
� The CMUNITED small-robot team became the 1998
RoboCup small-robot league champion, repeating
its 1997 victory. CMUNITED-98 built on the success
of cmunited-97 and involved a number of
improvements. This article gives an overview of
the CMUNITED-98 team, focusing on this year’s
improvements. It concludes with the results of the
RoboCup-98 competition.

The CMUNITED-98 small-size robot team is a
complete autonomous architecture com-
posed of the physical robotic agents, a

global vision-processing camera overlooking
the playing field, and several clients as the
minds of the small-size robot players. The glob-
al vision algorithm perceives the environment
and processes the images, giving the positions
of each robot and the ball. This information is
sent to an off-board controller and distributed
to the different agent algorithms. Each agent
evaluates the world state and uses its strategic
knowledge to make decisions. Actions are
motion commands that are sent by the off-
board controller through radio communica-
tion. Motion is not perfectly executed because
of inherent mechanical inaccuracies and
unforeseen interventions from other agents.
This team competed in and won the 1998
RoboCup competition in Paris (Stone, Veloso,
and Riley 1999; Kitano et al. 1997).

This article gives an overview of the CMUNIT-
ED-98 robot team, focusing on improvements
from the CMUNITED-97 team. These improve-
ments include a robust low-level control algo-
rithm, which handles a moving target with
integrated obstacle avoidance, and active team
collaboration at the strategic level. This article
concludes with results from the RoboCup-98
competition.

Hardware
The CMUNITED-98 robots (figure 1) are entirely
our new constructions built on our experience
in 1997 (Veloso, Stone, and Han 1998). The
new robots represent an upgrade of our previ-
ously built CMUNITED-97 robots. Improvements
were made in two major areas: (1) motors and
control and (2) the mechanical chassis (includ-
ing a kicking device).

CMUNITED-98 uses two high-torque, 6V DC,
geared motors, which are overpowered and use
a simple pulse-width–modulation control. This
design is simpler than the design for our CMU-
NITED-97 robots, which used motor encoders for
hardware feedback. Although our previous
team had accurate navigation, it was not easily
interruptible, which is necessary for operating
in a highly dynamic environment. In the CMU-
NITED-98 robots, the closed-loop motion control
is achieved through software using only visual
feedback.

In designing the mechanical structure of the
CMUNITED-98 robots, we focused on modularity
and robustness. The final design includes a bat-
tery module supplying three independent
power paths (for the main-board, motors, and
radio modules). It also includes a single board
containing all the required electronic circuitry
with multiple add-on capabilities. The mobile
base module includes a kicking device driven
by a DC motor. This motor is hardware activat-
ed by an array of four infrared sensors, which
is enabled or disabled by the software control.
All this was combined in a layered design with-
in an aluminum and plastic frame. In addition,
each of the modules within this design is com-
pletely interchangeable.
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tures: (1) obstacle avoidance is integrated into
the controller, (2) the target configuration can
be given as a function of time to allow for the
controller to reason about intercepting the tra-
jectory of a moving target, and (3) the motion
controller returns an estimate of the time that
the robot will achieve the desired target config-
uration.

Differential Drive Control
CMUNITED-98’s basic control rules were improved
over those used in CMUNITED-97. The rules are a
set of reactive equations for deriving the left-
and right-wheel velocities, vl and vr, to reach a
target position, (x*, y*):

(1)

where θ is the direction of the target point (x*,
y*), φ is the robot’s orientation, and v is the
desired speed (figure 2a).1

We extend these equations for target config-
urations of the form (x*, y*, φ*), where the goal
is for the robot to reach the specified target
point (x*, y*) and be facing the direction φ*.
This goal is achieved with the following adjust-
ment:

where θ′  is the new target direction, α is the dif-
ference between θ and φ∗, d is the distance to
the target point, and c is a clearance parameter
(figure 2a). This adjustment will keep the robot
a distance c from the target point while it is cir-
cling to line up with the target direction, φ*.
This new target direction, θ′,  is now substituted
into equation 1 to derive wheel velocities.

In addition to our motion controller com-
puting the desired wheel velocities, it also
returns an estimate of the time to reach the tar-
get configuration, T̂ (x*, y*, φ*). This estimate is
a crucial component in our robot’s strategy. It
is used both in high-level decision making and
for low-level ball interception, which is
described later in this section. For CMUNITED-98,
T̂ (x*, y*, φ*) is computed using a hand-tuned
linear function of d, α, and ∆.

Obstacle Avoidance
Obstacle avoidance was also integrated into
the motion control by adjusting the target
direction of the robot based on any immediate
obstacles in its path. This adjustment can be
seen in figure 2b. If a target direction passes too
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Vision Processing
The CMUNITED-98 vision module remains largely
the same as the one used in the CMUNITED-97

team (Han and Veloso 1998). The algorithm
successfully detects and tracks 11 objects (5
teammates, 5 opponents, and 1 ball) at 30
frames a second. The algorithm determines the
position and orientation for the robots. In
addition, a Kalman-Bucy filter (Kalman and
Bucy 1961) is used as a predictor of the ball’s
trajectory. This prediction is an integral factor
in our robots’ control and strategic decisions.

Motion Control
Before developing strategic behaviors, the
robots need a general control mechanism. This
mechanism must reliably control the robot to
a precise position on the field. The goal of our
low-level motion-control mechanism is to be
as fast as possible while still accurate and reli-
able, which is challenging because of the lack
of feedback from the motors, forcing all con-
trol to be done using only visual feedback. Our
motion-control algorithm is robust. It address-
es stationary and moving targets with integrat-
ed obstacle avoidance. The algorithm makes
effective use of the prediction of the ball’s tra-
jectory provided by the Kalman-Bucy filter.

We achieve this motion-control function
using a reactive control mechanism that directs
a differential drive robot to a target configura-
tion. Although based on the CMUNITED-97’s
motion control (Veloso et al. 1998), CMUNITED-
98 includes a number of major improvements.
First, the target configuration for the motion
planner has been extended to include both the
Cartesian position and the direction that the
robot is required to be facing when arriving at
the target position. Second, the motion-con-
troller algorithm drives the two-wheeled robot
smoothly and includes the following three fea-
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Figure 1. The CMUNITED-98 Robots.



close to an obstacle, the direction is adjusted to
run tangent to the preset allowed clearance for
obstacles. Because the motion-control mecha-
nism is running continuously, the obstacle
analysis is constantly replanning obstacle-free
paths. This continuous replanning allows the
robot to handle the highly dynamic environ-
ment and immediately take advantage of
short-lived opportunities.

Moving Targets
One of the real challenges in robotic soccer is
to be able to control the robots to intercept a
moving ball. This capability is essential for a
high-level ball-passing behavior. CMUNITED-98’s
robots successfully intercept a moving ball, and
several of their goals in RoboCup-98 were
scored using this capability.

This interception capability is achieved as an
extension of the control algorithm to aim at a
stationary target. Figure 3a illustrates the con-
trol path to reach a stationary target with a spe-
cific direction, using the control mechanism
described previously. Our extension allows for
the target configuration to be given as a func-
tion of time,

where t = 0 corresponds to the present. At some
point in the future, t0, we can compute the tar-
get configuration, f(t0). We can also use our
control rules for a stationary point to find the
wheel velocities and estimated time to reach
this hypothetical target as if it were stationary.
The time estimate to reach the target then
informs us whether it is possible to reach it
within the allotted time. Our goal is to find the
nearest point in the future where the target can
be reached. Formally, we want to find

After finding t*, we can use our stationary con-
trol rules to reach f(t*). In addition, we scale
the robot speed to cross the target point at
exactly t*.

Unfortunately, t* cannot easily be computed
within a reasonable time frame. We approxi-
mate this value, t*, by discretizing time with a
small time step. We then find the smallest of
these discretized time points that satisfies our
constraint. An illustration of this procedure is
shown in figure 3b, where the goal is to hit the
moving ball. The target configuration as a
function of time is computed using the ball’s
predicted trajectory. Our control algorithm for
stationary points is then used to find a path
and time estimate for each discretized point
along this trajectory, and the appropriate target
point is selected.

t t T f t t* min : ˆ= > ( )( ) ≤{ }0

f t x y( ) = ( )*, *, *φ

Strategy
The main focus of our research is on develop-
ing algorithms for collaboration between
agents in a team. An agent, as a member of the
team, needs to be capable of individual
autonomous decisions, but at the same time,
its decisions must contribute toward the team
goals. CMUNITED-97 introduced a flexible team
architecture in which agents are organized in
formations and units. Each agent plays a role in
a unit and a formation (Stone and Veloso 1998;
Veloso, Stone, and Han 1998). CMUNITED-98

builds on this team architecture by defining a
set of roles for the agents. It also introduces
improvements within this architecture to help
address the highly dynamic environment. CMU-
NITED-98 uses the following roles: goal keeper,
defender, and attacker. The formation used
throughout RoboCup-98 involved a single goal
keeper and defender and three attackers. The
goal tender’s behavior is similar to CMUNITED-
97’s and is described in Veloso et al. (1999a).
This article describes the defender’s behavior
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Figure 2. Motion to Position and Orientation.
A. The adjustment of θ to θ′ to reach a target configuration of the form (x*, y*,

φ*). B. The adjustment to avoid immediate obstacles.

θ′

θ
(x*,y*)

α d
c

φ*

φ

B

A



based on the current state. The two attributes
in the tree, namely, (1) Ball Upfield and (2) Safe
to Clear, are binary. Ball Upfield tests whether
the ball is upfield (toward the opponent’s goal)
of the defender. Safe to Clear tests whether the
open area is larger than a preset angle thresh-
old. If Ball Upfield is false, then the ball is clos-
er to the goal than the defender, and the robot
annoys the attacking robot; otherwise, it either
clears or blocks depending on the value of Safe
to Clear.

Active and Anticipating Attackers
Attacking involves one of the best opportuni-
ties for collaboration, and much of the innova-
tion of CMUNITED-98 has been developing tech-
niques for finding and exploiting these
opportunities.

In many multiagent systems, one or a few
agents are assigned, or assign themselves, the
specific task to be solved at a particular
moment. We view these agents as the active
agents. Other team members are passive, wait-
ing to be needed to achieve another task or
assist the active agent(s). This simplistic dis-
tinction between active and passive agents to
capture teamwork was realized in CMUNITED-97.
The agent that goes to the ball is viewed as the
active agent, and the other teammates are pas-
sive. CMUNITED-98 significantly extends this sim-
plistic view in two ways: (1) we use a decision-
theoretic algorithm to select the active agent
and (2) we use a technique for passive agents to
anticipate future collaboration.

Individual Behaviors
We first developed individual behaviors for
passing and shooting. Passing and shooting in
CMUNITED-98 is handled effectively by the

and the collaborative behaviors developed for
the attackers.

Defender
The CMUNITED-97’s team did not have a well-
specified defender’s role, but our experience at
RoboCup-97 made us understand that the pur-
pose of a defending behavior is twofold: (1) to
stop the opponents from scoring in our goal
and (2) to not endanger our own goal.

The first goal is clearly a defender’s role. The
second goal comes as a result of the uncertain
ball handling by the robots. The robots can eas-
ily push the ball unexpectedly in the wrong
direction when performing a difficult maneu-
ver.

To achieve the two goals, we implemented
three behaviors for the defender. First, blocking,
illustrated in figure 4a, is similar to the goal
keeper’s behavior except that the defender
positions itself further away from the goal line.
Second, clearing, illustrated in figure 4b, pushes
the ball out of the defending area by finding
the largest angular direction free of obstacles
(opponents and teammates) that the robot can
push the ball toward. Third, annoying, illustrat-
ed in figure 4c, is somewhat similar to the goal-
keeping behavior except that the robot tries to
position itself between the ball and the oppo-
nent nearest to it in an effort to keep the oppo-
nent from reaching the ball.

Selecting when each of these behaviors is
used is important to the effectiveness of the
defender. For example, clearing the ball when
it is close to our own goal or when it can
bounce back off another robot can lead to scor-
ing in our own goal. We used the decision tree
in figure 5 to select which action to perform
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Figure 3. Motion for Intersection of Target.
A. Control for stationary target. B. Control for moving target.
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motion controller. The target configuration is
specified as the ball (using its estimated trajec-
tory), and the target direction is either toward
the goal or toward another teammate, giving
us robust and accurate individual behaviors
that can handle obstacles as well as intercept a
moving ball.

Decision-Theoretic Action Selection
Given the individual behaviors, we must select
an active agent and appropriate behavior by
using decision-theoretic analysis with a single-
step look ahead. With n agents, this amounts
to n2 choices of actions involving shooting or
a pass to another agent followed by the agent
shooting. 

An estimated probability of success for each
pass and shot is computed along with the time
estimate to complete the action, which is pro-
vided by the motion controller. A value for
each action is computed,

The action with the largest value is selected,
which determines both the active agent and its
behavior. Table 1 illustrates an example of the
values for the selection considering two attack-
ers, 1 and 2.

It is important to note that this action selec-
tion is occurring on each iteration of control,
that is, approximately 30 times a second. The
probabilities of success, estimates of time, and
values of actions are continuously being
recomputed, allowing for quick changes of
actions if shooting opportunities become avail-
able, or collaboration with another agent
appears more useful.

Dynamic Positioning
The selected action determines the behavior

Value
Pr Pr

time
pass shoot=

for the active agent, but it is unclear what the
passive agents should be doing. CMUNITED-98

introduced a new technique for the passive
agents to strategically position themselves to
anticipate future opportunities for collabora-
tion. The algorithm for this positioning is
called strategic positioning with attraction and
repulsion (SPAR). This algorithm was also used
successfully in the CMUNITED-98 simulator team
(Stone, Veloso, and Riley 1999).

This strategic position takes into account the
position of the other robots (teammates and
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Figure 4. The Defender’s Behaviors.
The dark and light robots represent the defender and the opponents, respectively. A. Blocking. B. Clearing. C. Annoying.
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Figure 5. The Decision Tree Heuristic Used 
by the Defender to Select Its Behavior.



This optimization problem is then solved
under a set of constraints: First, do not block a
possible direct shot from the active teammate.
Second, do not stand behind other robots
because these are difficult positions to receive
a pass from the active teammate.

The solution to this optimization problem
with constraints gives us a target location for
the passive agent. Figures 6a and 6b illustrate
these two sets of constraints, and figure 6c
shows the combination of these constraints
and the resulting position of the anticipating
passive teammate.

Results
CMUNITED-98 successfully defended our title of
the Small Robot Champion at RoboCup-98 in
Paris. The competition involved 11 teams from
7 different countries. It consisted of a prelimi-
nary round of 2 games, followed by the 8
advancing teams playing a 3-round playoff.
CMUNITED-98 won four of its five games, sweep-
ing the playoff competition with 25 goals
scored and only 6 suffered. The individual
results of these games are shown in table 2.

There were a number of technical problems
during the preliminary rounds, including out-
side interference with our radio communica-
tion. This problem was the worst during our
game against 5DPO, where our robots were often
responding to outside commands and just
spinning in circles; thus, we had to forfeit at
half-time and suffered a clear loss against 5DPO,
a good team that ended in third place at
RoboCup-98. Fortunately, the communication
problems were isolated and dealt with prior to
the playoff rounds.

The three playoff games were competitive
and showcased the strengths of our team. PARIS-
8 had a strong defense with a lot of traffic in
front of the goal. Our team’s motion control
with obstacle avoidance still managed to find
paths and create scoring chances around their
defenders. The final two games were close
against good opponents. Our interception was
tested against CAMBRIDGE and included blocking
a powerful shot by its goal tender, which was
deflected back into its goal. The final game
against ROBOROOS demonstrated the dynamic
positioning, especially during the final goal,

max ,

,

,

,

w dist P O

w dist P T

w dist P B

w dist P G

o
i

n

i

T
i

n

i

B

G

i

i

−

=

∑

∑

( )

+ ( )
− ( )
− ( )

1

1

opponents), the ball, and the opponent’s goal.
The position is found as the solution to a mul-
tiple-objective function with repulsion and
attraction points. Let’s introduce the following
variables: n, the number of agents on each
team; Oi, the position of opponent i = 1, …, n;
Ti, the position of teammate i = 1, …, n; B, the
position of the active teammate and ball; G,
the position of the opponent’s goal; and P, the
desired position for the passive agent in antic-
ipation of a pass.

Given these defined variables, we can then
formalize our algorithm for strategic position,
SPAR, which extends similar approaches using
potential fields (Latombe 1991), to our highly
dynamic, multiagent domain. The probability
of collaboration is directly related to how
“open” a position is to allow for a successful
pass. SPAR maximizes the repulsion from other
robots and minimizes attraction to the ball and
to the goal, namely (1) repulsion from oppo-
nents, maximize the distance to each oppo-
nent: ∀i, max dist(P, Oi); (2) repulsion from
teammates, maximize the distance to other
passive teammates: ∀i, max dist(P, Ti); (3)
attraction to the ball, min dist(P, B); (4) attrac-
tion to the opponent’s goal, min dist(P, G).

This is a multiple-objective function. To
solve this optimization problem, we restate this
function in a single-objective function.

Because each term in the multiple-objective
function can have a different relevance (for
example, staying close to the goal might be
more important than staying away from
opponents), we want to consider different
functions for each term. In our CMUNITED-98

team, we weight the terms differently, namely,
wOi, wTi, wB, and wG, for the weights for oppo-
nents, teammates, the ball, and the goal,
respectively.

For CMUNITED-98, these weights were hand
tuned to create a proper balance, giving us a
weighted single-objective function:

Articles

34 AI MAGAZINE

Probability of Success

Attacker Action Pass Shoot Time(s) Value

1 Shoot — 60% 2.0 0.30

1* Pass to 2 60% 90% 1.0 0.54

2 Shoot — 80% 1.5 0.53

2 Pass to 1 50% 40% 0.8 0.25

Table 1. Action Choices and Computed Values Are Based on the Probability
of Success and Estimate of Time. 

The largest-valued action (marked with an *) is selected.



which involved a pass to a strategically posi-
tioned teammate.

Conclusion
The success of CMUNITED-98 at RoboCup-98 was
the result of several technical innovations,
including robust hardware design; effective
vision processing; reliable time-prediction–
based robot motion with obstacle avoidance; a
role-based team strategy; and in particular, an
anticipation algorithm to effectively respond
to the dynamic environment by increasing the
opportunities for team collaboration. The CMU-
NITED-98 team demonstrated on many occa-
sions its robust motion control and teamwork
capabilities. The CMUNITED-98 team represents
an integrated effort to combine solid research
approaches to hardware design, vision process-

ing, and individual and team robot behaviors.
Our ongoing research includes action policy
learning from a crude robot simulator to the
real robots, online robot recognition of the
opponents’ team strategy, and dynamic role
and formation switching as a function of the
opponent team.
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Figure 6. Constraints for the Dynamic Anticipation Algorithm Are Represented as Shaded Regions.
A. Don’t block goal shot. B. Avoid difficult collaboration. C. Anticipate optimal position for collaboration. A and b show three opponents
and the current position of the ball; c illustrates the position of the passive agent—dark square—as returned by SPAR (strategic positioning
with attraction and repulsion).

A B C

Phase Opponent Affiliation Score (CMU1-Opp.)

Round robin IXS iXs Inc., Japan 16 – 2

Round robin 5DPO University of Porto, Portugal 0 – 3

Quarter final PARIS-8 University of Paris-8, France 3 – 0

Semifinal CAMBRIDGE University of Cambridge, UK 3 – 0

Final ROBOROOS University of Queensland, Australia 3 – 1

Table 2. The Scores of CMUNITED-98’s Games at RoboCup-98. 
The games marked with an * were forfeited at half-time. 

1.CMU = Carnegie Mellon University.
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