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Corpus-Based Approaches
to Semantic Interpretation
In Natural Language
Processing

Hwee Tou Ng and John Zelle

m In recent years, there has been a flurry of research
into empirical, corpus-based learning approaches
to natural language processing (NLP). Most empir-
ical NLP work to date has focused on relatively
low-level language processing such as part-of-
speech tagging, text segmentation, and syntactic
parsing. The success of these approaches has stim-
ulated research in using empirical learning tech-
niques in other facets of NLP, including semantic
analysis—uncovering the meaning of an utter-
ance. This article is an introduction to some of the
emerging research in the application of corpus-
based learning techniques to problems in semantic
interpretation. In particular, we focus on two im-
portant problems in semantic interpretation,
namely, word-sense disambiguation and semantic
parsing.

etting computer systems to understand
G natural language input is a tremen-

dously difficult problem and remains a
largely unsolved goal of Al. In recent years,
there has been a flurry of research into empiri-
cal, corpus-based learning approaches to natur-
al language processing (NLP). Whereas tradi-
tional NLP has focused on developing
hand-coded rules and algorithms to process
natural language input, corpus-based ap-
proaches use automated learning techniques
over corpora of natural language examples in
an attempt to automatically induce suitable
language-processing models. Traditional work
in natural language systems breaks the process
of understanding into broad areas of syntactic
processing, semantic interpretation, and dis-
course pragmatics. Most empirical NLP work to
date has focused on using statistical or other
learning techniques to automate relatively
low-level language processing such as part-of-

speech tagging, segmenting text, and syntactic
parsing. The success of these approaches, fol-
lowing on the heels of the success of similar
techniques in speech-recognition research, has
stimulated research in using empirical learning
techniques in other facets of NLP, including se-
mantic analysis—uncovering the meaning of an
utterance.

In the area of semantic interpretation, there
have been a number of interesting uses of cor-
pus-based techniques. Some researchers have
used empirical techniques to address a difficult
subtask of semantic interpretation, that of de-
veloping accurate rules to select the proper
meaning, or sense, of a semantically ambiguous
word. These rules can then be incorporated as
part of a larger system performing semantic
analysis. Other research has considered whe-
ther, at least for limited domains, virtually the
entire process of semantic interpretation might
yield to an empirical approach, producing a
sort of semantic parser that generates appropri-
ate machine-oriented meaning representations
from natural language input. This article is an
introduction to some of the emerging research
in the application of corpus-based, learning
techniques to problems in semantic interpreta-
tion.

Word-Sense Disambiguation

The task of word-sense disambiguation (WSD)
is to identify the correct meaning, or sense, of
a word in context. The input to a WSD pro-
gram consists of real-world natural language
sentences. Typically, a separate phase prior to
WSD to identify the correct part of speech of
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Sense Number

OO WNPE

Sense Definition
Readiness to give attention

Quality of causing attention to be given

Activity, subject, and so on, that one gives time and attention to
Advantage, advancement, or favor

A share (in a company, business, and so on)

Money paid for the use of money
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Table 1. Sense Definitions of the Noun Interest.

the words in the sentence is assumed (that is,
whether a word is a noun, verb, and so on). In
the output, each word occurrence w is tagged
with its correct sense, in the form of a sense
number i, where i corresponds to the i-th sense
definition of w in its assigned part of speech.
The sense definitions are those specified in
some dictionary. For example, consider the fol-
lowing sentence: In the interest of stimulating
the economy, the government lowered the in-
terest rate.

Suppose a separate part-of-speech tagger has
determined that the two occurrences of interest
in the sentence are nouns. The various sense
definitions of the noun interest, as given in the
Longman Dictionary of Contemporary English
(LDOCE) (Bruce and Wiebe 1994; Procter
1978), are listed in table 1. In this sentence, the
first occurrence of the noun interest is in sense
4, but the second occurrence is in sense 6. An-
other wide-coverage dictionary commonly
used in WSD research is worDNET (Miller 1990),
which is a public-domain dictionary con-
taining about 95,000 English word forms, with
a rather refined sense distinction for words.

WSD is a long-standing problem in NLP. To
achieve any semblance of understanding natur-
al language, it is crucial to figure out what each
individual word in a sentence means. Words in
natural language are known to be highly am-
biguous, which is especially true for the fre-
quently occurring words of a language. For ex-
ample, in the worDNET dictionary, the average
number of senses for each noun for the most
frequent 121 nouns in English is 7.8, but that
for the most frequent 70 verbs is 12.0 (Ng and
Lee 1996). This set of 191 words is estimated to
account for about 20 percent of all word occur-
rences in any English free text. As such, WSD is
a difficult and prevalent problem in NLP.

WSD is also an essential part of many NLP
applications. In information retrieval, WSD
has brought about improvement in retrieval
accuracy. When tested on part of the TrRec cor-
pus, a standard information-retrieval test col-
lection, WSD improves precision by about 4.3
percent (from 29.9 percent to 34.2 percent)
(Schutze and Pedersen 1995). Similarly, in ma-
chine translation, WSD has been used to select
the appropriate words to translate into a target
language. Specifically, Dagan and Itai (1994)
reported successful use of WSD to improve the
accuracy of machine translation. The work of
Schitze and Pedersen (1995) and Dagan and
Itai (1994) clearly demonstrates the utility of
WSD in practical NLP applications.

Early work on WSD, such as Kelly and Stone
(1975) and Hirst (1987), used hand coding of
knowledge to disambiguate word sense. The
knowledge-acquisition process can be labori-
ous and time consuming. For each word to be
disambiguated, the appropriate inference
knowledge must be handcrafted. It is difficult
to come up with a comprehensive set of the
necessary disambiguation knowledge. Also, as
the amount of disambiguation knowledge
grows, manual maintenance and further ex-
pansion become increasingly complex. Thus,
it is difficult to scale up manual knowledge ac-
quisition to achieve wide coverage for real-
world sentences.

The recent surge in corpus-based NLP re-
search has resulted in a large body of work on
WSD of unconstrained real-world sentences.
In contrast to manually hand coding disam-
biguation knowledge into a system, the cor-
pus-based approach uses machine-learning
techniques to automatically acquire such dis-
ambiguation knowledge, using sense-tagged
corpora and large-scale linguistic resources
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Figure 1. Supervised Word-Sense Disambiguation.

such as online dictionaries. As in other corpus-
based learning approaches to NLP, more em-
phasis is now placed on the empirical evalua-
tion of WSD algorithms on large quantities of
real-world sentences.

Corpus-based WSD research can broadly be
classified into the supervised approach and the
unsupervised approach.

Supervised Word-Sense
Disambiguation

In the supervised approach, a WSD program
learns the necessary disambiguation knowl-
edge from a large sense-tagged corpus, in
which word occurrences have been tagged
manually with senses from some wide-cover-
age dictionary, such as the LDOCE or WORDNET.
After training on a sense-tagged corpus in
which occurrences of word w have been
tagged, a WSD program is then able to assign
an appropriate sense to w appearing in a new
sentence, based on the knowledge acquired
during the learning phase.

The heart of supervised WSD is the use of a
supervised learning algorithm. Typically, such
a learning algorithm requires its training ex-
amples, as well as test examples, to be encoded
in the form of feature vectors. Hence, there are
two main parts to supervised WSD: (1) trans-
forming the context of a word w to be disam-
biguated into a feature vector and (2) applying
a supervised learning algorithm. Figure 1 illus-
trates the typical processing phases of super-
vised WSD.

Feature Selection Let w be the word to
be disambiguated. The words surrounding w
will form the context of w. This context is then
mapped into a feature vector ((f,v,)...(f.v,)),
which is a list of features f,and their associated
values v;. An important issue in supervised

WSD is the choice of appropriate features. In-
tuitively, a good feature should capture an im-
portant source of knowledge critical in deter-
mining the sense of w.

Various kinds of feature representing differ-
ent knowledge sources have been used in su-
pervised WSD research. They include the fol-
lowing:

Surrounding words: Surrounding words are
the unordered set of words surrounding w.
These surrounding words typically come from
a fixed-size window centered at w or the sen-
tence containing w. Unordered surrounding
words, especially in a large context window,
tend to capture the broad topic of a text, which
is useful for WSD. For example, surrounding
words such as bank, loan, and payment tend to
indicate the “money paid for the use of mon-
ey” sense of interest.

Local collocations: A local collocation refers
to a short sequence of words near w, taking the
word order into account. Such a sequence of
words need not be an idiom to qualify as a lo-
cal collocation. Collocations differ from sur-
rounding words in that word order is taken in-
to consideration. For example, although the
words in, the, and of by themselves are not in-
dicative of any particular sense of interest,
when these words occur in the sequence “in
the interest of,” it always implies the “advan-
tage, advancement, or favor” sense of interest.
The work of Kelly and Stone (1975), Yarowsky
(1993), Yarowsky (1994), and Ng and Lee
(1996) made use of local collocations to disam-
biguate word sense.

Syntactic relations: Traditionally, selection-
al restrictions as indicated by syntactic rela-
tions such as subject-verb, verb-object, and ad-
jective-noun are considered an important
source of WSD knowledge. For example, in the
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sentence “he sold his interest in the joint ven-
ture,” the verb-object syntactic relation be-
tween the verb sold and the head of the object
noun phrase interest is indicative of the “share
in a company” sense of interest. In disam-
biguating the noun interest, the possible values
of the verb-object feature are the verbs (such as
sold) that stand in a verb-object syntactic rela-
tion with interest.

Parts of speech and morphological forms:
The part of speech of the neighboring words of
w and the morphological form of w also pro-
vide useful knowledge to disambiguate w (Ng
and Lee 1996; Bruce and Wiebe 1994). For ex-
ample, in Ng and Lee (1996), there is a part-of-
speech feature for each of the +3 words cen-
tered around w. There is also one feature for
the morphological form of w. For a noun, the
value of this feature is either singular or plural,
for a verb, the value is one of infinitive (as in
the uninflected form of a verb such as fall), pre-
sent-third-person-singular (as in falls), past (as
in fell), present-participle (as in falling), or past-
participle (as in fallen).

Most previous research efforts on corpus-
based WSD use one or more of the previously
given knowledge sources. In particular, the
work of Ng and Lee (1996) attempts to inte-
grate this diverse set of knowledge sources for
corpus-based WSD. Some preliminary findings
suggest that local collocation provides the
most important source of disambiguation
knowledge, although the accuracy achieved by
the combined knowledge sources exceeds that
obtained by using any one of the knowledge
sources alone (Ng and Lee 1996). That local
collocation is the most predictive seems to
agree with past observation that humans need
a narrow window of only a few words to per-
form WSD (Choueka and Lusignan 1985).

One approach taken to select and decide on
the explicit interaction among the possible
features is from Bruce and Wiebe (1994) and
Pedersen, Bruce, and Wiebe (1997), who ex-
plore a search space for model selection in the
context of building a probabilistic classifier.

Learning Algorithms Having decided on
a set of features to encode the context and
form the training examples, the next step is to
use some supervised learning algorithm to
learn from the training examples. A large num-
ber of learning algorithms have been used in
previous WSD research, including Bayesian
probabilistic algorithms (Pedersen and Bruce
1997a; Mooney 1996; Bruce and Wiebe 1994,
Leacock, Towell, and Voorhees 1993; Gale,
Church, and Yarowsky 1992a; Yarowsky 1992),
neural networks (Mooney 1996; Leacock, Tow-
ell, and VVoorhees 1993), decision lists (Mooney

1996; Yarowsky 1994), and exemplar-based al-
gorithms (Ng 1997a; Mooney 1996; Ng and
Lee 1996; Cardie 1993).

In particular, Mooney (1996) evaluated sev-
en widely used machine-learning algorithms
on a common data set for disambiguating six
senses of the noun line (Leacock, Towell, and
Voorhees 1993). The seven algorithms that he
evaluated are (1) a Naive-Bayes classifier (Duda
and Hart 1973), (2) a perceptron (Rosenblatt
1958), (3) a decision tree learner (Quinlan
1993), (4) a k nearest-neighbor classifier (exem-
plar-based learner) (Cover and Hart 1967), (5)
logic-based DNF (disjunctive normal form)
learners (Mooney 1995), (6) logic-based CNF
(conjunctive normal form) learners (Mooney
1995), and (7) a decision-list learner (Rivest
1987). We briefly describe two of the learning
algorithms that have been used for WSD: a
naive-Bayes algorithm and an exemplar-based
algorithm, PeBLs.

Naive-Bayes: The naive-Bayes algorithm
(Duda and Hart 1973) is based on Bayes’s the-
orem:

P(Cv; [C)P(C) . _
P(IZIvj)
where P(C; | \ v;) is the probability that a test
example is of class C, given feature values V. A\
Y denotes the conjunction of all feature values
in the test example.) The goal of a naive-Bayes
classifier is to determine the class C, with the
highest conditional probability P(C; | /A vj). Be-
cause the denominator P(/\ vj) of the previous
expression is constant for all classes C;, the
problem reduces to finding the class C, with
the maximum value for the numerator.

The naive-Bayes classifier assumes indepen-

dence of example features, so that

P(0v; 1C)) = [ P(v; 1C)-

During training, naive-Bayes constructs the
matrix P(vj | C,), and P(C)) is estimated from the
distribution of training examples among the
classes.

PeBLs: PEBLS is an exemplar-based (or nearest-
neighbor) algorithm developed by Cost and
Salzberg (1993). It has been used successfully
for WSD in Ng (1997a) and Ng and Lee (1996).
The heart of exemplar-based learning is a mea-
sure of the similarity, or distance, between two
examples. If the distance between two exam-
ples is small, then the two examples are simi-
lar. In peBLs, the distance between two symbol-
ic values v, and v, of a feature f is defined as

A4, v2) = 3 I P(C W)~ P(C [ |

where n is the total number of classes. P(C;lv,)
is estimated by N, /N;, where N, ;is the num-

P(C,|Dv,) =



ber of training examples with value v, for fea-
ture f that is classified as class i in the training
corpus, and N, is the number of training exam-
ples with value v, for feature f in any class. P(C,
| v,) is estimated similarly. This distance metric
of pesLs is adapted from the value-difference
metric of the earlier work of Stanfill and Waltz
(1986). The distance between two examples is
the sum of the distances between the values of
all the features of the two examples.

Let k be the number of nearest neighbors to
use for determining the class of a test example,
k = 1. During testing, a test example is com-
pared against all the training examples. PeBLS
then determines the k training examples with
the shortest distance to the test example.
Among these k closest-matching training ex-
amples, the class that the majority of these k
examples belong to will be assigned as the class
of the test example, with tie among multiple
majority classes broken randomly.

Mooney (1996) reported that the simple
naive-Bayes algorithm gives the highest accu-
racy on the line corpus tested. The set of fea-
tures used in his study only consists of the un-
ordered set of surrounding words. Past research
in machine learning has also reported that the
naive-Bayes algorithm achieved good perfor-
mance on other machine-learning tasks, in
spite of the conditional independence assump-
tion made by the naive-Bayes algorithm,
which might be unjustified in some of the do-
mains tested.

Recently, Ng (1997a) compared the naive-
Bayes algorithm with the exemplar-based algo-
rithm pesLs on the DSO National Laboratories
corpus (Ng and Lee 1996), using a larger value
of k (k = 20) and 10-fold cross validation to au-
tomatically determine the best k. His results in-
dicate that with this improvement, the exem-
plar-based algorithm achieves accuracy
comparable to the naive-Bayes algorithm on a
test set from the DSO corpus. The set of fea-
tures used in this study only consists of local
collocations.

Hence, both the naive-Bayes algorithm and
the exemplar-based algorithm give good per-
formance for WSD. The potential interaction
between the choice of features and the learn-
ing algorithms appears to be an interesting
topic worthy of further investigation.

One drawback of the supervised learning ap-
proach to WSD is the need for manual sense
tagging to prepare a sense-tagged corpus. The
work of Brown et al. (1991) and Gale, Church,
and Yarowsky (1992a) tried to make use of
aligned parallel corpora to get around this
problem. In general, a word in a source lan-
guage can be translated into several different

target language words, depending on its in-
tended sense in context. For example, the tax
sense of duty is translated as droit in French,
whereas the obligation sense is translated as
devoir (Gale, Church, and Yarowsky 1992a). An
aligned parallel corpus can thus be used as a
natural source of sense tags, occurrences of the
word duty that are translated as droit have the
tax sense of duty, and so on. The shortcoming
of this approach is that sense disambiguation
is now task specific and language specific. It is
tied to the machine-translation task between
the two languages concerned.

Another trick that has been used to generate
sense-tagged data is to conflate two unrelated
English words, such as author and baby into an
artificial compound word author-baby (Schitze
1992). All occurrences of the words author and
baby in the texts are replaced with the com-
pound word author-baby. The goal is then to
disambiguate occurrences of author-baby as au-
thor or baby, with the correct answers being the
original word forms in the texts. Although this
approach has the advantage of an unlimited
supply of tagged data without manual annota-
tion, the disambiguation problem is highly ar-
tificial, and it is unclear how the disambigua-
tion accuracy obtained should be interpreted.

Unsupervised
Word-Sense Disambiguation

In the WSD research literature, unsupervised
WSD typically refers to disambiguating word
sense without the use of a sense-tagged corpus.
It does not necessarily refer to clustering of un-
labeled training examples, which is what unsu-
pervised learning traditionally means in ma-
chine learning.

Most research efforts in unsupervised WSD
rely on the use of knowledge contained in a
machine-readable dictionary (Lin 1997; Resnik
1997; Agirre and Rigau 1996; Luk 1995; Wilks
et al. 1990). A widely used resource is WORDNET.
Besides being an online, publicly available dic-
tionary, worDNET is also a large-scale taxonom-
ic class hierarchy, where each English noun
sense corresponds to a taxonomic class in the
hierarchy. The is-a relationship in WORDNET’s
taxonomic class hierarchy is an important
source of knowledge exploited in unsupervised
WSD algorithms.

We illustrate unsupervised WSD with an al-
gorithm of Resnik (1997) that disambiguates
noun senses. His algorithm makes use of the
WORDNET class hierarchy and requires that sen-
tences in a training corpus be parsed so that
syntactic relations such as subject-verb, verb-
object, adjective-noun, head-modifier, and
modifier-head can be extracted from a sen-
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Figure 2. Unsupervised Word-Sense Disambiguation: Resnik’s Method.

tence. Each syntactic relation involves two
words: (1) the noun n to be disambiguated and
(2) a verb (in subject-verb, verb-object rela-
tions), an adjective (in adjective-noun rela-
tion), or another noun (in head-modifier,
modifier-head relations).

Consider the following example to explain
Resnik’s algorithm: Suppose we want to disam-
biguate the noun coffee in a test sentence con-
taining the verb-object syntactic relation drink
coffee. The noun coffee has four senses in worbD-
NET: coffee as a kind of (1) beverage, (2) tree, (3)
seed, or (4) color. The algorithm examines the
parsed training corpus, looking for all occur-
rences of drink x in a verb-object relation. Ex-
amples of possible past occurrences are drink
tea, drink milk, and drink wine. The goal is to be
able to determine that the nouns tea, milk,
wine, and so on, are most similar to the bever-
age sense of coffee without requiring that tea,
milk, wine, and so on, be manually tagged with
the correct sense in the training corpus.

It turns out that this goal can readily be
achieved. The key observation is that although
each of the four nouns coffee, tea, milk, and
wine has multiple senses, the sense that is most
commonly shared by these four nouns is the
beverage sense. Figure 2 lists all the senses of
these four nouns in worDNET. For example, the
noun tea has four upward-pointing arrows to
its four senses, namely, as a kind of (1) bever-
age, (2) meal, (3) bush, or (4) herb. The bever-
age sense is shared by all four nouns, whereas
the color sense is shared by only two nouns
(coffee and wine), with the remaining senses

only pointed to by one individual noun.

A frequency-counting scheme will be able to
identify this target beverage sense. Specifically,
let n be a noun with senses s,, ..., s,. Suppose
the syntactic relation R holds for n and the
verb p. For i from 1 to k, Resnik’s (1997)
method computes

C;={c | cis an ancestor of s;}

3 =max() “Nw)

where N.(p,w) is the number of times the syn-
tactic relation R holds for word w and p, and
N (w) is the number of taxonomic classes to
which w belongs. The goal is to select the sense
s; with the maximum value of a;.

In the previous example, n is the noun
coffee, with s, = beverage, s, = tree, s, = seed,
and s, = color. Suppose that each of the syntac-
tic relations drink coffee, drink tea, drink milk,
and drink wine occurs exactly once in our raw
corpus. For simplicity, let us consider only the
concepts listed in figure 2, ignoring other an-
cestor concepts not shown in the figure. Then
a,=1/4+1/4+1/4+1/2,a,=a,=1/4,and a,
= 1/4 + 1/2. Hence, the beverage sense s, with
the highest value a, is chosen. See Resnik
(1997) for the details.

The work of Agirre and Rigau (1996) also us-
es the taxonomic class hierarchy of WoRDNET to
achieve WSD. However, instead of using syn-
tactic relations, their algorithm uses the sur-
rounding nouns in a window centered at n, the
noun to be disambiguated. The idea is to locate
a class that contains, proportionately speaking,
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(a) Iteration O (initial stage)

(c) Last iteration (final stage)

(b) Iteration k (intermediate stage)

Figure 3. Unsupervised Word-Sense Disambiguation: Yarowsky’s Method.

the highest number of senses of the nouns in
the context window. The sense of n under this
class is the chosen sense. The precise metric is
formulated in the form of conceptual density.

LDOCE is another large-scale linguistic re-
source exploited in past work on unsupervised
WSD, such as the work of Wilks et al. (1990)
and Luk (1995), who use the dictionary defin-
itions of LDOCE and the cooccurrence statis-
tics collected to achieve WSD.

The unsupervised WSD method of Yarowsky
(1995) iteratively uses the decision list super-
vised learning algorithm. It requires only a
small number of sense-tagged occurrences of a

word w to start with. These initial sense-tagged
occurrences form the seeds, as illustrated in fig-
ure 3a. In this figure, an example is either la-
beled with a 1 or a 2, denoting whether it is
classified as sense 1 or sense 2 by the algo-
rithm.

At each iteration of the algorithm, new un-
tagged occurrences of w that the algorithm can
confidently assign senses to are tagged with
senses. These are untagged examples where the
probability of classification, as assigned by the
decision list algorithm, is above a certain
threshold. This process is illustrated in figure
3b, where more examples are labeled with
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senses at an intermediate stage. A new classifier
is then built from the new, larger set of tagged
occurrences, using the decision-list-learning
algorithm. More untagged occurrences are
then assigned senses in the next iteration, and
the algorithm terminates when all untagged
occurrences of w in a test corpus have been as-
signed word sense, as shown in figure 3c.
Yarowsky reported that his method did as well
as supervised learning, although he only tested
his method on disambiguating binary, coarse-
grained senses.

The work of Schitze (1992) also adopted an
unsupervised approach to WSD, relying only
on a large untagged raw corpus. For each word
w in the corpus, a vector of the cooccurrence
counts of the surrounding words centered at a
window size of 1000 characters around w is
created. These vectors are clustered, and the re-
sulting clusters represent the various senses of
the word. To make the computation tractable,
he used singular-value decomposition to re-
duce the dimensions of the vectors to around
100. A new occurrence of the word w is then
assigned the sense of the nearest cluster. The
accuracy on disambiguating 10 words into bi-
nary distinct senses is in excess of 90 percent.

Performance

As pointed out in Resnik and Yarowsky (1997),
the evaluation of empirical, corpus-based WSD
has not been as rigorously pursued as other ar-
eas of corpus-based NLP, such as part-of-speech
tagging and syntactic parsing. The lack of stan-
dard, large, and widely available test corpora
discourages the empirical comparison of vari-
ous WSD approaches.

Currently, several sense-tagged corpora are
available. These include a corpus of 2,094 ex-
amples about 6 senses of the noun line (Lea-
cock, Towell, and Voorhees 1993); a corpus of
2,369 sentences about 6 senses of the noun in-
terest (Bruce and Wiebe 1994); semcor (Miller et
al. 1994b), a subset of the BrRowN corpus with
about 200,000 words in which all content
words (nouns, verbs, adjectives, and adverbs)
in a running text have manually been tagged
with senses from worDNET; and the DSO corpus
(Ng and Lee 1996), consisting of approximate-
ly 192,800 word occurrences of the most fre-
quently occurring (and, hence, most ambigu-
ous) 121 nouns and 70 verbs in English. The
last three corpora are publicly available from
New Mexico State University, Princeton Uni-
versity, and Linguistic Data Consortium
(LDC), respectively.

A baseline called the most frequent heuristic
has been proposed as a performance measure
for WSD algorithms (Gale, Church, and

Yarowsky 1992b). This heuristic simply choos-
es the most frequent sense of a word w and as-
signs it as the sense of w in test sentences with-
out considering any effect of context. Any
WSD algorithm must perform better than the
most frequent heuristic to be of any significant
value.

For supervised WSD algorithms, an accuracy
of about 73 percent to 76 percent is achieved
on the line corpus (Mooney 1996; Leacock,
Towell, and Voorhees 1993); 87.4 percent on
the interest corpus (Ng and Lee 1996); 69.0
percent on the SEMCOR corpus (Miller et al.
1994b); and 58.7 percent and 75.2 percent on
two test sets from the DSO corpus (Ng 1997a).
In general, the disambiguation accuracy de-
pends on the particular words tested, the num-
ber of senses to a word, and the test corpus
from which the words originate. Verbs are typ-
ically harder to disambiguate than nouns, and
disambiguation accuracy for words chosen
from a test corpus composed of a wide variety
of genres and domains, such as the Brown cor-
pus, is lower than the accuracy of words cho-
sen from, say, business articles from the Wall
Street Journal (Ng and Lee 1996).

Given an adequate number of sense-tagged
training examples (typically of a few hundred
examples), state-of-the-art WSD programs out-
perform the most frequent heuristic baseline.
For example, figure 4 shows the learning curve
of WSD accuracy achieved by Lexas, an exem-
plar-based, supervised WSD program (Ng
1997b). The accuracy shown is averaged over
43 words of the DSO corpus, and each of these
words has at least 1300 training examples in
the corpus. The figure indicates that the accu-
racy of supervised WSD is significantly higher
than the most frequent heuristic baseline.

The accuracy for unsupervised WSD algo-
rithms is harder to assess because most are test-
ed on different test sets with varying difficulty.
Although supervised WSD algorithms have the
drawback of requiring a sense-tagged corpus,
they tend to give a higher accuracy compared
with unsupervised WSD algorithms. For exam-
ple, when tested on seMcor, Resnik’s (1997) un-
supervised algorithm achieved accuracies in
the range of 35.3 percent to 44.3 percent for
ambiguous nouns. Because worDNET orders the
sense definitions of each word from the most
frequent to the least frequent, the baseline
method of most frequent heuristic can be real-
ized by always picking sense one of WORDNET.
As reported in Miller et al. (1994b), such a
most frequent heuristic baseline achieved ac-
curacy of 58.2 percent for all ambiguous
words.

Similarly, the conceptual density method of
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Agirre and Rigau (1996) was also implemented
and tested on a subset of the MUC-4 terrorist
corpus in Peh and Ng (1997). The results indi-
cate that on this test corpus, the accuracy
achieved by the conceptual density method is
still below the most frequent heuristic base-
line. Recently, Pedersen and Bruce (1997a,
1997b) also used both supervised and unsuper-
vised learning algorithms to disambiguate a
common set of 12 words. Their results indicate
that although supervised algorithms give aver-
age accuracies in excess of 80 percent, the ac-
curacies of unsupervised algorithms are about
66 percent, and the accuracy of the most fre-
quent heuristic is about 73 percent. However,
the accuracies of unsupervised algorithms on
disambiguating a subset of five nouns are bet-
ter than the most frequent baseline (62 percent
versus 57 percent). These five nouns have two
to three senses to a noun. In general, although
WSD for coarse-grained, binary word-sense dis-
tinction can yield accuracy in excess of 90 per-
cent, as reported in Yarowsky (1995), disam-

biguating word senses to the refined sense dis-
tinction of, say, the worpNEeT dictionary is still
a challenging task, and much research is still
necessary to achieve broad-coverage, high-ac-
curacy WSD (Ng 1997b).

Semantic Parsing

The research discussed to this point involves
using empirical techniques to disambiguate
word sense, a difficult subpart of the semantic-
interpretation process. This section considers
research that goes a step farther by using em-
pirical approaches to automate the entire
process of semantic interpretation.

Abstractly viewed, semantic interpretation
can be considered as a problem of mapping
some representation of a natural language in-
put into a structured representation of mean-
ing in a form suitable for computer manipula-
tion. We call this the semantic parsing problem.
The semantic parsing model of language ac-
quisition has a long history in Al research
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Sentence:

Meaning:

“Show me the morning flights from Boston to
Denver.”

SELECT flight_id
FROM flights
WHERE from_city = Boston

AND to_city = Denver
AND departure_time <= 12:00

Figure 5. An Example of Semantic Parsing by a Database-Query Application.
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(Langley 1982; Selfridge 1981; Sembugamoor-
thy 1981; Anderson 1977; Reeker 1976; Sik-
lossy 1972, Klein and Kuppin 1970). This early
work focused on discovering learning mecha-
nisms specific to language acquisition and the
modeling of cognitive aspects of human lan-
guage learning. The more recent work dis-
cussed here is based on the practical require-
ments of robust NLP for realistic NLP systems.
These approaches use general-purpose ma-
chine-learning methods and apply the result-
ing systems on much more elaborate NLP do-
mains.

Modern approaches to semantic parsing can
vary significantly in both the form of input
and the form of output. For example, the input
might be raw data, strings of phonemes spoken
to a speech-recognition system or a sentence
typed by a user, or it might be significantly pre-
processed to turn the linear sequence of
sounds or words into a more structured inter-
mediate representation such as a parse tree
that captures the syntactic structure of a sen-
tence. Similarly, the type of output that might
be useful is strongly influenced by the task at
hand because as yet, there is little agreement
on what a general meaning-representation lan-
guage should look like.

Research on empirical methods in semantic
parsing has focused primarily on the creation
of natural language front ends for database
querying. In this application, a sentence sub-
mitted to the semantic parser is some represen-
tation of a user’s question, and the resulting
meaning is a formal query in a database query
language that is then submitted to a database-
management system to retrieve the (hopefully)
appropriate answers. Figure 5 illustrates the
type of mapping that might be required, trans-
forming a user’s request into an appropriate
sQL command.

The database query task has long been a
touchstone in NLP research. The potential of

allowing inexperienced users to retrieve useful
information from computer archives was rec-
ognized early on as an important application
of computer understanding. The traditional
approach to constructing such systems has
been to use the current linguistic representa-
tion to build a set of rules that transforms in-
put sentences into appropriate queries. Thus,
query systems have been constructed using
augmented transition networks (Woods 1970), an
“operationalization” of context-free grammars
with associated actions to produce semantic
representations; semantic grammars (Hendrix,
Sagalowicz, and Slocum 1978; Brown and Bur-
ton 1975), context-free grammars having non-
terminal symbols that represent the expression
of domain-specific concepts; and logic gram-
mars (Abramson and Dahl 1989; Warren and
Pereira 1982), general phrase-structure gram-
mars that encode linguistic dependencies and
structure-building operations using logical
unification.

Traditional approaches have suffered a num-
ber of shortcomings related to the complexity
of the knowledge that must be expressed. It
takes considerable linguistic expertise to con-
struct an appropriate grammar. Furthermore,
the use of domain-specific knowledge is re-
quired to correctly interpret natural language
input. To handle this knowledge efficiently, it
is often intertwined with the rules for repre-
senting knowledge about language itself. As
the sophistication of the input and the data-
base increase, it becomes exceedingly difficult
to craft an accurate and relatively complete in-
terface. The bottom line is that although it is
possible to construct natural language inter-
faces by hand, the process is time and expertise
intensive, and the resulting interfaces are often
incomplete, inefficient, and brittle. Database
applications are an attractive proving ground
for empirical NLP. Although challenging, the
understanding problem has built-in con-
straints that would seem to make it a feasible
task for automatic acquisition. The problem is
circumscribed both by the limited domain of
discourse found in a typical database and the
simple communication goal, namely, query
processing. It is hoped that techniques of em-
pirical NLP might enable the rapid develop-
ment of robust domain-specific database inter-
faces with less overall time and effort.

An empirical approach to constructing nat-
ural language interfaces starts with a training
corpus comprising sentences paired with ap-
propriate translations into formal queries.
Learning algorithms are utilized to analyze the
training data and produce a semantic parser
that can map subsequent input sentences into



appropriate queries. The learning problem is
depicted in figure 6. Approaches to this prob-
lem can be differentiated according to the
learning techniques used. As in other areas of
empirical NLP, some researchers have attempt-
ed to extend statistical approaches, which
have been successful in domains such as
speech recognition, to the semantic parsing
problem (Miller et al. 1996; Miller et al. 1994a;
Pieraccini, Levin, and Lee 1991). Kuhn and De
Mori (1995) describe a method based on se-
mantic classification trees, a variant of tradi-
tional decision tree-induction approaches fa-
miliar in machine learning. The cHiLL system
(Zelle and Mooney 1996; Zelle 1995) uses tech-
niques from inductive logic programming, a sub-
field of machine learning, that investigates the
learning of relational concept definitions.

A Statistical Approach

Research at BBN Systems and Technologies as
part of the Advanced Research Projects
Agency-sponsored Air Travel Information Ser-
vice (ATIS) Project (Miller et al. 1994a) repre-
sents a paradigm case of the application of sta-
tistical modeling techniques to the semantic
parsing problem. The target task in the ATIS
competition is the development of a spoken
natural language interface for air travel infor-
mation. In the BBN approach, the heart of the
semantic parser is a statistical model that rep-
resents the associations between strings of
words and meaning structures. Parsing of in-
put is accomplished by searching the statistical
model in an attempt to find the most likely
meaning structure given the input sentence.
The learning problem is to set the parameters
of the statistical model to accurately reflect the
relative probabilities of various meanings, giv-
en a particular input.

Representations Meanings are represented
as a tree structure, with nodes in the tree rep-
resenting concepts. The children of a node rep-
resent its component concepts. For example,
the concept of a flight might include compo-
nent concepts such as airline, flight number,
origin, and destination. Figure 7 shows a tree
that might represent the sentence from our
previous example. The nodes shown in circles
are the nonterminal nodes of the tree and rep-
resent concepts, and the rounded rectangles
are terminal nodes and represent something
akin to lexical categories. This tree essentially
represents the type of analysis that one might
obtain from a semantic grammar, a popular ap-
proach to the construction of database inter-
faces.

The basic requirements of the representa-
tion are that the semantic concepts are hierar-
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Figure 6. Learning Semantic Mappings.

chically nested, and the order of nodes in the
tree matches the ordering of words in the sen-
tence (that is, the tree can be placed in corre-
spondence with the sentence without any
crossing edges). This meaning representation
is not a query language as such but partially
specified trees form a basic framelike annota-
tion scheme that is automatically translated
into a database query. The frame representa-
tion of our example is shown in figure 8.

Learning a Statistical Model In recent
incarnations (Miller et al. 1996), the construc-
tion of the frame representation is a two-step
process: First, a statistical parsing process is
used to produce a combined syntactic-seman-
tic parse tree. This tree is based on a simple
syntactic parsing theory, with nodes labeled
both for syntactic role and semantic category.
For example, the flight node of figure 7 would
be labeled flight/np to show it is a node repre-
senting the concept of a flight and plays the
role of a noun phrase in the syntax of the sen-
tence. This tree structure is then augmented
with frame-building operations. The top node
in the tree is associated with the decision of
what the overall frame should be, and internal
nodes of the tree are associated with slot-filling
operations for the frame. Each node gets
tagged as filling some particular slot in the
frame (for example, origin) or the special null
tag to indicate it does not directly fill a slot.
The input to the learning phase is a set of sen-
tences paired with syntactic-semantic parse
trees that are annotated with frame-building
actions.

The initial parsing process is similar to other
approaches proposed for statistically based
syntactic parsing. Because our main focus here
is on semantic mapping, we do not go into the
details; however, a general overview is in order.
The statistical model treats the derivation of
the parse as the traversal of a path through a
probabilistic recursive transition network.
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FRAME: Air-Transportation
SHOW: (flight-information)
ORIGIN: (City “Boston”)
DEST: (City “Denver”)
TIME: (part-of-day “MORNING”)

Figure 8. Frame Representation of Flight-Information Query.
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Probabilities on transitions have the form
P(state, | state, ,, state ). That is, the probabil-
ity of a transition to stat e, depends on the pre-
vious state and the label of the network we are
currently traversing. For example, P(location/pp
| arrival/vp_head, arrival/vp) represents the
probability that within a verb phrase describ-
ing an arrival, a location/pp node (a preposi-
tional phrase describing a location) occurs im-
mediately following an arrival/vp_head node
(the main verb in a phrase associated with an
arrival). The probability metric assigned to a
parse is then just the product of each transi-
tion probability along the path corresponding
to the parse tree. The transition probabilities
for the parsing model are estimated by noting

the empirical probabilities of the transitions in
the training data.

In the database interface task, the trained
parsing model is searched to produce the n
most probable parse trees corresponding to the
sequence of words in an input sentence. These
n best parses are then submitted to the seman-
tic interpretation model for annotation with
frame-building operations. As mentioned, the
meanings M, are decomposed into a decision
about the frame type FT and the slot fillers S.
The probability of a particular meaning M giv-
en a tree is calculated as

P(M| T) =P(FT,S|T)

=P(FT)P(T | FT)P(S | FT,T) .

That is, the probability of a particular frame
and set of slot fillers is determined by the a pri-
ori likelihood of the frame type, the probabili-
ty of the parse tree given the frame type, and
the probability that the slots have the assigned
values given the frame type and the parse tree.
P(FT) is estimated directly from the training
data. P(T | FT) is obtained by rescoring the
transition probabilities in the parse tree, as de-
scribed earlier, but with the extra frame-type
information. Finally, the probabilistic model
for slot filling assumes that fillers can accurate-
ly be predicted by considering only the frame
type, the slot operations already performed,



and the local parse tree context. This local con-
text includes the node itself, two left siblings,
two right siblings, and four immediate ances-
tors. The final probability of a set of slot fillings
is taken as the product of the likelihood of
each individual slot-filling choice. The training
examples are insufficient for the direct estima-
tion of all the parameters in the slot-filling
model; so, the technique relies on heuristic
methods for growing statistical decision trees
(Magerman 1994).

Using the learned semantic model is a mul-
tiphase process. The n best syntactic-semantic
parse trees from the parsing model are first
rescored to determine P(T | TF) for each possi-
ble frame type. Each of those models is com-
bined with the corresponding prior probability
of the frame type to yield P(FT)P(T | FT). Then
best of these theories then serve as candidates
for consideration with possible slot fillers. A
beam search is utilized to consider possible
combinations of fill operations. The final result
is an approximation of the n most likely se-
mantic interpretations.

The parsing and semantic analysis compo-
nents described here have been joined with a
statistically based discourse module to form a
complete, trainable natural language interface.
The system has been evaluated on some sam-
ples from the ATIS corpus. After training on
4000 annotated examples, the system had a re-
ported error rate of 21.6 percent on a disjoint set
of testing examples. Although this performance
would not put the system at the top of con-
tenders in the ATIS competition, it represents
an impressive initial demonstration of a fully
trainable statistical approach to the ATIS task.

Semantic Classification Trees

The cHANEL system (Kuhn and De Mori 1995)
takes an approach to semantic parsing based
on a variation of traditional decision tree in-
duction called semantic classification trees
(SCTs). This technique has also been applied to
the ATIS database querying task.

Representations The final representations
from the cHANEL system are database queries in
sQL. Like the statistical approach discussed pre-
viously, however, the output of semantic inter-
pretation is not a directly executable query but
an intermediate form that is then turned into
an sQL query. The meaning representation con-
sists of a set of features to be displayed and a set
of constraints on these features. The represen-
tation of our sentence is depicted in figure 9.
Basically, this is a listing of the subset of all pos-
sible attributes that might be displayed and a
subset of all possible constraints on attributes.
Using this representation reduces the problem
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DISPLAYED ATTRIBUTES = {flight.flight_info}

CONSTRAINTS = { flight.from_city = Boston,
flight.to_city = Denver,

flight.dep_time <1200
}

Figure 9. Attributes and Constraints of Flight-Information Query.

of semantic mapping to basic classification. For
each possible attribute, the system must deter-
mine whether it is in the final query.

In the cHANEL system, the input to the se-
mantic interpretation process is a partially
parsed version of the original sentence. This
initial processing is performed by a handcraft-
ed local chart parser that scans through the in-
put sentence for words or phrases that carry
constraints relevant to the domain of the data-
base. The target phrases are replaced by vari-
able symbols, and the original content of each
symbol is saved for later insertion into the
meaning representation. In our example sen-
tence, the chart parser might produce an out-
put such as “show me the TIM flights from CIT
to CIT.” Here, TIM is the symbol for a word or
phrase indicating a time constraint, and CIT is
the symbol for a reference to a city. This sen-
tence would then be sent to an SCT-based ro-
bust matcher to generate the displayed at-
tribute list and assign roles to constraints.

Learning Semantic Classification Trees
An SCT is a variant of traditional decision trees
that examines a string of symbols and classifies
it into a set of discrete categories. In a typical
classification tree, each internal node repre-
sents a question about the value of some at-
tribute in an example. An SCT is a binary deci-
sion tree where a node represents a pattern to
match against the sentence. If the pattern
matches, we take the left branch; if it doesn’t,
then the right branch is taken. When a leaf
node is reached, the example is classified with
the category assigned to the leaf.

The patterns stored in the nodes of an SCT
are a restricted form of regular expression
consisting of sequences of words and arbitrar-
ily large gaps. For example, the pattern, < +
flight + from +> would match any sentence
containing the words flight and from, provid-
ed they appeared in this order with at least
one word between them. The special symbols
< and > indicate the start and end of the sen-
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tence, and + represents a gap of at least one
word. A word in a pattern can also be replaced
with a set of words indicating alternation, a
choice of words that could be inserted at that
point in the pattern.

During training, an SCT is grown using a
typical greedy classification tree-growing strat-
egy. The tree starts as a single node containing
the most general pattern < + >. Patterns are
specialized by replacing a gap with a more spe-
cific pattern. If w is a word covered by the gap
in some example, then the gap can be replaced
with w, w+, +w, or +w+. The tree-growing algo-
rithm follows the standard practice of testing
all possible single specializations to see which
produces the best split of examples according
to some metric of the purity of the leaves. This
specialization is then implemented, and the
growing algorithm is recursively applied to
each of the leaves until all leaves contain sets
of examples that cannot be split any further.
This occurs when all the examples in the leaf
belong to the same category, or the pattern at
the leaf contains no gaps.

Applying Semantic Classification Trees
to Semantic Interpretation Semantic in-
terpretation is done by a robust matcher con-
sisting of forests of SCTs. Determining the list
of displayed attributes is straightforward;
there is a forest of SCTs, one for each possible
attribute. Each SCT classifies a sentence as ei-
ther yes or no. A yes classification indicates
that the attribute associated with this tree
should be displayed for the query and, hence,
included in the listing of displayed attributes.
A no classification results in the attribute be-
ing left out of the list.

Creating the list of constraints is a bit more
involved. In this case, SCTs are used to classify
substrings within the sentence. There is a tree
for each symbol (for example, CIT, TIM) that
can be inserted by the local parser. This tree is
responsible for classifying the role that this
symbol fulfills, wherever it occurs in the sen-
tence. To identify the role of each symbol in the
sentence, the symbol being classified is specially
marked. To classify the first CIT symbol in our
example, the sentence “show me the TIM
flights from *CIT to CIT” would be submitted to
the role-classification tree for CIT. The * marks
the instance of CIT that is being classified. This
tree would then classify the entire sentence pat-
tern according to the role of *CIT. Leaves of the
tree would have labels such as origin, destination,
or scrap, the last indicating that it should not
produce any constraint. The constraint is then
built by binding the identified role to the value
for the symbol that was originally extracted by
the local parser in the syntactic phase.

It is difficult to assess the effectiveness of the
semantic mapping component alone because it
isembedded in a larger system, including many
hand-coded parts. However, some preliminary
experiments with the semantic mapping por-
tion of cHANEL indicated that it was successful in
determining the correct set of displayed attrib-
utes in 91 percent of sentences held back for
testing. Overall performance on the ATIS mea-
sures placed the system near the middle of the
10 systems evaluated in December 1993.

Inductive Logic Programming

Both the statistical and SCT approaches are
based on representations that are basically
propositional. The cHiLL system (Zelle and
Mooney 1996; Zelle 1995), which has also
been applied to the database query problem, is
based on techniques from inductive logic pro-
gramming for learning relational concepts.
The representations used by cHiLL differ sub-
stantially from those used by cHANEL. cHiLL has
been demonstrated on a database task for U.S.
geography, where the database is encoded as a
set of facts in Prolog, and the query language
is a logical form that is directly executed by a
query interpreter to retrieve appropriate an-
swers from the database.

Representations The input to cHILL is a set
of training instances consisting of sentences
paired with the desired queries. The output is
a shift-reduce parser in Prolog that maps sen-
tences into queries. cHiLL treats parser induc-
tion as a problem of learning rules to control
the actions of a shift-reduce parser expressed as
a Prolog program. Control rules are expressed
as definite-clause (Prolog) concept definitions.
These rules are induced using a general con-
cept learning system employing techniques
from inductive logic programming, a subfield of
machine learning that addresses the problem
of learning definite-clause logic descriptions
(Prolog programs) (Lavrac and Dzeroski 1994;
Muggleton 1992) from examples.

As mentioned previously, cHiLL produces
parsers that turn sentences directly into a log-
ical form suitable for direct interpretation. The
meaning of our example sentence might be
represented as

answer(F, time(F,T), flight(F), morning(T),
origin(F, O), equal(O, city(boston)),
destination(F, D), equal(D, city(denver))) .
The central insight in cHILL is that the gen-
eral operators required for a shift-reduce parser
to produce a given set of sentence analyses are
directly inferable from the representations
themselves. For example, building the previ-
ous representation requires operators to intro-
duce logical terms such as time(_, ), operators
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to coreference logical variables (for example,
an operator that binds first argument of time
with the argument of flight), and operators to
embed terms inside of other terms (for exam-
ple, to place time, flight, and so on, into answer.
However, just inferring an appropriate set of
operators does not produce a correct parser be-
cause more knowledge is required to apply op-
erators accurately during the course of parsing
an example.

The current context of a parse is contained
in the contents of the stack and the remaining
input buffer. cHILL uses parses of the training
examples to figure out the contexts in which
each of the inferred operators is and is not ap-
plicable. These contexts are then given to a
general induction algorithm that learns rules
to classify the contexts in which each operator
should be used. Because the contexts are arbi-
trarily complex parser states involving nested
(partial) constituents, cHiLL uses a learning al-
gorithm that can deal with structured input
and produce relational concept descriptions,
which is exactly the problem addressed by in-

ductive logic programming research.

Learning a Shift-Reduce Parser Figure
10 shows the basic components of cHiLL. Dur-
ing parser operator generation, the training ex-
amples are analyzed to formulate an overly
general shift-reduce parser that is capable of
producing parses from sentences. The initial
parser simply consists of all the parsing opera-
tors that can be inferred from the meaning rep-
resentations in the training examples. In an
initial parser, an operator can be applied at any
point in a parse, which makes it wildly overly
general in that it can produce a great many
spurious analyses for any given input sen-
tence. In example analysis, the training exam-
ples are parsed using the overly general parser
to extract contexts in which the various pars-
ing operators should and should not be em-
ployed. The parsing of the training examples is
guided by the form of the output (the database
query) to determine the correct sequence of
operators yielding the desired output. Control-
rule induction then uses a general inductive
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logic programming algorithm to learn rules
that characterize these contexts. The inductive
logic programming system analyzes a set of
positive and negative examples of a concept
and formulates a set of Prolog rules that suc-
ceed for the positive examples and fail for the
negative examples. For each parsing operator,
the induction algorithm is called to learn a de-
finition of parsing contexts in which this oper-
ator should be used. Finally, program special-
ization folds the learned control rules back
into the overly general parser to produce the fi-
nal parser, a shift-reduce parser that only ap-
plies operators to parsing states for which they
have been deemed appropriate.

As mentioned previously, the cHILL system
was tested on a database task for U.S. geogra-
phy. Sample questions in English were ob-
tained by distributing a questionnaire to 50
uninformed subjects. The questionnaire pro-
vided the basic information from the online
tutorial supplied for an existing natural lan-
guage database application, including a verba-
tim list of the type of information in the data-
base and sample questions that the system

could answer. The result was a corpus of 250
sentences that were then annotated with the
appropriate database queries. This set was then
split into a training set of 225 examples, with
25 held out for testing.

Tests were run to determine whether the fi-
nal application produced the correct answer to
previously unseen questions. Each test sen-
tence was parsed to produce a query. This
query was then executed to extract an answer
from the database. The extracted answer was
then compared to the answer produced by the
correct query associated with the test sentence.
Identical answers were scored as a correct pars-
ing; any discrepancy was scored as a failure.
Figure 11 shows the accuracy of cHILL’s parsers
over a 10-trial average. The line labeled
Geobase shows the average accuracy of the
preexisting hand-coded interface on these 10
testing sets of 25 sentences. The curves show
that cHiLL outperforms the hand-coded system
when trained on 175 or more examples. In the
best trial, cHiLL’s induced parser, comprising
1100 lines of Prolog code, achieved 84-percent
accuracy in answering novel queries.



Discussion and Future Directions

Unfortunately, it is difficult to directly com-
pare the effectiveness of these three approach-
es to the semantic parsing problem. They have
not been tested head to head on identical
tasks, and given the various differences, in-
cluding how they are embedded in larger sys-
tems and the differing form of input and out-
put, any such comparison would be difficult.
What can be said is that each has been success-
ful in the sense that it has been demonstrated
as a useful component of an NLP system. In
the case of systems that compete in ATIS eval-
uations, we can assume that designers of sys-
tems with empirically based semantic compo-
nents have chosen to use these approaches
because they offered leverage over hand-coded
alternatives. There is no requirement that
these systems be corpus-based learning ap-
proaches. The previous cHiLL example shows
that an empirical approach outperformed a
preexisting hand-coded system at the level of a
complete natural language application. Of
course, none of these systems is a complete an-
swer, and there is much room for improve-
ment in accuracy. However, the overall perfor-
mance of these three approaches suggests that
corpus-based techniques for semantic parsing
do hold promise.

Another dimension for consideration is the
flexibility offered by these approaches. Partic-
ularly interesting is the question of how easily
they might be applied to new domains. All
three approaches entail a combination of
hand-coded and automatically acquired com-
ponents.

In the case of a purely statistical approach,
the effort of crafting a statistical model should
carry over to new domains, provided the mod-
el really is sufficient to capture the decisions
that are required. Creating statistical models
involves the identification of specific contexts
over which decisions are made (for example,
deciding which parts of a parse tree context are
relevant for a decision about slot filling). If ap-
propriate, tractable contexts are found for a
particular combination of input language and
output representation, most of the effort in
porting to a new database would then fall on
the annotation process. Providing a large cor-
pus of examples with detailed syntactic-se-
mantic parse trees and frame-building opera-
tions would still seem to require a fair amount
of effort and linguistic expertise.

In the case of SCTs, the annotation task
seems straightforward; in fact, the necessary
information can probably be extracted directly
from sQL queries. In this case, it seems that
most of the effort would be in designing the lo-

cal (syntactic) parser to find, tag, and correctly
translate the form of the constraints. Perhaps
future research would allow the automation of
this component so that the system could learn
directly from sentences paired with sQL
queries.

The inductive logic programming approach
is perhaps the most flexible in that it learns di-
rectly from sentences paired with executable
queries. The effort in porting to a new domain
would be mainly in constructing a domain-spe-
cific meaning-representation language to ex-
press the types of query that the system should
handle. Future research into constructing sqQL-
type queries within a shift-reduce parsing
framework might alleviate some of this burden.

The cHiLL system also provides more flexibil-
ity in the type of representation produced.
CHILL builds structures with arbitrary embed-
dings, allowing queries with recursive nest-
ings. For example, it can handle sentences
such as, What state borders the most states? It
is difficult to see how systems relying on a flat
listing of possible attributes or slot fillers could
be modified to handle more sophisticated
queries, where arbitrary queries might be em-
bedded inside the top-level query.

Another consideration is the efficiency of
these learning approaches. The simpler learn-
ing mechanisms such as statistical and deci-
sion tree methods can be implemented effi-
ciently and, hence, can be used with large
corpora of training examples. Although train-
ing times are not reported for these approach-
es, they are probably somewhat faster than for
inductive logic programming learning algo-
rithms. Inductive logic programming algo-
rithms are probably still too slow to be used
practically on corpora of more than a few
thousand examples. The flip side of efficiency
is how many training examples are required to
actually produce an effective interface. The re-
ported experiments with cHiLL suggest that (at
least for some domains) a huge number of ex-
amples might not be required. The training
time for the geography database experiments
was modest (on the order of 15 minutes of cen-
tral processing unit time on a midlevel work-
station). In general, much more research needs
to be done investigating the learning efficiency
of these various approaches.

Finally, it is worth speculating on the overall
utility of learning approaches to constructing
natural language database interfaces. Some
might argue that empirical approaches simply
replace hand-built rule sets with hand-built
corpora annotations. Is the construction of
suitable corpora even feasible? We believe that
corpus-based approaches will continue to
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make significant gains. Even in the traditional
approach, the construction of a suitable corpus
is an important component in interface de-
sign. From this corpus, a set of rules is hypoth-
esized and tested. The systems are improved by
examining performance on novel examples
and trying to fix the rules so that they can han-
dle previously incorrect examples. Of course,
changes that fix some input might have dele-
terious effects on sentences that were previous-
ly handled correctly. The result is a sort of
grammar-tweaking-regression-testing cycle to
ensure that overall progress is being made. Em-
pirical approaches follow a similar model
where the burden of creating a set of rules that
is consistent with the examples is placed
squarely on an automated learning compo-
nent rather than on human analysts. The use
of an automated learning component frees the
system designer to spend more time on collect-
ing and analyzing a larger body of examples,
thus improving the overall coverage and qual-
ity of the interface. Another possibility is that
techniques of active learning might be used to
automatically identify or construct the exam-
ples that the learning system considers most
informative. Active learning might significant-
ly reduce the size of the corpus required to
achieve good interfaces. Indeed, extending
corpus-based approaches to the entire seman-
tic mapping task, for example, where training
samples might consist of English sentences
paired with sQL queries, offers intriguing possi-
bilities for the rapid development of database
interfaces. Formal database queries could be
collected during the normal day-to-day opera-
tions of the database. After some period of use,
the collected queries could be glossed with nat-
ural language questions and the paired exam-
ples fed to a learning system that produces a
natural language interface. With a natural lan-
guage interface in place, examples could con-
tinue to be collected where input that are not
correctly translated would be glossed with the
correct sQL query and fed back into the learn-
ing component. In this fashion, the construc-
tion and refinement of the interface might be
accomplished as a side-effect of normal use
without the investment of significant time or
linguistic expertise.

Conclusion

The field of NLP has witnessed an unprece-
dented surge of interest in empirical, corpus-
based learning approaches. Inspired by their
successes in speech-recognition research, and
their subsequent successful application to part-
of-speech tagging and syntactic parsing, many

NLP researchers are now turning to empirical
techniques in their attempts to solve the long-
standing problem of semantic interpretation
of natural languages. The initial results of cor-
pus-based WSD look promising, and it has the
potential to significantly improve the accuracy
of information-retrieval and machine-transla-
tion applications. Similarly, the construction
of a complete natural language query system
to databases using corpus-based learning tech-
niques is exciting. In summary, given the cur-
rent level of enthusiasm and interest, it seems
certain that empirical approaches to semantic
interpretation will remain an active and fruit-
ful research topic in the coming years.
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