m, t), where h is the head of the
subphrase, m the head of the mother phrase,
and t the type of subphrase. For example, con-
sider the vp “be ... tomorrow” from figure 6.
Here, the probability p(h | m, t) would be p(be |
may, vp), but p(r | h) would be p(vp → aux np
| be). Parsers that use Markov grammars do not
actually have p(r | h) because they have no
rules as such. Rather, this probability is spread
out, just as in equation 5, except now each of
the probabilities is to be conditioned on the
head of the constituent h. In what follows, we
talk as if all the systems used rules because the
differences do not seem crucial. 

Thus, for a lexicalized parser, equation 4 is
replaced by 

(6)

Here, we first find the probability of the
head of the constituent h(c) given the head of
the mother m(c) and then the probability of
the rule r(c) given the head of c.

In general, conditioning on heads tightens
up the probabilities considerably. For example,
consider the probability of our noun phrase
“the August merchandise trade deficit.” In table
1, I give the probabilities for the word August
given (1) no prior information (that is, what
percentage of all words are August), (2) the part
of speech (what percentage of all proper nouns
are August), and (3) the part of speech and the
head of the previous phrase (deficit). We do the
same for the rule used in this noun phrase: np
→ det propernoun noun noun noun (table 1).
In both cases, the probabilities increase as the
conditioning events get more specific. 

Another good example of the utility of lexi-
cal head information is the problem of pp at-
tachment. Consider the following example
from Hindle and Rooth (1991):

Moscow sent more than 100,000 soldiers
into Afghanistan.

The problem for a parser is deciding if the pp
into Afghanistan should be attached to the verb
sent or the noun phrase more than 100,000 sol-
diers. Hindle and Rooth (1991) suggest basing
this decision on the compatibility of the prepo-
sition into with the respective heads of the vp
(sent) and the np (soldiers). They measure this

p s p h c m c p r c h c
c
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There are no formal studies on how well dif-
ferent Markov grammars perform or how they
compare to tree-bank grammars. I have looked
at this some, and found that for nonlexicalized
parsers (that is, parsers that do not use infor-
mation about the words, just about the parts of
speech), tree-bank grammars seem to work
slightly better, though my colleague Mark
Johnson found a Markov scheme that worked
ever so slightly better than the tree-bank gram-
mar. Either way, the parsers that have used
Markov grammars have mostly been lexical-
ized, which is where the real action is. 

Lexicalized Parsing 
The biggest change in statistical parsing over
the last few years has been the introduction of
statistics on the behavior of individual words.
As noted earlier, rather than the 75-percent
precision-recall accuracy of parsers that use sta-
tistics based only on a word’s part of speech,
lexicalized parsers now achieve 87-percent to
88-percent precision-recall.

Gathering statistics on individual words im-
mediately brings to the fore the sparse data
problems I first mentioned in our discussion of
tagging. Some words we will have never seen
before, and even if we restrict ourselves to
those we have already seen, if we try to collect
statistics on detailed combinations of words,
the odds of seeing the combination in our
training data become increasingly remote.
Consider again the noun phrase from figure 6,
“the August merchandise trade deficit.” This
combination does not seem terribly unusual
(at least not for text from the Wall Street Jour-
nal), but it does not appear in our 900,000-
word training set. 

To minimize the combinations to be consid-
ered, a key idea is that each constituent has a
head, its most important lexical item. For ex-
ample, the head of a noun phrase is the main
noun, which is typically the rightmost. More
generally, heads are computed bottom up, and
the head of a constituent c is a deterministic
function of the rule used to expand c. For ex-
ample, if the c is expanded using s → np vp,
the function would indicate that one should
find the head of the c by looking for the head
of the vp. In “the August merchandise trade
deficit,” the head is deficit, and even though
this noun phrase does not appear in the train-
ing set, all the words in the noun phrase do ap-
pear under the head deficit. Thus, if we restrict
ourselves to statistics on at most pairs of
words, the best ones to gather would relate the
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compatibility by looking at p(into | sent) (the
probability of seeing a pp headed by into given
it is under a vp headed by sent) and p(into | sol-
diers) (its probability given it is inside an np
headed by soldiers). The pp is attached to the
constituent for which this probability is higher.
In this case, the probabilities match our intu-
ition that it should be attached to sent because
p(into | sent) = .049, whereas p(into | soldiers) =
.0007. Note that the probabilities proposed here
are exactly those used in the parsing model
based on equation 6, where the probability of a
constituent c incorporates the probability p(h(c)
| m(c)), the probability of the head of c given the
head of the parent of c. For the two pp analyses,
these would be the probability of the head of
the pp (for example, into) given the head of the
mother (for example, sent or soldiers).

Figure 7 shows our lexicalized parser’s parse
of the sentence in figure 6. Note that this time,
the parser is not as confused by the expression
due out tomorrow, although it makes it a prepo-
sitional phrase, not an adjectival phrase. These
improvements can be traced to the variety of
ways in which the probabilities conditioned
on heads better reflect the way English works.
For example, consider the bad adjp from figure
6. The probability of the rule adjp → np adj is
.0092, but the observed probability of this rule
given that the head of the phrase is due is ze-
ro—this combination does not occur in the
training corpus.

There is one somewhat sobering fact about
this last example. Even though the parse in fig-
ure 7 is much more plausible than that in fig-
ure 6, the precision and recall figures are much
the same: in both cases, the parser finds seven
correct constituents. Obviously, the number of
constituents in the tree-bank parse stays the
same (10), so the recall remains 70 percent. In
the lexically based version, the number of con-
stituents proposed by the parser decreases
from 9 to 8, so the precision goes up from 78
percent to 87 percent. This modest improve-
ment hardly reflects our intuitive idea that the
second parse is much better than the first.

Thus, the precision-recall figures do not com-
pletely capture our intuitive ideas about the
goodness of a parse. However, quantification
of intuitive ideas is always hard, and most re-
searchers are willing to accept some artificiality
in exchange for the boon of being able to mea-
sure what they are talking about. 

Conditioning on lexical heads, although im-
portant, is not the end of the line in what cur-
rent parsers use to guide their decisions. Also
considered are (1) using the type of the parent
to condition the probability of a rule (Charniak
1997), (2) using information about the immedi-
ate left context of a constituent (Collins 1996),
(3) using the classification of noun phrases in-
side a vp as optional or required (Collins 1997),
and (4) considering a wide variety of possible
conditioning information and using a decision
tree–learning scheme to pick those that seem to
give the most purchase (Magerman 1995). I ex-
pect this list to increase over time.

Future Research 
The precision and recall measures of the best
statistical parsers have been going up year by
year for several years now, and as I have noted,
the best of them is now at 88 percent. How
much higher can these numbers be pushed? To
answer this question, one thing we should
know is how well people do on this task. I know
of no published figures on this question, but the
figure that is bandied about in the community
is 95 percent. Given that people achieve 98 per-
cent at tagging, and parsing is obviously more
complicated, 95 percent has a reasonable ring to
it, and it is a nice round number. 

Although there is room for improvement, I
believe for several reasons that it is now (or will
soon be) time to stop working on improving
labeled precision-recall as such. We have al-
ready noted the artificiality that can accompa-
ny these measurements, and we should always
keep in mind that parsing is a means to an
end, not an end in itself. At some point, we
should move on. In addition, many of the
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Conditioning events p(August) p(rule) 
Nothing 2.7 3 10–4 3.8 3 10–5

Part of speech 2.8 3 10–3 9.4 3 10–5

Also h(c) is deficit 1.9 3 10–1 6.3 3 10–3

Table 1. Probabilities for the Word August.



parsing. A standard example of a null element
is in relative clauses, for example, “the bone
that the dog chewed,” where we should recog-
nize that “the dog chewed the bone.” At least
one statistical parser has attacked this problem
(Collins 1997). Another example of null ele-
ments is gapping, as in “Sue ate an apple and
Fred a pear.” Here, there is a gap in the phrase
“Fred a pear,” which obviously should be un-
derstood as “Fred ate a pear.” Although there
have been numerous theoretical studies of gap-
ping, to the best of my knowledge, there has
been no statistical work on the topic. 

Other aspects of parsing also deserve atten-
tion. One is speed. Some of the best statistical
parsers are also fast (Collins 1996), and there
are the beginnings of theory and practice on
how to use statistical information to better
guide the parsing process (Caraballo and Char-
niak 1998). I would not be surprised if the sta-
tistical information at hand could be parlayed
into something approaching deterministic
parsing. 

Before closing, I should at least briefly men-
tion applications of parsing technology. Un-
fortunately, most natural language applica-
tions do not use parsing, statistical or
otherwise. Although some statistical parsing
work has been aimed directly at particular ap-
plications (for example, parsing for machine
translation [Wu 1995]) and applications such
as speech recognition require parsers with par-
ticular features not present in current statisti-
cal models (for example, fairly strict left-to-
right parsing), I believe that the greatest
impetus to parsing applications will be the
natural course of things toward better; faster;
and, for parsing, deeper. 
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Notes 
1. Human taggers are consistent with one another at
the 98-percent level, which gives an upper bound on
the sort of performance one can expect. 
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