
■ The “Naive Physics Manifesto” of Pat Hayes (1978)
proposes a large-scale project to develop a formal
theory encompassing the entire knowledge of
physics of naive reasoners, expressed in a declara-
tive symbolic form. The theory is organized in
clusters of closely interconnected concepts and
axioms. More recent work on the representation of
commonsense physical knowledge has followed a
somewhat different methodology. The goal has
been to develop a competence theory powerful
enough to justify commonsense physical infer-
ences, and the research is organized in micro-
worlds, each microworld covering a small range of
physical phenomena. In this article, I compare the
advantages and disadvantages of the two
approaches. 

Three Scenarios
Consider the following scenario:

Scenario 1: A gardener who has a valuable
plant with a long delicate stem protects it
against the wind by staking it, that is, by
plunging a stake into the ground near the
plant and attaching it to the stake with string
(figure 1).

We might not all manage to think up this
contrivance faced with this problem, but we
can all understand how it works. This under-
standing is manifested in a number of different
abilities:

We can give an explanation of the problem
and the solution. That is, we can generate a
text along the following lines: “The wind
might bend the plant. The fragile stem, bent
too far, might snap, killing the plant. However,
if the plant is staked, then the string holds it in
place, preventing any extreme bending. The
string, in turn, is held in place by the stake,
which, being comparatively stiff, is not bent
either by the wind or by the force of the wind
against the plant as transmitted through the
string and, being stuck in the ground, remains
upright.”

We can carry out the plan, which involves

both hand-eye coordination and also the rea-
soning ability to fill in implicit steps of the
plan. For example, the string must be looped
around the stake and the plant and tied.
Because the plan, as given earlier does not
specify this step, the reasoner must infer it.

We can adapt this solution to other prob-
lems or adapt it to give alternative solutions to
this same problem. For example, plants are
sometimes staked to prevent their breaking
under their own weight. An alternative to stak-
ing might be to encircle the plant with a metal
frame.

We can answer questions about variants of
the plan. What would happen if the stake were
only placed upright on the ground, not stuck
into the ground? What if the string were
attached only to the plant, not to the stake?
What if the string were attached to the stake
but not to the plant? What if the plant is grow-
ing out of rock or in water? What if instead of
string, you use a rubber band or a wire twist tie
or a light chain or a metal ring or a cobweb?
What if instead of tying the ends of the string,
you twist them together or glue them or place
them side by side? What if you use a large rock
rather than a stake? What if the stake is much
shorter than the plant? What if the string is
much longer, or much shorter, than the dis-
tance from the stake to the plant? What if the
distance from the stake to the plant is large
compared to the height of the plant? What if
the stake is also made out of string? Trees are
sometimes blown over in heavy storms; can
they be staked against this? 

The depth and power of our understanding
seems to be most readily exhibited by this abil-
ity of exploring variants. Over a limited class of
plans, explanations and execution sequences
can be canned, or generated by, narrow special-
purpose techniques. Moreover, the difficulties
in writing an adaptable text generator or plan
executor are mostly those of natural language
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you cut the dough but don’t separate the
pieces? What happens if the surface is covered
with sand or covered with sandpaper? What if
the rolling pin has bumps or has cavities or is
square? What if the cookie cutter does not fit
within the dough? What happens if you use
the rolling pin just in the middle of the dough
and leave the edges alone? What if rather than
roll, you pick up the rolling pin and press it
down into the dough in various spots? Ordi-
narily, the cutting part of the cookie cutter is a
thin vertical wall above a simple closed curve
in the plane; suppose it is not thin or not ver-
tical or not closed or a multiple curve? What if
the cuts with the cutter overlap? Does the
dough end up thinner or thicker if you exert
more force on the rolling pin? What if you roll
it out more times, or you roll the pin faster or
slower? Do you get more or fewer cookies if the
dough is rolled thinner or a larger cookie cutter
is used? What if there is more dough? What if
the cuts with the cutter are spread farther
apart? 

Scenario 3: The following experiment is
described in Shakhashiri (1985) for estimating
absolute zero using household objects. Prepare
a pot of boiling water and a pot of ice water.
Take an empty graduated baby bottle, com-
plete with nipple attached, and submerge it
(using tongs) in the boiling water. After a few
minutes, when it has stopped bubbling,
remove it and plunge it rapidly under the ice
water. Water will then stream into the baby
bottle through the nipple as the gas contracts.
(Actually, the nipple collapses; to allow the
flow of water, you have to manipulate the nip-
ple.) When the flow of water stops, the volume
of the water that has entered the bottle can be
measured by holding the bottle right-side up;
the final volume of the gas at 0° C can be mea-
sured by holding the bottle upside down. The
initial volume of the gas at 100° C is the sum
of the final volume of the gas plus the volume
of the water. By doing a linear extrapolation
between these two values to the point where
the volume of the gas is zero, one can find the
value of absolute zero (figure 2).1

What would happen if the bottle is
immersed only briefly in the hot water or only
briefly in the cold water? What if it is laid on
top of the pots of water rather than immersed
in them? What if the bottle is left in the outside
air for a long time between being in the hot
water and being in the ice water? What if the
bottle has an open end with no nipple or if the
nipple has no hole? What if the bottle has oth-
er holes besides this nipple? What if you use
containers with air at 100° C and 0° C rather
than water? What if the quantity of ice water in

and robotics, respectively; in practice, these
issues swamp the problems of representation
and reasoning. Adaptation and alternative
application of plans certainly show under-
standing but might require an exceptional lev-
el of ingenuity. However, anyone who under-
stands the scenario should certainly be able to
say something about how things change or
stay the same under small changes of the situ-
ation or the plan, and conversely, so many dif-
ferent variations can be hypothesized that
intelligent answers can only be attained with
some large degree of understanding.

Let us broaden our view by considering two
more scenarios, with variants.

Scenario 2: In baking cookies, once you
have the cookie dough prepared, you first
lightly spread flour over a large flat surface,
then roll out the dough on the surface with a
rolling pin, cut out cookie shapes with a cookie
cutter, and put the separated cookies onto a
cookie sheet and bake.

What happens if you do not flour the sur-
face? What if you use too much flour? What if
you do not roll out the dough but cut the
cookies from the original mass? What if you
roll out the dough but don’t cut it? What if
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the second pot is very small or very large or if
the quantity of hot water in the first pot is very
small or very large? What if the bottle is coated
with Styrofoam? What if the bottle is opaque?
What if the bottle is not graduated? Why is the
following not a reasonable experiment: “Take a
volume of gas in your hands, cool it, and see
how much it shrinks.”

Additional problems of this flavor in com-
monsense reasoning can be found in Miller
and Morgenstern (1998).

Commonsense Physics
These three scenarios exhibit a number of
characteristic properties:

They rely almost entirely on commonsense
knowledge, that is, knowledge acquired infor-
mally at an early age rather than explicitly
taught. Scenario 3 requires an understanding
of the thermal expansion of gases, which is
usually “book learning.” All other aspects of
this scenario, and all aspects of scenarios 1 and
2, are commonsensical. A naive subject who
has been introduced to thermal expansion
should be able to answer almost all the variant
questions.

Quantitative relations are important; recall
such questions as, “What happens if the string

is much shorter than the distance from the
stake to the plant?” “What happens if the
quantity of cold water is very small?” However,
precise quantitative values are rare, and text-
book-style equations are practically nonexis-
tent, with the exceptions, again, of the values
0° C and 100° C and the linear equation of
thermal expansion.

Similarly, geometric properties and relations
are important: The string must encircle the
stake and the plant. The bottle must not have
holes other than the nipple and must be
immersed in the water. However, no precise
geometric descriptions are given or needed.

Each scenario involves a range of types of
material and process. Scenario 1 involves the
somewhat flexible plant, the gaseous wind, the
rigid stake, the flexible string, and the penetra-
ble earth. Scenario 2 involves the malleable
cookie dough and the rigid rolling pin, cookie
cutter, and surface. Scenario 3 involves the sol-
id baby bottle, the liquid water, and the
gaseous air.

All three scenarios involve the manipulatory
powers of an agent. Scenario 3, but not scenar-
ios 1 and 2, also involves perceptual powers.
The facts that the experimenter cannot simply
cool a volume of gas that he/she holds in
his/her hands or that he/she cannot easily
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make the representation even less satisfactory
than it might have been” (Hayes 1978, p. 3).
Hayes (1978, p. 4) further remarks, “The deci-
sion to postpone details of implementation
can be taken as an implicit claim that the rep-
resentation content of a large formalisation
can be separated fairly cleanly from the imple-
mentation decision; this is by no means
absolutely obvious, although I believe it to be
substantially true.” This last point, of course, is
a central point of attack by such critics as
McDermott (1987).

The large theory of naive physics is struc-
tured in terms of clusters, a cluster being a
nexus of concepts tightly related by a rich col-
lection of axioms. Hayes gives the following
examples of clusters: measuring scales; shape,
orientation, and direction; inside and outside;
histories; energy and effort; assemblies; sup-
port; substances and physical states; forces and
movements; and liquids. A large part of the
paper consists of a preliminary analysis of
these clusters. The companion paper, “Ontol-
ogy for Liquids” (Hayes 1985a), is an in-depth
analysis of the liquids cluster. 

Finding the proper organization into clus-
ters is considered a key issue in the enterprise:
“Identifying these clusters (of tightly associat-
ed concepts) is both one of the most important
and one of the most difficult methodological
tasks in developing a naive physics. The symp-
tom of having gotten it wrong is that it seems
hard to say anything useful about the concepts
one has proposed, but this can also be the
result of having chosen one’s concepts badly,
having a lack of imagination, or any of several
other reasons. It is easier, fortunately, to recog-
nize when one is in a cluster: Assertions sug-
gest themselves faster than one can write them
down” (Hayes 1978, p. 7).

(I must confess that I personally have never
attained the state of grace described in the last
sentence. In my experience, formalization is
always a slow and delicate process, and a great
deal of care is needed to avoid inconsistencies,
unintended consequences, and gaps.)

Hayes proposes that the research program be
carried out by a committee. Each member of
the committee would be assigned a particular
cluster to formalize. The committee would
meet from time to time to integrate their vari-
ous efforts into a larger theory. This integra-
tion would no doubt require that formaliza-
tions of clusters be reworked, new clusters be
investigated, and old ideas for clusters that
prove to be useless be discarded. 

One issue that Hayes discusses little, rather
curiously, is the choice of naive physics as a
domain for study. He does say that “one of the

measure quantities in an opaque or ungraduat-
ed bottle must be understood for these alterna-
tive experimental designs to be rejected.

All three scenarios lie outside the range of
current automated reasoners. Because I have in
the past (Tuttle 1993) been accused of giving
an overly rosy impression of the state of the
theory of automated commonsense reasoning,
let me stress this point: As far as I know, no one
currently knows how to automate these infer-
ences or how to represent the knowledge used
in them. I do not believe that these problems
will be solved any time soon. The purpose of
these three example scenarios is to indicate a
direction for study and an ultimate goal, not to
illustrate the capacities of existing programs or
theories.

The Naive Physics Manifesto
Commonsense physical reasoning was first
and most famously promoted as a domain for
AI research by Pat Hayes (1978, p. 2) in the
“Naive Physics Manifesto.”2 This paper advo-
cated a research program to develop a formal-
ization of naive physics satisfying the follow-
ing four criteria: First is thoroughness. “It
should cover the whole range of everyday
physical phenomena.” Second is fidelity. “It
should be reasonably detailed.” Third is densi-
ty. “The ratio of facts to concepts should be
fairly high.” A dense formalization is necessary
“to capture the richness of conceptual link-
ing.” “Formalizations that are not dense in this
way are unsatisfactory since they do not pin
down exactly enough the meanings of the
tokens they contain.” Fourth is uniformity.
“There should be a common formal framework
for the whole formalization.” Hayes expresses
a preference for first-order logic or some exten-
sion thereof but does not insist on it. What is
critical, in his view, is that the representation
have a clear interpretation.

All considerations of implementation, appli-
cation, or inference strategy are to be deferred
until the formalization is largely complete. “It
is not proposed to make a computer program
which can `use’ the formalism in some sense.
For example, a problem-solving program or a
natural language comprehension system with
the representation as target. [Such programs]
have several dangerous effects. It is perilously
easy to conclude that because one has a pro-
gram that works (in some sense), its represen-
tation of its knowledge must be more or less
correct (in some sense). Regrettably, the little
compromises and simplifications needed in
order to get the program to work in a reason-
able space or in a reasonable time can often
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good reasons for choosing naive physics to
tackle first is that there seems to be a greater
measure of interpersonal agreement here than
in many fields” (Hayes 1978, p. 16), but he
does not indicate what the other reasons
might be. To my mind, the chief other advan-
tages of naive physics compared to, say, folk
psychology or naive social science are, first, the
power of real physics, the paradigm of a theory
that is comprehensive, exact, and correct. The
metatheoretic, mathematical, and logical
structures have been studied extensively. Vast
amounts of software carrying one or another
type of computation in this domain have been
implemented. Of course, naive physics is quite
different from real physics; still, this parallel
with scientific physics gives us an immense
body of reliable knowledge on which to draw.
Second is that problems of intensionality and
self-reference do not arise. Physics is a purely
extensional theory. Third is a broad range of
practical applications.

Hayes’s proposal derives in many key aspects
from earlier proposals of John McCarthy’s
(1968). In particular, the choice of common-
sense knowledge as subject matter, the idea of
developing knowledge representations inde-
pendently of implementation, and the choice
of first-order logic as a representation language
are all taken from McCarthy’s previous work.
What is chiefly new in Hayes’s manifesto is the
proposal to restrict the focus to naive physics as
opposed to other commonsense domains. 

Two Common Misconceptions
There are two common misimpressions of
Hayes’s proposal. The first is an understand-
able confusion. Seeing that the “Naive Physics
Manifesto” and the “Ontology for Liquids” are
full of formulas written in first-order logic and
formal proofs, many readers have gotten the
false idea that Hayes is proposing that a rea-
soning program should explicitly manipulate
logical formulas using some general-purpose
theorem-proving method. Now, various peo-
ple (for example, Moore [1982]) and Kowalski
[1979]) do indeed advocate this view, but
Hayes does not, at least not in these papers.3

He is, in fact, entirely agnostic about how the
knowledge should be implemented as data
structures or what procedures should manipu-
late it. Hayes’s proposal is to analyze naive
physical reasoning at the knowledge level
(Newell 1980), in terms that are independent
of the particular computing architecture, algo-
rithms, and data structure. First-order logic is
chosen as a language to describe the knowl-
edge level precisely because it is a neutral one

that does not presuppose any particular form
of implementation.

The intended relation between a logical
domain theory and a reasoning program is
similar to the relation between a programming
language semantics and a compiler. The
semantics specifies what the compiler should
do; a compiler is correct if the semantics of the
output code is compatible with the semantics
of the source code. However, one does not nec-
essarily expect a compiler to be written in the
abstruse formalisms of programming language
semanticists. Similarly, the desired relation
between a logical domain theory and a reason-
ing program is that the theory should charac-
terize or justify the actions of the program in
the sense that some significant part of the
results computed by the program corresponds
to, or approximates, valid conclusions in the
theory. However, the internals of the program
need not contain anything that looks like the
theory.

For example, STRIPS-style planners can be
characterized in terms of the situation calculus
in the following sense: Given a collection of
actions in the STRIPS representation, you can
construct a situation-calculus theory defining
the domain such that any plan output by the
planner can be proven correct in the theory
(Lifschitz 1986). As another example, a simula-
tor that calculates solutions to gravitational
motion by numerically solving the differential
equations can be characterized in terms of a
formal theory containing Euclidean space,
real-valued time, and Newton’s law of gravita-
tion in the sense that the output of the pro-
gram approximates the conclusions of the the-
ory. (Defining this sense of approximates
exactly is a substantial undertaking, of course.) 

One major difference between compilers,
STRIPS, and gravitational calculation, on the one
hand, and a general commonsense reasoner, on
the other, is that the former programs are doing
inference in a single direction with complete
information or a narrow range of partial infor-
mation, whereas a general reasoner should do
reasoning in many different directions using
whatever partial information it has. Therefore, it
is more critical in a commonsense reasoner to
use a widely expressive and declarative represen-
tation and a flexible inference mechanism,
hence the interest in logical representations and
symbolic deduction for implementing reason-
ing systems. However, these considerations are
largely irrelevant to Hayes’s argument. Note that
the success of formal programming-language
semantics shows that logical analysis can be
valuable even when the task being studied is
narrowly focused. 
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Narayanan, and Chandrasekaran 1995) can be
expressed straightforwardly in first-order logic
over Euclidean geometry, and all the infer-
ences considered in Fleck (1996) can be justi-
fied in a Euclidean geometry given a suitable
statement of the physical axioms. I’m not
claiming, of course, that there is necessarily
anything to be gained from translating non-
logical representations into logical representa-
tions, merely that these alternative representa-
tions do not express any kind of information
that can’t be expressed in first-order logic.
There are types of nonspatial information that
are impossible or extremely awkward to
express in first-order logic, such as uncertain
knowledge, metaknowledge, and proposition-
al attitudes, but very, very few declarative rep-
resentations of spatial information involve any
of these problems. (Nondeclarative representa-
tions, such as procedural representations, or
representations in terms of the state of a neural
network do not, of course, translate well into
first-order logic.) 

Difficulties with the Manifesto
Hayes’s manifesto was much admired and
widely discussed, but it was hardly followed.
The committee never met; the theories were
never codified. There has, of course, been a
great deal of work in qualitative physics, but
this work has a quite different flavor from
Hayes’s proposal; it is algorithmic, rather than
declarative, and is increasingly concerned with
specialized applications rather than common-
sense reasoning (Iwasaki 1997; Weld and de
Kleer 1989). Even interpreting the manifesto
fairly broadly, it would be difficult to think of
more than a dozen AI researchers who have
done the kind of work in physical reasoning
that Hayes has in mind, and interpreting it nar-
rowly, one could certainly argue that the man-
ifesto and the ontology are the only two papers
ever written that fit into Hayes’s program.5

No doubt the main reason for this neglect is
simply that life is short, the project is large,
and researchers have had other things to do
that seemed more pressing. However, Hayes’s
project also has fundamental difficulties, and
researchers who try to follow Hayes soon face
serious obstacles.

It is not clear what precisely Hayes means by
naive physics. The “Naive Physics Manifesto” is
for the most part written as if naive physics
were a clearly defined body of knowledge—
comprehensive in scope, universal across peo-
ple, consistent, and essentially uninfluenced
by science. More than once, Hayes claims that
some specific concept or distinction is or is not

The second common misconception is a lit-
tle more peculiar. There is a widespread misim-
pression that if geometric information is repre-
sented in first-order logic, then the primitives
used must correspond to basic spatial terms in
natural language. For example, I have heard it
asserted that the only logical representations
of the situation in figure 3 are something like

left-of(a, b). left-of(b, c). left-of(c, d).

red(a). white(b). red(c). blue(d).
People sometimes go so far as to conclude

from this supposition that retrieving the fact
that the leftmost object is left of the rightmost
or retrieving the fact that block E is not in this
line will take time at least linear in the number
of objects. 

There is, of course, not the slightest truth in
this supposition. The following are all valid
logical sentences given a suitable semantics
(take the origin to be the lower-left- hand cor-
ner of block A and the unit to be the side of
this block, with axes aligned as usual):

place(c) = rectangle(point(3, 0), point(5, 0),
point(5, 1), point(3, 1)).

red-pixel(pixel(4, 0)).

empty(rectangle(point(1, 0), point(2, 0),
point(2, 1), point(1, 1)).

∀ X block(X) ⇒ ∃ Y red(Y) ̀  distance(X, Y) < 2.

In fact, with the exception of probabilistic
distributions and fuzzy distributions over
space, every representation of spatial or geo-
metric information that I have ever seen can
be expressed straightforwardly in a first-order
logic over a universe of simple geometric enti-
ties. Indeed, in the great majority of represen-
tations in use, the ontology can be taken to be
Euclidean space, and the language can be
restricted to a constraint logic.4 In particular,
all the representations of spatial information
that are considered diagrammatic (Glasgow,
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a part of naive physics, apparently in an
absolute sense:

Naive physics is pre–Galilean. I can still
vividly remember the intellectual shock
of being taught Newtonian “laws of
motion” at the age of 11. It is interesting
to read Galileo”s “Dialogue Concerning
the Principal Systems of the World”
(1632), where he argues very convincing-
ly, from everyday experiences, that New-
ton’s first law must hold. But it takes a
great deal of careful argument (Hayes
1978, p. 29).

I have deliberately not distinguished
between mass and volume. I believe the
distinction to be fairly sophisticated
(Hayes 1985b, p. 76).

In making predictions, there is a dis-
tinction which seems crucial between
events that “just happen” (such as
fallings) and events which require some
effort or expenditure of energy (such as
rocks flying through the air). Such a dis-
tinction runs counter to the law of con-
servation of energy, and I think quite cor-
rectly so for naive physics (or we could
say merely that the intuitive notion of
“effort” does not exactly correspond to
the physical notion of “work”) (Hayes
1978, p. 26).

Now, Hayes does not, of course, actually
believe in such an absolute, monolithic theory.
He specifically acknowledges and discusses
individual differences in the system of naive
physics beliefs. Further, the first quote here at
least implicitly acknowledges that an individ-
ual’s beliefs might be inconsistent. (If New-
ton’s first law can be derived by Socratic argu-
ment and Gedanken experiments from
memories of everyday experience but is also
explicitly denied in naive physics, then the
closure of the individual’s beliefs under “rea-
sonable argument” is inconsistent.) 

Trying to define an absolute naive physics
raises many difficulties. First, naive physics is
supposed to be what naive subjects believe
about the physical world, but as is well known,
the concept of belief is ambiguous and slippery,
with many different possible interpretations. “A
believes φ” might mean that A will spontaneous-
ly assert φ, A will immediately assent to φ, A will
assent to φ after Socratic interrogation, A will
assent to statements that logically entail φ, the
best explanations of A’s actions at the knowl-
edge level involve the assumption that A is
using φ in the course of reasoning, or A’s actions
are more sensible given that φ is true than given
that it is false. Which is intended here?

Second, the problem of defining belief is
made more difficult by the constraint that we
are interested only in naive beliefs, not in
beliefs that are formally taught but that the
most readily available subjects—the
researchers themselves—tend to be people
with substantial training in formal science and
mathematics. It is not clear how we can tease
out a true naive physics from later accretions
of formal physics.

Third, physical reasoning depends critically
on spatial knowledge and spatial reasoning
that is difficult or impossible to express in ordi-
nary language. For example, we all know how
a screw is shaped, and we all have some under-
standing of the relation between the shape of
a screw and its functions. (This understanding
is most easily demonstrated through the meth-
ods of considering variants. For example, it is
easy to see that a small pit in the surface of the
screw will probably have little effect on its
behavior, whereas a small bump is likely to be
much more troublesome.) However, it is not
easy to describe verbally the shape of a screw
or explain verbally the connection between its
shape and its behavior without using a techni-
cal vocabulary unintelligible to most naive
subjects. This centrality of spatial knowledge is
probably the chief disadvantage of physics, as
opposed to other commonsense domains, as a
test bed for studying commonsense reasoning.

Fourth, naive physics probably varies sub-
stantially from person to person (although
Hayes might well be right that it differs less
than other branches of commonsense knowl-
edge). Because of the vagueness in defining
naive belief, it is difficult to be very precise
about this variation. However, one can certain-
ly see it in cross-cultural comparisons. For
example, many people in various times and
places have attributed intentions and mental
states to inanimate objects. In modern West-
ern culture, this view is not part of even a
naive system of beliefs.

One can try to work around this difficulty
by observing that people’s beliefs are at least
close enough to enable them to communicate
and by defining the naive physics we are look-
ing for as the beliefs that are common knowl-
edge within the community. For example, a
subject who believes that one sees an object
using reflected light and another subject who
believes that one sees an object using emana-
tions from the eyes will nonetheless agree that
one cannot see through an opaque object.
Therefore, if the community contains large
numbers of believers in both theories, the
naive physics would contain the belief that
one cannot see through an opaque object but
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average, and cross section, which are used in our
second set of rules, are formally learned in
school and, therefore, are not part of a naive
theory. Now, certainly the more specific rule,
“The thinner you roll the dough, the more
cookies you get,” might be one that a child
learns first, before any more general formula-
tion, and it might be a rule of thumb that
someone baking cookies regularly calls on
without doing deeper thought. However, it
seems to me that an intelligent person will
soon see the connection between this fact and
the facts that if you want to cover a tabletop
with books, you will do better to lay them flat
and not to stack them; a can of paint will cover
a small area more thickly than a large area; and
at a further remove, the more people there are
sharing a pie, the smaller each person’s piece is.
To express the general rules that underlie these
particular examples, you will almost certainly
have to call on concepts that are so close to the
standard ones of volume, average, and so on,
that the distinction is hardly worth making.
(Quite likely, the naive reasoner is reasoning by
analogy or using case-based reasoning rather
than using an explicit generalization, but in
this case, these same concepts will be needed to
find the dimensions of similarity between the
cases. Thus, the necessary expressivity of the
object language is largely independent of the
mode of reasoning.) Therefore, despite the
association of these terms with the classroom
and textbook, it seems difficult to me to justify
automatically excluding these concepts from a
naive understanding. I should say, rather, that
teaching these concepts in the classroom is, or
should be, mostly a matter of putting concepts
that are already understood at the common-
sense level into a rigorous setting.

Microworlds: A Modified
Methodology

One way out of these difficulties begins by
arguing as follows: Whatever the actual con-
tent of people’s individual theories, they will
almost all come up with the same or similar
answers over a large collection of common-
sense problems. A program will achieve com-
mon sense if it gives the same answers to the
same problems. Therefore, any theory that
allows commonsense problems to be stated
and solved will do. In other words, we are
looking for a competence theory for solving
commonsense problems. Note that we have
substantially shifted our ultimate goal. Before,
we were talking about expressing a body of
knowledge; now, we are talking about justify-
ing a collection of inferences. 

would exclude both the theory of reflected
light and the theory of ocular emanations as
speculative theory. Is it possible to develop a
naive physics rich enough to support com-
monsense inferences on the basis of this kind
of common knowledge? The question is
important but difficult. Certainly, the central
role played by inarticulable spatial knowledge
makes this problem more difficult.

Finally, it is not clear that an individual’s
beliefs are consistent. It depends in part, of
course, on how belief is defined. An inconsis-
tent belief set cannot be expressed in a single
theory in any standard logic (or indeed in
most nonmonotonic logics).

The result of this unclarity is that the
researcher really has no way of determining
whether a given concept, distinction, or rule is
to be considered a legitimate element of naive
physics. Does the concept surface area exist in
naive physics or the concept of an object being
awkward to handle? Does the distinction
between heat and temperature exist? How is
one to judge? Pat Hayes (personal communica-
tion, 1997) tells a story of engaging in a two-
hour debate over whether a picture hanging
on the wall of a room can be said to be in the
room. Such minutiae are essentially unavoid-
able in this approach to formalization.

A particularly difficult issue to judge is the
appropriate level of generality. Consider the
rule in the cookie-baking domain, “The thin-
ner you roll the dough, the more cookies you
get.” Now, this fact can be expressed directly in
this form. Alternatively, it can be derived from
the following considerations: (1) The volume
of the cookie dough is fixed. In particular, it is
not affected by rolling it out. (2) The volume of
a region is equal to its area times its average
thickness. (3) The number of regions of fixed
shape A that can be placed disjointedly within
a region R tends to increase with the area of R.
(Note that this is a plausible inference rather
than a sound rule.) (4) In cutting cookies out
of rolled-out dough, each cookie is a cross sec-
tion of the dough on a vertical axis, and no
two cookies overlap. 

One can alternately use rules at an interme-
diate level of generality (for example, replace
the second consideration with the more specif-
ic rule, “For a fixed quantity of malleable stuff,
the thinner it is spread on a surface, the larger
the area it covers”). Using the more general
formulation usually has the advantages of cov-
ering more physical situations and clarifying
the relations between them, but each level of
generality seems less and less naive. How do
we choose among them? 

Some will argue that terms such as volume,

A particularly
difficult issue
to judge is the

appropriate
level of 

generality.
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The second change that we will make is to
focus on defining a model rather than stating
an axiomatic theory.6 The argument for this
change is as follows: As discussed previously,
our main goal in formalizing theories is to
characterize or justify the actions of reasoning
programs rather than to implement them
directly as a rule base. However, the relation of
justifying a particular inference or characteriz-
ing a particular program is a property of a
model, not of a specific axiomatization of this
model. If a model can be axiomatized in two
equivalent ways, the two axiomatizations sup-
port the same inferences. Therefore, our pri-
mary concern will be defining a model and,
thus, determining the class of true statements
and valid inferences in the model. Second, we
are interested in defining a formal language,
which delimits an expressive range, the class of
facts that can be expressed. In this approach,
axiomatizations are only of subsidiary interest;
they help clarify the model, and they are use-
ful in verifying that a given inference is indeed
supported by the model.

A third change is in the way in which the
project is divided into parts. Hayes’s goal is to
express a theory; so, a natural subset of the
project is a coherent subset of the theory, that
is, a cluster of concepts and axioms. The new
goal is to characterize inferences; so, a natural
subset of the project is a microworld, an abstrac-
tion of a small part of physical interactions suf-
ficient to support some interesting collection
of inferences.7

The following are examples of microworlds:
In the roller coaster world (de Kleer 1977), the
world consists of a point object and a one-
dimensional track in a vertical plane. The state
of the world is either the position and velocity
of the object along the track or the distin-
guished state FELL-OFF. The motion of the
object is governed by Newton’s law with grav-
ity and inertia. The microworlds of Forbus
(1980) and Sandewall (1989) are similar. In
component-based electronics (de Kleer and
Brown 1985), the world consists of resistors,
capacitors, inductors, power sources, and so
on, connected in a circuit. The state of the
world at any moment is the voltage at every
node and the current through every arc. The
world changes dynamically following compo-
nent characteristics. In rigid-object kinematics,
the world consists of solid, rigid objects con-
strained by the rules that the shape of an
object is fixed, it moves continuously, and  two
objects do not overlap. In rigid-object dynamics,
the world consists of medium-sized solid, rigid
objects, moving in a uniform gravitational
field and interacting through normal forces,

friction, and impacts above a fixed ground. In
the kinematics of solid objects and a liquid, the
world consists of solid objects and some quan-
tity of a liquid. The solid objects are con-
strained by the rules that their shape is fixed,
they do not overlap, and their motion is con-
tinuous. The liquid is constrained by the rule
that its volume is constant, it moves continu-
ously, and it does not overlap the solid objects.

Note the difference from clusters. Of Hayes’s
clusters, only “liquids” (actually liquids and
solids) is a microworld.

We can also contrast microworlds with rea-
soning architectures, such as QP (Forbus 1985)
or ENVISION (de Kleer and Brown 1985). QP and
ENVISION do not incorporate any particular
physical theory. Rather, each such architecture
provides a collection of basic ontological sorts,
a restricted language in which physical theo-
ries of certain types can be stated, and an algo-
rithm for carrying out certain types of infer-
ence. For example, the basic sorts in QP include
time instants, time intervals, parameters, and
processes. The QP language supplies primitive
symbols for direct influence and indirect influ-
ence, which have a fixed interpretation. The
algorithm carries out qualitative envisioning.

Thus, the development of this kind of pro-
gram is orthogonal to the microworld method-
ology. The microworld approach focuses on
developing specific physical theories; pro-
grams such as QP and ENVISION focus on devel-
oping techniques that apply across a range of
physical theories. 

Another change from Hayes’s project is in
the attitude toward beliefs that are common-
sensical but false. These beliefs can be divided
into three categories: First are beliefs that are
approximately correct in everyday contexts,
for example, the belief that a moving object
will come to a halt if no force is applied. This
rule, which contradicts Newton’s first law,
holds for most objects in most terrestrial
circumstances. Second are the logical conse-
quences of rules in the first category, for exam-
ple, the belief that if a torque is applied to a
gyroscope, the gyroscope will rotate along the
axis of the torque. This is just a special case of
the general rule, “If a torque is applied to an
object, then the object rotates along the axis of
the torque,” which holds for most objects but
not gyroscopes. Third are beliefs that are just
plain wrong, without either of the previous
justifications, for example, the belief that an
object that has been moving along a circular
track will continue to move in a circle once it
is free of the track (McCloskey 1983).

A competence theory of commonsense rea-
soning system might well include beliefs of the
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developing their own theories for justifying
this particular inference; and then hopefully
the insights gained from this example can be
combined and applied to the next example.
These three papers address the problem of
characterizing cracking an egg into a bowl.

A Sample Microworld: 
The Kinematics of 

Cutting Solid Objects
At this point, it might be helpful to give a
rather detailed description of one microworld.
The example I use is a kinematic theory of cut-
ting solid objects (Davis 1993). Relative to the
state of the art in formalizing physical theo-
ries, this example is fairly complex and sophis-
ticated. 

Microworld
The microworld is the kinematics of cutting
rigid solid objects (CSO). That is, the world
consists of solid objects moving continuously
through space on arbitrary paths. The shape of
any object is constant except when the objects
are being cut. Objects are not created or
destroyed except at the moment when one
object is sliced through.

The process of cutting is modeled as if the
blade annihilates the material of the target as
it penetrates. When the annihilation of mate-
rial leaves the target disconnected, it falls into
two or more new objects (figure 5). This model
is rich enough to support many forms of cut-
ting: slicing through, stabbing through, filing
down, or carving a cavity.

The model does not support the intuitive
distinction between “cutting a small piece off
object A,” where the identity of A survives in a
smaller shape and “slicing object A into objects
B and C,” where A ceases to exist and B and C
come into existence. All cases where an object
is split are considered in the second category,
no matter how small the piece being split off.

The model does not support any theory of
dynamics in the sense of forces, energy, and
such. For this reason, it does not incorporate
any shape constraints on the blade, such as
that it be sharp or serrated, or on the motion,
such as that it involve sawing back and forth,
because these constraints would be arbitrary
and inadequate in the absence of a dynamic
theory. Similarly, the model does not incorpo-
rate the deformation of material that generally
takes place in actual cutting; material is simply
and irreversibly vaporized.

Ontology 
In developing an ontology, we begin by con-

first category; indeed at some level, it must,
unless we plan to base it on relativistic quan-
tum mechanics. These beliefs are justified as a
trade-off of accuracy for speed and simplicity.
We are therefore also likely to get beliefs of the
second category unless we can block them all
using qualification conditions, which is
unlikely. The question is whether there is any
point in including beliefs of the third category.
In Hayes’s project, where the ultimate aim is a
cognitive model of a naive reasoner, presum-
ably they should be included. Likewise, if we
were studying the process of learning physical
theories, we would have to expect that some-
times the theories being considered are entire-
ly off base. In a competence theory of reason-
ing, however, because these add nothing to
competence, they should be excluded. For this
reason, in the new approach, we speak of com-
monsense physics rather than naive physics.

Putting all this together, we arrive at a
methodology along the following lines (figure
4):8

First, select a microworld, a well-defined,
fairly small range of physical behaviors. Sec-
ond, collect a corpus of inferences in the
domain that are both physically correct and
would broadly be agreed on as commonsensi-
cally obvious. Third, develop a formal model
of the domain, a language of primitives with
semantics defined in the model, and an axiom-
atization of the model expressed in the lan-
guage. Fourth, demonstrate that many of the
inferences in the second step can be expressed
in the language and justified in the model. A
formal proof from the axiomatization might
be helpful here. Fifth, develop algorithms or
programs that can be justified in terms of this
model and show that some significant class of
commonsense inferences can be carried out
efficiently. Sixth, work toward broadening the-
ories and merging multiple theories together.9

Two recent projects of a similar flavor
should be mentioned. Ken Forbus (1998) pre-
sents a characteristically ambitious proposal to
construct a library of foundational qualitative
domain theories, containing on the order of
10,000 to 100,000 axioms encoded in first-
order logic (I have not been able to get detailed
accounts of these domains and so have not
been able to make comparisons with the issues
discussed here). In a different direction, a
recent triad of papers (Lifschitz 1998; Morgen-
stern 1998; Shanahan 1998) attempts a new
method for advancing the state of the art in
commonsense reasoning. A complex but nar-
rowly defined inference, such as those used in
the original three scenarios, is put forward;
separate researchers work independently on
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structing a model of time and space. We model
time as the real line. A situation is a single
instant of time. A fluent (McCarthy and Hayes
1969) is an entity whose value changes
through time. For example, “the president of
the United States” is a fluent whose value in
1791 was George Washington and in 1998 is
Bill Clinton. We model space as three-dimen-
sional Euclidean space. Other models of space
and time might be possible if they support the
following concepts with suitable properties:
earlier-later times, spatial regions, connectivi-
ty, rigid motions, continuous rigid motions,
set difference of regions, and overlap of
regions.

We can now formulate two alternative con-
struals of the previous model of cutting. The
first, more straightforward approach construes
the world in terms of objects, as earlier. The
shape of an object O is a fluent that changes
through time as O is cut, and material is

removed. When the shape of O becomes dis-
connected, O ceases to be “present” and
becomes a “ghost,” and two new objects O1
and O2 cease to be “ghosts” and become “pre-
sent.” Thus, each object can undergo three
types of change during its lifetime: First, it is
originally created by being sliced off some par-
ent object; second, its shape is gradually mod-
ified as it is cut away; third, it is destroyed
when its shape is split.

The second construal focuses on chunks of
material. A chunk is a physically connected
piece of material; it is the part of an object that
fills some connected, topologically open
region. At any given moment, an object has
one chunk that is top level, meaning that its
shape is exactly the shape of the object, and
many chunks that are latent, meaning that
their shape is a proper subset of the shape of
the object. The latent chunks are, so to speak,
waiting for a suitable cutting process to carve
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We can also define the process of cutting:
Object A is cutting object B at time T if, for
every previous time T’, there was material in B
at T’ that A overlaps in T. Somewhat more arbi-
trarily, we can individuate a cutting event: A cut-
ting event of B by A occurs over time interval
I if A is cutting B throughout I but not
throughout any proper superinterval of I. 

Language and Axiomatics
Tables 1 and 2 display languages sufficient to
express the basic concepts of the two theories,
and tables 3 and 4 show the basic physical
axioms of the two theories. Basic geometric
and temporal primitives, such as image, <, and
continuous, are defined relative to Euclidean
space and real-valued time, as indicated in
table 2. The axioms are written in a sorted first-
order logic. To shorten the notation, we use flu-
ent functions as predicates with an additional
situational argument. Thus, for example, the
statement “object O is material in situation S”
can be expressed equivalently either in the
form holds(S, material(O)) or material(O, S).

Inferences
The model supports exact predictions: Given
the positions and shapes of all the objects at
the start of a time interval and given the
motions of all the objects throughout the
interval, predict the identity and shapes of the
final objects at the end of the interval. This is
the kind of prediction that is carried out in
computer-aided machinery (CAM) machining
programs (Ji and Marefat 1997).

It also supports kinematic inferences of oth-
er kinds. For example, Davis (1993, p. 296)
gives the proofs of the following statements: 

A blade that starts outside the target
cannot carve a purely internal cavity
inside the target.

them out and make them top level for their
moment in the sun. A chunk of a target is
destroyed as soon as it is penetrated by a blade.
Thus, the process of cutting involves the con-
tinual destruction of an infinitude of chunks
that now have some of their material annihi-
lated. At most instants, a single new chunk
becomes top level for an instance; occasional-
ly, at the instants when the object is split, two
new chunks become separately top level. The
shape of a chunk is constant. Thus, in this the-
ory, there is only one kind of change: An active
chunk (that is, one that is either top level or
latent) becomes a ghost (figure 6).

The advantage of the chunk approach is
that there is now only one type of change: the
annihilation of material, formalized as the
destruction of chunks. Sometimes, this annihi-
lation leaves a single top-level chunk, some-
times more than one, but the two essentially
look the same from the point of view of the
model. This simplicity can be useful in cases
like figure 7. A sculptor is carving away at a
pair of stone pieces, of which he/she can see
only the nearer parts. In the object theory, this
situation is difficult to describe because the
sculptor cannot know whether the pieces are,
in fact, one object or two; it depends on
whether the two pieces are connected, which
he/she cannot see. Worse, the two pieces
might originally be a single object and then
become two when someone splits the connec-
tion behind the scene. However, based on the
assumption that the structure is fixed, it
should make no difference to the sculptor
whether the two pieces are connected, and in
the chunk theory, it doesn’t. The chunks in the
area visible to the sculptor are the same
whether or not they are connected behind.

Chunk theory and object theory can be
proven equivalent (Davis 1993).
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If a convex blade is restricted to linear
motions, then carving out a k-face convex
polyhedron requires at least k separate
cutting operations.

In our original scenario 2 of the cookie
dough, this model supports most of the infer-
ences one would want to make about cutting
the dough with cookie cutters, assuming that
the dough is otherwise rigid during the cutting
process. For example, one can conclude that if
the dough is cut in the center by a cutter that
is a simple, nonclosed curve, then no cookie
has been separated out. One can conclude that
if the horizontal projections of two cuts with
ordinary cutters overlap, then the cookies cut
out are the connected components of the
intersection and the set differences of the two
regions within the cutters. 

Observations
The strongest aspects of this formalization are,
first, its generality, the fact that slicing, stab-
bing, and filing can all be treated together,
and, second, its clarity. Potential confusions
are almost entirely resolved. If you try just to
write down everything you know about cut-
ting, you are apt to find that there are a large
number of issues to resolve and that it is diffi-
cult to ensure that you are resolving them all
consistently. This approach takes care of all
these issues and difficulties.

Moreover, these models seem cognitively
plausible as far as they go. It seem very natural
to think about individuated objects being
gradually shaved away by a cutting process; it
seems almost as natural to think about chunks
of material, particularly when the extent of the
object is either unknown, as in figure 7, or is
very much larger than the region being operat-
ed on. The theories are certainly rather abstract
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Figure 7. Carving One Object or Two?

Sort Letter
Point X
Spatial regions (set of points) R
Rigid mappings M
Temporal situations S
Fluents F
Objects O
Chunks C
Either object or chunk Q

Table 1. Logical Sorts.



Temporal
holds(S, F)—Predicate. Boolean fluent F holds in situation S.
value_in(S, F)—Function. This is the value of fluent F in situation S.
S1 < S2—Predicate. Situation S1 precedes S2.
just_before(S, F)—Predicate. Boolean fluent F holds in an open interval ending in S. 

Spatial
X ∈ R—Predicate. Point X is in region R.
R1 ⊂ R2—Predicate. Region R1 is a proper subset of R2.
R1 – R2—Function. This is the interior of the set difference of R1 and R2.
intersect(R1, R2)—Predicate. Region R1 intersects R2.
∅ —Constant. This is the empty region.
good_shape(R)—Predicate. Region R is nonempty, open, bounded, connected, and equal to the interior of its

closure.
image(M, R)—Function. This is the image of region R under mapping M.
continuous(F, S)—Predicate. F is a continuous function of time at situation S. F is a fluent whose value in each

situation is a rigid mapping.
connected_component(R1, R2)—Region R1 is a connected component of R2.

Physical: Primitive Symbols
material(Q)—Function. This is the fluent of object or chunk Q being material.
placement(Q)—Function. This is the fluent of the mapping from the shape of Q to the place of Q.
shape(O)—Function. This is the fluent of the point set occupied by O in a standard orientation.
cshape(C)—Function. This is the time-invariant shape of chunk C. 

Physical: Defined Symbols
ghost(Q)—Function. This is the fluent of Q being a ghost. 
place(Q)—Function. This is the fluent of the region occupied by Q in situation S.
blade_swath(S1, S2, O)—Function. This is the swath cut by blades between situations S1 and S2 relative to the
coordinate system attached to object O.
destroyed(S, O)—Function. Object O is destroyed at time S.
top_level(C)—Function. This is the fluent of chunk C being top level. 
sub_chunk(C1, C2)—Predicate. Chunk C1 is (nonstrictly) a subchunk of C2. 

competence theory approach is that it replaces
the painfully vague problem, “Is concept–dis-
tinction–fact X part of naive physics?” with
the much more hard-edged, bottom-line, engi-
neering-type question, “Is X useful over a giv-
en class of inference?” For example, is an elas-
tic collision between solid objects an
instantaneous event, involving an instant
change in velocity, or is it a prolonged process,
involving an extended period of contact, a
continuous change in velocity, and a deforma-
tion of the objects involved? Can a physical
object be truly a point or a curve or a surface?

It is difficult to justify a claim that one or the
other of these is the “true” naive view. It is
much easier to say that one or the other is an
adequate model over a given class of infer-
ences. Discussions such as that mentioned ear-

and bloodless, mostly, I suspect, because of the
absence of any dynamic theory. A lot of one’s
experience of cutting has to do with the forces
and motions involved in sawing, stabbing, and
so on, and these have all been abstracted away
in this microworld.

Advantages of Microworlds
I next discuss the strengths and flaws of this
approach of constructing microworlds to for-
mulate a competence theory. Regrettably, the
distinction between strengths and flaws is not
always clear-cut. Some apparent strengths can
actually be flaws; some apparent flaws can
actually be just hard problems that would be
encountered in any methodology.

The first and foremost advantage of the
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Definitions of Object Theory
OD.1. ghost(O, S) ⇔ ¬ material(O, S).

(Definition of ghost: An object is a ghost iff it is not material.)
OD.2. place(O, S) = image(placement(O, S), shape(O, S)).

(Definition of place: The region occupied by O in S is the image of its shape under its placement.)
OD.3. X ∈ blade_swath(S1, S2, O) ⇔

∃ S3,OB S1 ≤ S3 ≤ S2 ` OB ≠ O ` image(placement(O, S3), X) ∈ place(OB, S3).
(Definition of blade swath: The blade swath between S1 and S2, relative to O, is the region swept out by
all blades between S1 and S2 as measured from a coordinate system attached to O.)

OD.4. destroyed(S, O) ⇔ [just_before(S, material(O)) ` ¬ good_shape(shape(O, S))].
(An object is destroyed at S if it existed up to S but became disconnected or null at S.)

Axioms of Object Theory
OB.1. [material(O1, S) ` material(O2, S) ` O1 ≠ O2] ⇒ ¬ intersect(place(O1, S), place(O2, S)).

(Two material objects do not overlap.)
OB.2. [S1 < S2 < S3 ` material(O, S1) ` material(O, S3) ] ⇒ material(O, S2).

(Objects do not change from material to ghost to material.)
OB.3. material(O, S) ⇒ good_shape(shape(O, S)).

(Material objects have good shapes.)
OB.4. ∀ S,O shape(O, S) ≠ ∅ ⇒ continuous(placement(O), S).

(The placement of object O is continuous in any situation S, where the shape of O is nonnull.)
OB.5. [S1 < S2 ` material(O, S1) ` just_before(S2, material(O))] ⇒

shape(O, S2) = shape(O, S1) – blade_swath(S1, S2, O).
(The material removed from O between S1 and S2 is the blade swath between S1 and S2 relative to O
plus boundary points.)

OB.6. [destroyed(S, O) ` connected_component(R, shape(O, S))] ⇒
∃ OR shape(OR, S) = R ` placement(OR, S) = placement(O, S) `

just_before(S, ghost(OR)) ` material(OR, S).
(If O becomes disconnected or null at S, then each of its connected components becomes material.)

OB.7. [material(O, S1) ` ghost(O, S2) ` S1 < S2] ⇒ ∃ S3∈ (S1,S2) destroyed(S3, O).
(An object turns from material to ghost only if it is destroyed in the sense of OD.4.)

OB.8. [ghost(O, S1) ` material(O, S2) ` S1 < S2] ⇒
∃ S3,O3 destroyed(S3, O3) ` S1 < S3 ≤ S2 ` connected_component(place(O, S3), place(O3, S3)).
(An object can come into existence between S1 and S2 only if it is a connected component of some
object O3 that is destroyed at some S3 ∈ (S1, S2].)

lier about whether a painting on the wall is in
the room can be avoided. What is actually
going on, geometrically and physically, is clear
enough and easily described. How you choose
to define in, whether you want to define the
spatial extent of the room to include the walls
and whether you want to define the walls to
include the painting (is the painting part of
the wall or merely attached to it?) are compar-
atively unimportant and arbitrary decisions
about the symbols in, room, and wall.

This freedom from worrying about whether
concepts are truly naive comes about primarily
because although Hayes’s project requires that

naive conclusions be drawn from naive premis-
es, our project requires only that naive conclu-
sions be derivable; the premises need not be
formulated in naive terms. Therefore, whereas
Hayes’s project requires that every concept be
examined for its true naiveté and rejected if it
is not genuinely naive, for us it suffices to have
a large collection of naive conclusions. To carry
out our project, in other words, it suffices to be
able to generate a large collection of inferences
that are unquestionably commonsensical; we
never have to decide of a given inference that
it is not commonsensical. 

The problem of finding an appropriate level
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of a Lebesgue integral in a general measure
space; within commonsense physics, there will
be no interesting generalizations to be
obtained from this more abstract notion.

Once we are using microworlds in a compe-
tence theory, it becomes almost irresistibly
tempting to consider competence over partic-
ularly interesting limited classes of inferences
as final goals in themselves. One can therefore
contemplate the possibility of using multiple,
mutually inconsistent microworlds for the
same phenomena, depending on the scope of
the inferences being considered and the preci-
sion required. For example, many different
theories describe solid objects with varying
degrees of accuracy: pure kinematics, quasista-
tics, Newtonian dynamics of rigid objects, elas-
tic solid objects, and so on. Each of these the-

of generality, which we considered previously,
is likewise considerably clarified in the new
approach. To attain maximal inferential pow-
er, one always goes to the highest level of gen-
erality that is justified within the scope of the
microworld. For example, in the cookie cutter
example, one can derive the rule “The thinner
you roll the cookie dough, the more cookies
you can cut out” from a general theory of vol-
ume of regions together with the physical rule
that the volume of the dough remains nearly
constant while it is being rolled out. This gen-
eral theory of volume will serve for many other
inferences that involve reshaping of malleable,
incompressible material; so, it is advantageous
to formulate this rule at a general level. How-
ever, there is probably nothing to be gained
from abstracting further to the general notion
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Definitions in Chunk Theory
CD.1. ghost(C, S) ⇔ ¬ material(C, S).

(Definition of ghost: A chunk is a ghost iff it is not material.)
CD.2. place(C, S) = image(placement(C, S), cshape(C)).

(Definition of place: The region occupied by C in S is the image of its shape under its placement.)
CD.3. sub_chunk(C1, C2) ⇔ ∃ S material(C2, S) ` place(C1, S) ⊆ place(C2, S). 

(Definition of subchunk: C1 is a subchunk of C2 iff C1 occupies a subset of C2 in some situation where
C2 is material.)

CD.4. top_level(C, S) ⇔ [material(C, S) ` ∀ C1 [material(C1, S) ` sub_chunk(C, C1)] ⇒ C1 = C].
(A top-level chunk is a maximal material chunk relative to the subchunk relation.)

Axioms of Chunk Theory
CH.1. good_shape(cshape(C)).

(Chunks have a good shape.)
CH.2. [good_shape(R1) ` R1 ⊆ cshape(C2)] ⇒ ∃ 1

C1 R1 = cshape(C1) ` sub_chunk(C1, C2).
(Every reasonably shaped subregion of a chunk is a chunk.)

CH.3. continuous(placement(C), S).
(The placement of chunk C is continuous in every situation.)

CH.4. [sub_chunk(C1, C2) ` material(C2, S)] ⇒ material(C1, S).
(A subchunk of a material chunk is itself material.)

CH.5. [sub_chunk(C1, C2) ` material(C2, S)] ⇒ placement(C1, S) = placement(C2, S).
(A subchunk of a material chunk has the same placement.)

CH.6. material(C, S) ⇒ ∃ C1 top_level(C1, S) ` sub_chunk(C, C1).
(Every material chunk is a subchunk of a top-level chunk [possibly itself].)

CH.7. [material(C1, S1) ` ghost(C1, S2)] ⇒
[S1 < S2 ` ∃ S3,C2 S1 < S3 ≤ S2 ` ¬ sub_chunk(C1, C2) ` top_level(C2, S3) `
intersect(place(C1, S3), place(C2, S3))].
(A material chunk C1 can only turn into a ghost if its interior is penetrated by a top-level chunk.)

CH.8. [top_level(C1, S) ` top_level(C2, S) ` C1 ≠ C2] ⇒ ¬ intersect(place(C1, S), place(C2, S)).
(Two top-level chunks cannot intersect.)

Table 4. Chunk Theory.



ories is useful under suitable circumstances.
The study of alternative microworlds is more
difficult to justify in the project of expressing
naive physics, where we are presumably look-
ing for a coherent universal theory.

This ability to consider microworlds for lim-
ited purposes has a number of advantages:
First, it makes the analysis much easier; we can
focus on getting some particular class of infer-
ences to work without worrying how these
inferences will fit with all the rest of the naive
physics. Second, it allows much closer ties to
practical applications. Most practical AI physi-
cal reasoning programs work within a limited
scope. For example, many of the programs that
do mechanical reasoning (Joskowicz and Sacks
1991; Faltings 1987) work within the micro-
world of solid-object kinematics or some small
extension of it. As I argue further below, this
tie to practical applications is valuable for a
number of reasons. Third, as the work on auto-
mated modeling (Nayak 1994) has shown,
there can be considerable computational
advantage to being able to choose, for a given
problem, models of the correct level of preci-
sion and detail, so that correct answers can be
reached without excess computation. The
study of alternative microworlds connects
directly to this kind of study.

Focusing on the model, rather than the
axiomatization, has the usual advantages of
making it much easier to ensure consistency
and avoid unintended consequences. As dis-
cussed earlier, it is necessary that a concrete
extensional model be consistent and precisely
defined, thus avoiding much of the conceptual
inconsistency and incoherence that can arise
in the axiomatic approach.

Dangers and Difficulties of
Microworlds

This revised approach does not, however, take
us out of the woods and cure all our method-
ological difficulties. On the contrary, although
some difficulties are alleviated from Hayes’s
original formulation, many are no lighter, and
some are worse.

The chief problems are these: First, com-
monsense reasoning is not an autonomous
task domain. Second, it is hard to find natural
sources for commonsense inferences in a sin-
gle microworld. Third, the number of potential
microworlds is vast, and the methodology pro-
vides no guidance for choosing between them.
Fourth, the focus on microworlds, rather than
axioms, encourages an overemphasis on mod-
els that are easily characterized extensionally,
on mathematical abstraction and elegance,

and on deductive reasoning. Fifth, there is no
easy way to extend or integrate microworlds.
Sixth, the method involves a great deal of hair-
splitting of essentially vacuous issues. 

I elaborate on each of these problems indi-
vidually.

Not a Task Domain
The central objective in the new approach is to
develop a competence theory for common-
sense physical reasoning. However, a compe-
tence theory must describe competence in
some particular task, and commonsense rea-
soning is not, in itself, a task.10 That is to say,
it is not a cognitive activity that takes place by
itself in people or that would be of any value
taking place by itself in a computer; it is an
aspect of other cognitive tasks, such as plan-
ning actions, natural language understanding,
and expert systems. Moreover, the connection
to commonsense reasoning is the most poorly
understood aspect of these tasks, and at the
current stage of understanding, such systems
are rarely improved by any attempt to incorpo-
rate commonsense reasoning.

Commonsense inference is, thus, an ill-
understood module of much larger tasks. It is
therefore difficult to be sure what the input
and output of this module should be, that is,
to decide how a commonsense inference
should be formulated to serve the purposes of
these larger tasks. In considering common-
sense inference for a natural language proces-
sor, for example, it is difficult to know which
aspects of the inference are part of the purely
linguistic component and which parts are part
of the commonsense reasoner. It is also diffi-
cult to know what is involved in understand-
ing a given text.

For example, consider the text, “Use a
rolling pin to roll out the cookie dough on a
flat surface that has been covered with flour.
Then cut it into pieces with a cookie cutter.”
Interpreting this text involves making the
inference that it refers to the dough rather
than the rolling pin, the surface, or the flour.
This inference requires a combination of lin-
guistic rules and commonsense reasoning, but
it is not easy to tell what commonsense infer-
ence, precisely, is involved here. Do we want to
infer that it is difficult to cut a rolling pin, it is
unusual to do so, or doing so will serve no pur-
pose in the recipe? In the same way, it is diffi-
cult to know what is needed to achieve under-
standing of the text. Does the task of natural
language understanding, as such, require infer-
ring that the surface is horizontal or that the
cutter is moved downward through the dough
to the surface? (Translation of a text into
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the collection should well represent the range
of commonsense inferences in the domain, in
terms of the physical phenomena considered,
the types of partial knowledge, and the direc-
tions of inference. If the collection of infer-
ences is too narrow, then it is likely that the
model developed from them will be too weak
or the language too inexpressive. 

The problem then is how one assembles a
suitably broad collection of commonsensical
inferences within a given microworld. The best
way would be to choose a task that is easily car-
ried out by naive subjects, such as vision or
language interpretation, and collect the com-
monsensical inferences within this micro-
world involved in this task.11 However, isolat-
ing the commonsense inferences is hard to do,
as discussed in the previous section. Reasoning
for expert systems or processing of specialized
natural language text or planning for special-
purpose robotics often stays largely within a
small microworld, but it rarely covers the
range of commonsense inference; the infer-
ence used tend to be confined to a few types of
inference (for example, prediction) and to very
few types of partial knowledge. Within these
confines, they go far beyond commonsense
reasoning in specialized techniques and
knowledge (otherwise, they wouldn’t be expert
systems). Natural language processing of gen-
eral text and planning in rich environments
uses many more types of inference, but only
occasionally do these fall within the chosen
microworld. 

The method of exploring variants, advanced
in Three Scenarios, often yields a collection of
interesting problems, but it has a number of
built-in biases: It tends to favor prediction
problems over other directions of inference; it
tends to favor fairly complete specifications;
and being generated by the researcher him-
self/herself or sympathetic colleagues, it can
easily be biased toward conforming to the the-
ory the researcher has in mind. Also, a
researcher who has thought for a long time
about a given microworld might well tend to
exaggerate how easily naive subjects can make
certain inferences; so, he/she might include, as
commonsensical, inferences that are in fact
quite difficult.

For example, suppose we want to evaluate
how well the model and language for cutting
solid objects presented earlier characterize
commonsense inference in this domain. How
can we go about such an evaluation? 

A claim of adequacy must be that a signifi-
cant fraction of the commonsense inferences
in this domain can be justified in this theory.
How do we find or define a space of typical

another language often does require this kind
of knowledge to choose the proper spatial
terms.) In short, the problems of what the rep-
resentation of a text should be and how world
knowledge can be used in linguistic analysis
are obscure; therefore, it is difficult to get guid-
ance for commonsense reasoning and repre-
sentation from linguistic examples (Bloom et
al. 1996).

Similar ambiguities appear in relating com-
monsense reasoning to robotics. Here, they
take the form of the difficulty in knowing what
a high-level plan looks like and how it relates
to low-level robot programming. Suppose we
want to build a robotic system that can carry
out the cookie dough plan. Then, the system
effectively infers the statement, “If program P
is carried out on robot R in situation S, then
the goal of having cookies will probably be
achieved.” This is not, in itself, a statement
analyzable within a commonsense physical
theory because P mostly consists of a lot of
low-level robot-specific instructions governing
manipulation, vision, and hand-eye coordina-
tion. It is not at all clear what high-level plan
should be the subject of commonsense reason-
ing or what statements should be inferred
about such a plan. Such difficulties make it
hard to use robotic programming as a guide to
commonsense reasoning. 

Let me clarify the problem here by contrast-
ing commonsense reasoning with two other
hard tasks. Automatic dictation, from voice to
manuscript, is hard, but at least we know the
form of the input (an acoustic string) and the
output (a sequence of characters), and we have
an unlimited collection of examples where we
know that a correctly working program will
produce output O for input I. Fluid-flow analy-
sis for rocket testing is a hard module to build,
but again, we know that the input should be
the boundary conditions for the relevant par-
tial differential equation and a specification of
the desired precision and that the output need-
ed is a field of fluid flow of this precision. The
difficulty with commonsense reasoning is that
there are few instances where we can be really
sure what the input and the output should be.

That recent research in knowledge represen-
tation suffers from its disconnection from
practical applications has been argued by
many researchers, including Morgenstern
(1997) and Etherington (1997).

No Natural Sources for Single
Microworlds
Once we have chosen a microworld, we have
to find a collection of inferences within this
microworld as a test bed. It is important that
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commonsense inferences within this micro-
world? We can look at the inferences that a
CAM machining program is implicitly carrying
out or the additional inferences that it would
be useful for such a program to carry out. How-
ever, most of these inferences are of the form,
“To create hole H in object O, move cutter C
through path P.” Such inferences can all be
justified by a substantially simpler model of
cutting, such as one in which each operation
with the cutter is taken to be atomic, and a
simpler language, such as one in which all geo-
metric descriptions are exact. Most of the other
inferences used in the CAM program fall out-
side the microworld, such as restrictions on
the thinness of the parts that can cut out of a
given material with a given cutter. We can look
at the natural language processing of a techni-
cal text describing machining, which will
probably yield a slightly broader class of infer-
ences within the microworld than the CAM
program but still a quite restricted one. We can
look at unrestricted text, but how frequently
does any interesting issue in cutting solid
objects arise in novels or the newspaper? 

Therefore, the question, which is naturally
often raised, of how this theory could be
implemented is one that I can hardly answer
because I have no idea what such an imple-
mentation would be supposed to do. I could
implement a predictive program that takes
exact initial shape descriptions and a descrip-
tion of motions and outputs final shape
descriptions, but such programs have been
built by the CAM people much better than I
could do. I could set a general-purpose com-
plete theorem prover on the axiom set of
tables 3 and 4, together with a set of temporal
and geometric axioms, but for a theory of this
complexity, I would not expect an answer in
reasonable time to any but the most trivial
queries. What I am looking for is an inference
engine that will work efficiently over the space
of commonsensically obvious inferences, but I
don’t know what this space is, let alone how to
design an inference engine for it.

I am not, of course, arguing that common-
sense inference has no practical application. I
am arguing that the practical applications are
apt to be few until we have gotten far past sim-
ple microworlds to very broad theories. A pro-
gram that could do general commonsense rea-
soning would be of immense value; a program
that could do physical commonsense reason-
ing, broadly interpreted, would be of great val-
ue. However, a program that can do common-
sense reasoning about cutting solid objects, or
similarly narrow domains, would be of little
value. Therefore, it is difficult to know what

any of these programs should do about cutting
solid objects. We don’t know what a program
that only does commonsense reasoning about
cutting solid objects should do because there is
almost nothing useful that it can do. We don’t
know what kinds of reasoning about cutting
solid objects a general commonsense reason-
ing program would be called on to do because
it will only occasionally be called on to carry
out an inference that is both nontrivial and
lies entirely within this microworld.

This problem is serious, not just because the
absence of short-term payback makes it diffi-
cult to attract the interest of colleagues, stu-
dents, and funding agents, although these con-
siderations are not to be sneezed at. Far more
importantly, it means that there is almost no
way to guide research in microworlds or evalu-
ate what progress is being made, except for the
judgment and taste of the researcher (McDer-
mott 1987). We have to work almost blind
until the work is nearly complete. 

Innumerable Microworlds
Hayes’s project is large, but at least in princi-
ple, it is finite; once the knowledge of all naive
physics has been formalized, the project is
done. Our project, by contrast, is infinitely
open ended or nearly so; one can continue to
make up and analyze new microworlds forever
by slightly varying the set of assumptions
involved. For example, there are endless varia-
tions on the blocks world: Blocks can stack in
towers one on one, they can be rectangular of
varying sizes, or they can have more general
shapes. Time and space can be continuous or
discrete; there can be one hand or many
hands; if many, they can work one at a time or
concurrently, and they can interact in any of
several ways; and so on. This wealth of
microworlds is useful for the teacher giving a
class in knowledge representation who needs
simple examples to assign, but for the
researcher, only a few of these merit any study.
The methodology described earlier does not
give one any clue about when the analysis of a
new microworld is worthwhile. The choice of
where to invest energy is left entirely to the
judgment of the researcher, and knowledge
representation research has always been
remarkably apt to leave the great ocean of
truth undiscovered but crowd around an emp-
ty Clorox bottle on the beach. 

Overemphasis on Extensional Models
The model-based methodology strongly focus-
es attention on concepts that are easily charac-
terized in terms of their spatial-temporal-mate-
rial aspects to the exclusion of more nebulous
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translation of random statements and a coher-
ent theory is no smaller in a complex theory
than in a simple one, but the coherence of the
complex theory is harder to achieve, convey,
and grasp.

In fact, as the microworlds become more
complex, the need for complex systems of con-
straints on the models means that the distinc-
tion between the axiomatic approach and the
model-based approach tends to vanish. Each
of these constraints is, effectively, an axiom.
The difficulties of dealing with the constraints
are almost the same as the difficulties of deal-
ing with a set of axioms, and the advantages of
a model-based approach over an axiomatic
approach, in terms of clarity and easily verified
consistency, are much diminished. 

Having constructed elegant models for sim-
ple domains, the next temptation is to spend
time proving neat theorems about them. These
theorems are often of doubtful relevance. A 22-
page proof that two theories of cutting are
mathematically equivalent (Davis 1993) cer-
tainly does not represent any cognitive activity
that anyone (except myself) has ever carried
out or any computational activity that any
program is ever likely to carry out. Now, of
course, I can justify such research in terms of
the methodology itself: A program that can
reason flexibly about cutting must be based on
a good model of cutting; the two models
potentially have different advantages with
regard to automated inference. If we want to
use them both, we should understand the rela-
tion between them; hence, it is of value to
know that they are in fact equivalent—which
is all very well, but all the same, the gap
between application and research has gotten
rather large. 

This mathematizing tendency also affects
the formulation of queries. Previously, we sug-
gested that the special rule, “The thinner you
roll the cookie dough, the more cookies you
can cut out,” could be deduced as a conse-
quence of more general geometric rules plus
rules that the cookie dough has a fixed volume
and that cutting out cookies corresponds to
dividing the region of the dough into vertical
cylinders with some fixed cross section. How-
ever, this generalization fails to capture the
causal direction of the special rule, the fact
that the baker can choose how thick to roll the
dough and where to cut the cookies and that
these choices determine the number of cookies
obtained. By contrast, the geometric rules are
atemporal; they would equally apply to a case
where someone was assembling a mass of
cookie dough out of cookie pieces and where
the choice of the number of cookie pieces

but important concepts attached to causality
and teleology. Consider the following rule:

If you cut through an object anywhere
near the center, you will probably destroy
its function.

The inference is important, true, and com-
monsensically obvious but is likely to be omit-
ted in a model-based theory because of the dif-
ficulty of defining function. It is also unlikely to
be found as a sample commonsense inference
by the method of proposing variants because it
is too general. 

Excessive Mathematization
Similarly, the model-based methodology leads
to an excessive interest in constructing elegant
and minimal mathematical models rather
than expressive, messy models. For example,
the kinematic theory of cutting solid objects
presented earlier is elegant and simple, easily
stated and formalized, covering a wide range of
phenomena with a few rules.

The dynamic theory of cutting solid objects,
by contrast, is complex, haphazard, and
incomplete. Consider the range of motions,
forces, and behaviors involved in slicing
through butter, sawing wood, driving a nail,
screwing a corkscrew, and drilling a hole. A
model that characterizes all these fully at the
commonsense level will necessarily involve a
large number of separate rules and constraints
governing these separate common cases. (The
theory at the atomic level is simple, but there
the structural representations needed to
describe these various scenarios are complicat-
ed.) Moreover, these rules and constraints are
not disconnected arbitrary facts but are deeply
interconnected. For example, anyone who has
observed the processes of butter being sliced
and wood being sawed will expect, from the
nature of the processes and the materials, that
butter can be sliced more thinly than wood
can be sawed. However, it is not easy to formu-
late the general rules that give rise to this
expectation.

The researcher who wants to move forward
producing models will therefore tend to avoid
this kind of microworld because these models
are, in every respect, harder to develop. The
ontology and language are much richer; the
theory is much more complex; it is hard to be
sure that the various constraints and rules are
mutually consistent; it is hard to be sure that
all cases have been covered. Paradoxically, one
suspects that this kind of model would also be
harder to “sell” as legitimate research; they
look like a mere translation of random obvious
statements into an arbitrary formal notation.
In fact, the immense gap between a mere

… the 
model-based
methodology

leads to an
excessive

interest in
constructing
elegant and

minimal
mathematical
models rather

than 
expressive,

messy 
models.

Articles

70 AI MAGAZINE



would determine the eventual volume of cook-
ie dough. A large part of mathematical training
involves making this kind of abstraction auto-
matic; it eventually becomes so much second
nature that perceiving the distinction between
the original rule and its abstraction requires
conscious effort.

Too Much Stress on Deduction
Being centered around semantic consequence,
the microworld approach tends to focus exclu-
sively on deductive reasoning. It can, perhaps,
be extended to types of plausible reasoning
based on a strong semantic model, such as cir-
cumscription or probabilistic reasoning, but
would be difficult to integrate with such theo-
ries as default reasoning, reasoning by analogy,
and case-based reasoning. 

Extending and Combining
Microworlds
An advantage of Hayes’s project is that because
the aim at every step is always a complete the-
ory of naive physics and because every axiom
of every cluster is true relative to this overall
theory, once you have correctly formulated an
axiom or a cluster, you can count on it and
keep it. If it is true, it remains true. In the
microworld approach, by contrast, a model
that has been constructed to characterize a
narrow microworld does not usually apply in a
broader world. Models, theories, languages,
and axioms almost always require some revi-
sion in going from a narrower to a wider set-
ting and might well require complete rework-
ing from scratch.

Let us first consider a case where the exten-
sion of one model to a richer model has a
straightforward logical structure. The kinemat-
ic theory of rigid solid objects (KRSO) can be
extended to a dynamic theory by adding mass,
force, momentum, and so on, and imposing
Newton’s laws. This extension is what
Giunchiglia and Walsh (1992) call a theorem-
increasing extension; the language is richer, and
the axioms of dynamics are a strict superset of
those of kinematics. It is also, correspondingly,
model decreasing (Nayak and Levy 1995);12 if H
is a history consistent with the dynamic theo-
ry, then the projection of H obtained by elim-
inating all aspects of the history except shape
and position is consistent with the kinematic
theory.13

A more complex example is the extension of
KRSO to the theory of CSO described earlier.
This is a model-increasing extension; any his-
tory consistent with the KRSO theory is also
consistent with CSO. Correspondingly, it is a
theorem-decreasing extension. This seems a

little odd because the CSO contains all kinds of
axiom and inference about cutting that don’t
apply in KRSO, but actually these are all vacu-
ously true in the KRSO case. For example, it is
true in KRSO that if a knife cuts through an
apple, the apple will be split into two parts
because the antecedent of the implication is
necessarily false. (Note that statements of fea-
sibility such as “you can cut through an apple
with a knife” are not part of CSO as I have
defined it.)

However, this simple characterization
requires a significant qualification. By starting
with CSO, it is easy to construct KRSO as a spe-
cial case by adding to the mutable objects the-
ory the axiom that the shape of an object is
constant or adding to the chunk theory the
axiom that all chunks are eternal. Going from
KRSO to CSO, which is the more likely order of
development, is much more difficult. In the
natural logical statement of KRSO, shown in
tables 5 to 7, there is no need for the fluent
material(O) because all objects are eternal, and
the function shape(O) maps an object O to a
spatial region, rather than to a fluent, because
the shape of an object is fixed. Thus, develop-
ing the mutable object theory of CSO from
KRSO requires significant reworkings of the
conceptualization, ontology, and language in
addition to changing the axioms. (Note that
only one of the axioms from table 7 survives
unchanged from table 3.) Developing chunk
theory requires even greater ontological
changes, although, curiously, fewer axiomatic
changes (three axioms from table 7 appear in
the same form in table 4).

Similar difficulties are encountered in trying
to combine two microworlds; all too often,
one finds that each microworld depends on
assumptions that are violated in the other. Let
me discuss an example that has been fretting
me for some years. I have a theory of CSO. I
also have a theory of strings, presented briefly
in Davis (1995). The form of this theory is
determined by the following considerations:

First, the length of a string is constant. Sec-
ond, strings are flexible. Third, making strings
one-dimensional curves is problematic,
though tempting. For example, if two strings
touch one another, or one part of a string
touches another part, then if the strings are
truly one dimensional, it becomes difficult to
specify which string is on which side. Conse-
quently, it becomes difficult to fix the rules so
that one string cannot pass through the other.
It is much easier to specify a reasonable physics
if strings are required to be fully three-dimen-
sional objects, although thin. Fourth, the
diameter of a string is generally much less than
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lap itself. That is, there cannot be two distinct
points q1 and q2 on curve C; two normals N̂1
and N̂2 to C at q1 and q2; and two quantities ∆1
and ∆1 < R, such that

q1+∆1N̂1= q2 + ∆2N̂2

This theory is reasonably straightforward
and integrates directly with KRSO. It supports
inferences such as, “If string A is looped, with
one end flush against the other, and string B is
likewise looped, and the two cores are topolog-
ically linked, then the two strings cannot be
separated from one another while they are
both looped.” The topological part of this
proof is not easy, but the physics is simple. 

The problem now is how can the theory of
strings be combined with the theory of cut-
ting? The difficulty is that halfway through the
process of cutting the string, the string has a
notch that has been vaporized out of it. The
theory of strings, as stated earlier, assumes that
a string has a circular cross section everywhere.

Now, there might be a good, or at least a deep,
reason for this difficulty. The model of string as
a uniform tube is an abstraction of many differ-
ent stringlike substances: woven string, braids,
single fibers, metal wires, rubber-coated wires,
even linked chains. The abstraction is reason-
able across a wide range of behaviors, but it falls
apart in scenarios that probe the internal struc-
ture of the string. (By definition, of course, a sce-
nario that distinguishes one internal structure
from another is precisely one in which the inter-
nal structure cannot be abstracted away.) Chief
among these is cutting or partially cutting the
string; what happens when you cut halfway
through a string varies depending on what the
string is made of. Hence, it is not surprising that
modeling cutting string is not a simple exten-
sion of modeling string.

However, cutting string is not, after all, an
esoteric activity, and the fact that when you
cut a string, you end up with two shorter
strings is one of the best-known and most
important properties of string. Three related
reactions to this difficulty come to mind
immediately. The first is that we don’t care
what’s going on in the middle of cutting
string; all we care about is the end result. The
second is that we don’t generally care about
strings that have been cut through halfway;
when we start to cut a string, we usually com-
plete the job. The third is that the requirement
that strings with a circular cross section should
be dropped; there are many strings, including
sneaker laces and strings that have been par-
tially cut through, that do not.

The first of these reactions is actually a falla-
cy, based on the ease with which human rea-
soners solve and, therefore, ignore the frame

its length, and the shape of its cross section is
unimportant for most purposes. Fifth, we want
to abstract away the details of the composition
of the string, which varies from one string to
the next, and focus on the external character-
istics, which are much the same from one
string to another. 

To accommodate these constraints, I pro-
pose the following kinematic theory of strings
and solid objects (figure 8):

A string is characterized by its length L and
its radius R. At any given moment, the core of
the string lies on a curve C of arc length L. The
cross section of the string perpendicular to the
core is a circle of radius R; that is, the extension
of the string occupies all points of the form q
+ =N̂, where q is a point in the core C; N is nor-
mal to the curve C at q and ∆ ≤ R. The string
observes the following constraints:

First, the string moves continuously. Sec-
ond, the string does not overlap any solid rigid
object. Third, the string does not overlap any
other string. Fourth, the string does not over-

Sort Letter
Spatial regions (set of points) R
Rigid mappings M
Temporal situations S
Fluents F
Objects O
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Table 5. Logical Sorts in the Kinematic 
Theory of Rigid Solid Objects (KRSO).

Figure 8. Theory of String.
The central curve is the core of the string, and the small 

circles are cross-sections.



problem. After all, cutting string does not cre-
ate a physics-free zone, and we would care very
much if string, while it was being cut, spat
forth a poison that was fatal on contact. Thus,
the reaction that we don’t care is presupposing
some strong constraints on the behavior of the
string while it is being cut that carry over from
before it was cut, and our problem is precisely
to state these constraints in a way that inte-
grates with the rest of our theory.

The second reaction is more productive. We
could look for a model in which the string is
never partially divided by positing that the

string splits in two as soon as it is penetrated
by the blade. Such a model can be developed
in chunk theory by observing that unlike soap
or marble where any reasonable subset can be
carved out, strings can really only be cut
straight through. (If you do manage to cut a
string lengthwise, then what you get might
well not be a string.) Therefore, if we take a
chunk to be “something that can potentially be
cut out of the material,” then the chunks in
the string are precisely lengthwise segments of
the string. If we apply our rule from chunk the-
ory that a chunk vanishes as soon as it is pen-
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Temporal
value_in(S, F)—Function. This is the value of fluent F in situation S. 

Spatial
intersect(R1, R2)—Predicate. Region R1 intersects R2.
good_shape(R)—Predicate. Region R is nonempty, open, bounded, connected, and equal to the interior

of its closure.
image(M, R)—Function. This is the image of region R under mapping M.
continuous(F, S)—Predicate. F is a continuous function of time at situation S. F is a fluent whose value

in each situation is a rigid mapping.

Physical: Primitive Symbols
placement(Q)—Function. This is the fluent of the mapping from the shape of Q to the place of Q.
shape(O)—Function. This is the point set occupied by O in a standard orientation. 

Physical: Defined Symbols
place(Q)—Function. This is the fluent of the region occupied by Q in situation S.

K.1. place(O, S) = image(placement(O, S), shape(O)).
Definition of place: The region occupied by O in S is the image of its shape under its placement.)

K.2. O1 ≠ O2 ⇒ ¬ intersect(place(O1, S), place(O2, S)).
(Two objects do not overlap.)

K.3. good_shape(shape(O)).
(Every object has a good shape.)

K.4. continuous(placement(O), S).
(The placement of object O is continuous in any situation S.)

Table 7. Axioms of the Kinematic Theory of Rigid Solid Objects (KRSO).

Table 6. Nonlogical Primitives in the Kinematic Theory of Rigid Solid Objects (KRSO).



earlier, we were patting ourselves on the back
because we could avoid two-hour discussions
on the meaning of in; although this particular
vacuous argument is avoided, many others
come in to take its place. The kind of precision
needed in this kind of analysis seems to require
inescapably that all kinds of borderline case
and anomaly be resolved. 

It is somewhat tolerable that AI should have
trouble with real borderline cases such as
whether a platypus is a mammal, whether glass
is a solid, or what is the nature of an impulse.
After all, scientists and engineers who study this
kind of issue also work hard to resolve such bor-
derline cases. Even here, one’s intuition is that
human commonsense reasoning is distin-
guished by its willingness to admit the exis-
tence of borderline cases and its noninsistence
on tying all these down, and one would like the
theory of automated commonsense reasoning
to be similarly flexible. What is truly intolera-
ble, however, is the amount of time and effort
that must be spent in resolving purely hypo-
thetical and imaginary borderline cases and
anomalies, just for the sake of having clear-cut
definitions and models: When you turn on a
light, is it on or off at the exact dividing
moment? Do objects occupy open or closed
regions in space? What happens if an object is
sliced simultaneously by infinitely many
blades? No scientist or engineer would dream of
wasting his/her time in this way; here, we are in
company only with mathematicians and
philosophers. Mathematicians have it compar-
atively easy: The hairs only have to be split
when choosing definitions, not when proving
theorems; mathematics tends to have few defi-
nitions and many theorems; and hairs can be
split along any lines that seem most conve-
nient. By contrast, we spend much more of our
time defining concepts and models, and we are
under pressure to make our definitions more or
less fit with commonsense concepts. Philoso-
phers have it even worse than we do; rather
than analyzing straightforward concepts such
as cutting string, they are trying to deal with
truth, justice, and beauty. However, of course,
the reward for their efforts is a better under-
standing of truth, justice, and beauty, whereas
the best we can hope for is a better understand-
ing of how to formalize cutting string. 

The Role of Microworlds in the
Larger Scheme of Things

When we are all done—when we have encod-
ed all commonsense physical knowledge in a
declarative knowledge base and implemented
all commonsense physical reasoning in an

etrated, then what we get is precisely the pre-
vious model, that the string is split as soon as
the blade enters it. (Chunk theory also allows
a more elegant expression of the rule that the
string does not overlap itself.) 

This theory seems elegant enough, and it
does the right thing for almost all cases of cut-
ting string; so, in this sense, it is a reasonable
competence theory.14 Unlike the microworlds
we looked at before, however, the description
here is never either true or plausible; strings do
not split in two the instant that the knife
enters them, and one does not imagine that
they do. Moreover, on the rare occasions when
it is obvious that the knife will partially cut the
string but not wholly, this gives a prediction
that is neither right nor plausible.

What we have done, in short, is to construct
a concrete model of the process of cutting,
which has the correct starting and ending
behavior for completed cuts and the correct
interaction during cutting with the rest of the
world (that is, none). Then, this model will do
the right thing as long as we never have to rea-
son about incomplete cuts or the state of the
string during cutting. The fact that it is easier
to construct such an overly specified model,
rather than just characterize correctly the start-
ing and ending states and the interaction with
the rest of the world, illustrates another defect
of the model-based methodology: It tends to
generate overly specific theories.

The third suggestion, that we should allow
strings with noncircular cross sections, has in
its favor that it is true, and it will have to be
accommodated in an ultimate commonsense
theory. However, the theory of noncylindrical
strings is significantly more complicated than
the theory of cylindrical strings for a number
of reasons: First, noncylindrical strings can
twist; in cylindrical strings, twist is invisible
and can therefore be ignored. Second, non-
cylindrical strings are more restricted in the
shapes they can attain. For example, it is not
possible to wind a sneaker lace tightly in the
plane of the lace itself without buckling
because the outer diameter of the lace becomes
so much longer than the inner diameter. The
microworld approach has value insofar as it
allows us to focus on a natural class of issues,
and it would seem natural that we should be
able to reason about the common and familiar
process of cutting string without getting
involved in all the rare and specialized issues
of oddly shaped string. 

Hairsplitting
By this stage of the article, few readers will
need more illustrations of this point! A little
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inference engine over the knowledge
base—how will our work on microworlds be
reflected in the final product? Three possibili-
ties come to mind:

One possibility is that we will attain Hayes’s
dream of a single consistent theory that incor-
porates all commonsense physical knowledge
and supports all commonsense physical infer-
ences. In this case, our microworlds would cer-
tainly serve no intrinsic logical function. They
would survive at most as organizational struc-
tures, clusters within the knowledge base sup-
porting efficient retrieval. More likely, in view
of our earlier observations of their characteris-
tic inextensibility, they would simply vanish.
Their whole function in the research project,
then, would have been as stepping stones and
training exercises for the eventual theory. Cer-
tainly, there would be no point in ever going
backwards; once a more comprehensive
microworld had satisfactorily been formulated,
there would be no interest in considering spe-
cial cases.

A second possibility, along the lines of
Addanki, Cremonini, and Penberthy (1989), is
that the final knowledge base would be struc-
tured entirely in terms of mutually inconsis-
tent microworlds, with no overall theory.
There would be rules at the metalevel for
choosing the microworld suitable to a given
problem or resolving conflicts when different
microworlds gave different answers, but there
would be no object-level theory that would
serve as the final court of appeals in such cases. 

A third possibility combines the two possi-
bilities. There is a structure of microworlds,
integrated through metarules, but at the top of
this structure is a single Hayesian theory to
which all questions can ultimately be referred
(figure 9). The microworlds approximate the
overall theory and are computationally more
tractable. This possibility can be viewed as a
special case of the second structure in which
there happens to be a single overarching top-
level microworld. Alternatively, it can be
viewed as an instance of the first structure by
taking the overall theory to be logically prima-
ry and viewing calculations involving the
microworlds as approximation heuristics to
the overall theory.

Undoubtedly, we currently know much too
little to predict which, if any, of these three
possibilities will win out. However, a few pros
and cons can be observed. 

The first structure, of a single comprehen-
sive theory, is certainly the simplest from a log-
ical standpoint. Indeed, the idea of using mul-
tiple worlds runs seriously counter to goals of
a declarative representation or a knowledge-

based analysis. This conflict becomes particu-
larly evident in cases where you want to use
two conflicting models in a single problem,
either to describe two different objects in the
problem, two different times, two different
places, two different scales of granularity, or
two different interactions. For example, to cal-
culate the tides, you first calculate the motions
of the earth and the moon around the sun as
if they were point objects, then treat the earth
as a solid of complex shape with bodies of
water. The reasoner must somehow keep the
inferences from each microworld within the
range of its applicability and avoid making
inferences from these microworlds that make
nonsense of the problem being solved; this
idea of a limited range of inference is not one
that works easily within the standard view of a
knowledge-based system. 

This difficulty is not necessarily alleviated
by formally incorporating a microworld struc-
ture inside a single first-order theory, as is done
in the theory of contexts (McCarthy 1993).
The fundamental problem of allowing differ-
ent theories to interact in useful ways but not
in destructive ways remains difficult, however
the theories are combined.

Moreover, I have not found any convincing
arguments that a structure of alternative
microworlds is a particularly plausible cogni-
tive model of commonsense physical reason-
ing. I do not know of any cases where com-
monsense reasoning seems to require the
combination of two conflicting models. I sus-
pect that in developing a commonsense phys-
ical reasoner, our ultimate aim should be
something like Hayes’s uniform, comprehen-
sive theory. Therefore, I should tend to stress
the steady expansion of the scope and detail of
our theories rather than pursue such virtues as
simplicity or tractability.

By contrast, in developing an automated
reasoner for expert scientific or engineering
reasoning, the idea of using alternative
microworlds approximating a single ultimate
correct theory seems much more promising. In
formulating and solving a problem, a scientist-
engineer will almost always simplify, abstract,
and approximate; he/she can generally
describe the approximations he/she is making
and, to some extent, explain why they will
simplify the problem and why he/she expects
that the answer will still be useful. A large part
of scientific and engineering training has to do
with learning a library of useful approxima-
tions and abstractions and learning how to
apply these to different problems. Indeed,
there is an active research area trying to devel-
op an account of the relations between

…
in developing
an automated
reasoner 
for expert 
scientific or
engineering
reasoning, the
idea of using
alternative
microworlds
approximat-
ing a single
ultimate 
correct theory
seems much
more 
promising.
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cases, and it is not obvious that it is a particu-
larly important special case. Also, it is a mis-
take to assume, as is sometimes done (for
example, Weld [1992]), that a problem is easier
to solve in a formally simpler theory than in a
more complex theory; in many important cas-
es, the reverse holds. For example, solid-object
dynamics is a formally simpler theory if fric-
tion is excluded than if it is included, but in
many problems, such as the system in figure
11, prediction is easy in a theory with fric-
tion—the system remains static—but difficult
in a frictionless theory.

Because many problems in physical reason-
ing can be solved within the scope of a single
microworld, the development of microworlds
remains useful in developing automated
expert physical reasoners. I suspect, however,
that the study of the relationships between

microworlds and see how a structure of
microworlds can be used in automated expert
physical reasoning. 

I suspect, however, that characterizing the
formal relations between microworlds is not
central to the use of approximation and
abstraction in physical reasoning. Approxima-
tion and abstraction in physical reasoning
takes many forms: Objects of complex charac-
teristics can be approximated by objects of
simpler characteristics (for example, a real
resistor by an ideal resistor or a curved object
by a polyhedral object), a group of objects can
be approximated by a single object (figure 10),
and a group of simple objects can be approxi-
mated by a single complex object (for exam-
ple, a chain of rigid links by a string). The case
where a complex microworld is approximated
by a simpler microworld is just one of many
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Figure 9. Part of a Structure of Microworlds.



microworlds and the manipulation of
microworld assumptions will be much less
important in developing sophisticated reason-
ing techniques.

Conclusions
Despite all these difficulties and objections and
despite the increasing impatience of the AI
community with laboriously hand-coded
knowledge-based systems (for example, Char-
niak [1993]), I find our original scenarios—the
staked plant, the cookie dough, the baby bot-
tles, and a myriad of similar situations—too
fascinating and compelling to abandon. I still
feel that it is wise to begin by developing rep-
resentations for a knowledge-level analysis and
that the method of microworlds is the most
promising approach that we have. The main
task now, therefore, is to develop more and
richer microworlds. 

As we discussed, we can expect the next gen-
eration of microworlds will be more difficult in
every respect than those we have already seen.
If we look at microworlds such as the dynamics
of cutting, we expect to find that microworlds
will be more complex and narrower, reasoning
will rely more on plausible inference, the spa-
tial component of reasoning will be both more
complex and less clearly defined, and im-
mediate connections to useful applications
will become fewer. However, if we have
patience enough to stick with it, we should
eventually have a remarkable theory. 
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little if any of this is original to me. Partic-
ularly significant discussions of this kind of
methodology in this direction, besides
Hayes (1978), include McCarthy (1968),
McCarthy and Hayes (1969), McDermott
(1978), Newell (1980), and Charniak and
McDermott (1985). Halpern and Vardi
(1991) similarly argue from a shift from an
axiomatic to a model-based analysis in
automated reasoning.

9. John Tsotsos pointed out to me that this
list should have an additional item of
developing techniques to learn or acquire
this knowledge. This is undoubtedly cor-
rect, but I find the idea of trying to learn
this material automatically too terrifying to
contemplate.

10. It is noteworthy that in the paradigmat-
ic case of a competence theory, natural lan-
guage syntax, the Chomskian linguists
have felt obliged to focus on a narrow and
artificial task, that of judging grammatical-
ity, rather than think about more ecologi-
cally valid tasks, such as producing or com-
prehending natural language. It might be
worth considering whether some analo-
gous task could be found in our domain.

11. Interestingly, the original plan for CYC

(Lenat, Prakash, and Shepherd 1986) was to
express the background knowledge needed
to understand encyclopedia articles (hence,
the name); they later report “that use of
external written materials has become
increasingly rare” (Lenat and Guha 1993, p.
152).

12. This is model in the strict metalogical
sense.

13. If you allow the imposition of arbitrary
external forces and impulses as boundary
conditions, then a converse version also
holds: Given any (piecewise twice-differen-
tiable) motion satisfying the kinematic
constraints, there is some way of imposing
external forces so that in the dynamic the-
ory, the objects execute the specified
motion. At this point, the question of
which, if either, direction is theorem
decreasing and which is model increasing
becomes rather murky.

14. I have not worked through this theory
carefully, so there might be some technical
problems that arise. It is a little worrisome;
for example, in this theory, a solid object
exists over a time interval that is closed on
the left and open on the right, but a string
exists over an interval that is open on the
left and closed on the right. My guess,
though, is that this difference does not
raise any real difficulties. 
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Notes
1. I tried this experiment three times.
Twice, the entire baby bottle collapsed
under the pressure in the cold water. The
one time it ran successfully, it gave a value
of –300° C for absolute zero, the true value
being –273° C—not bad, for a baby-bottle
experiment.

2. All quotations in this section are taken
from Hayes (1978). The published version
of this is always cited as Hayes (1979); how-
ever, I have never actually set eyes on this
version, and I don’t know what changes
might have been made before publication.
The later version (Hayes 1985b) is a sub-
stantially different paper. 

3. Even in the paper “In Defense of Logic”
(Hayes 1977), the argument is just that a
representation should have a well-defined
semantics and that many of the alterna-
tives to logic-based representations being
touted at the time did not.

4. A constraint logic is the conjunction of
atomic ground sentences, without nega-
tion, disjunction, or quantification. 

5. Schmolze (1986) should also be men-
tioned.

6. I generally use model in this article in the
sense common in physical reasoning
research: A model is an abstract structure
that mirrors some of the significant proper-
ties of a physical microworld. The notion of
“conceptualization” in Guarino (1998) is
similar. This meaning is somewhat differ-
ent from the meaning of the term in meta-
logic. When I need the term from metalog-
ic, I say so specifically. 

7. The term microworlds goes back in AI
research at least as far as the early 1970s
(Minsky and Papert 1970). These micro-
worlds, however, had quite a different pur-
pose; they were simplified test beds for
exploring such issues as inference, search,
planning, and learning. CYC in its later ver-
sions (Lenat and Guha 1993) is the most
notable recent exemplar of the use of
microtheories. CYC microtheories are axiom
based rather than model based. 

8. The methodology described here is my
own personal view (Davis 1990); however,
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