
■ CARMA is an advisory system for rangeland
grasshopper infestations that demonstrates how AI
technology can deliver expert advice to compen-
sate for cutbacks in public services. CARMA uses two
knowledge sources for the key task of predicting
forage consumption by grasshoppers: (1) cases
obtained by asking a group of experts to solve rep-
resentative hypothetical problems and (2) a
numeric model of rangeland ecosystems. These
knowledge sources are integrated through the
technique of model-based adaptation, in which
case-based reasoning is used to find an approxi-
mate solution, and the model is used to adapt this
approximate solution into a more precise solution.
CARMA has been used in Wyoming counties since
1996. The combination of a simple interface, flex-
ible control strategy, and integration of multiple
knowledge sources makes CARMA accessible to inex-
perienced users and capable of producing advice
comparable to that produced by human experts.
Moreover, because CARMA embodies diverse forms
of expertise, it has been used in ways that its devel-
opers did not anticipate, including pest manage-
ment research, development of industry strategies,
and in-state and federal pest-management policy
decisions.

Grasshoppers are the most serious range-
land pest in the western United States,
consuming 21 to 23 percent of range-

land forage and causing an estimated $400 mil-
lion in losses (Hewitt and Onsager 1983). Fig-
ure 1 illustrates grasshopper infestation
densities in the western United States during
2000, a fairly typical year. In years of heavy
infestation, grasshopper densities and econom-
ic losses might be much higher. For example,
during the 1986 to 1987 outbreak, over 20 mil-
lion acres of rangeland were treated for
grasshoppers in the western United States at a
cost of more than $75 million. 

In Wyoming, the estimated total annual loss
to grasshoppers is roughly $19 million. The
southeastern quadrant of the state is particu-
larly prone to grasshopper infestations, with
significant areas of high-grasshopper densities
in 30 of the last 34 years.

Various chemical and biological pesticides
are available for treatment of grasshopper
infestations, but the cost of using these agents
often outweighs the value of the forage saved
by their application. Moreover, indiscriminate
pesticide application can be damaging to
rangeland ecology. Despite their potential for
damage, the majority of grasshopper species
are usually innocuous or even beneficial to
grassland ecosystems. Of more than 400
species of grasshoppers in the western United
States, perhaps only 15 can be considered seri-
ous pests; many of the other species are bene-
ficial in terms of weed control, nutrient
cycling, and food for wildlife (Lockwood
1993a, 1993b). The decision whether to use
insecticides or other control measures is a com-
plex task depending on a multiplicity of fac-
tors, including not only short-term economic
costs and benefits but also preserving
grasshoppers’ natural enemies (Joern and
Gaines 1990), safeguarding biodiversity, and
protecting environmental and human health.

Before 1996, the United States Department
of Agriculture (USDA) paid the entire cost of
treatment on federal land, one-half the cost on
state land, and one-third the cost on private
land. In addition, the USDA provided inten-
sive surveys and pest-management advice to
ranchers about treatment selection. Subse-
quently, however, the USDA stopped provid-
ing these subsidies (except for infestations on
federal rangelands that represent an immedi-
ate threat to adjacent crops) and the level of
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ecosystem. Various approaches to behavioral
prediction are possible. In systems for which a
precise model exists and accurate values of
state variables can be determined, simulation
can be used to predict the system’s behavior.
Alternatively, if there are sufficient historical
data, empirical methods such as case-based rea-
soning (CBR) (Aamodt and Plaza 1994), deci-
sion tree induction (Quinlan 1993), or statisti-
cal techniques can be lead to accurate
prediction.

Precise models exist for the behavior of
many simple physical systems. However, mod-
els of agricultural, ecological, and other biolog-
ical systems are often incomplete, either
because a complete state description for such
systems cannot be determined or because the
number and type of interactions between sys-
tem elements are poorly understood. More-
over, although historical data often exist for
such systems, they are often insufficient for
accurate prediction using empirical methods.
As illustrated in figure 2, biological systems
often occupy an intermediate point in the con-
tinuum between highly analytic domains,
such as celestial mechanics and the prediction

survey and logistical support was substantially
decreased. This change in policy has increas-
ingly shifted both the cost of treatment and
the task of determining when treatment is
desirable to ranchers themselves. CARMA was
developed to help compensate for the
decreased availability of federal assistance by
helping ranchers identify and balance the fac-
tors relevant to pest-control decisions.

Task Description
CARMA’s task is to help ranchers determine the
most cost-effective responses to rangeland
grasshopper infestations within user-defined
environmental constraints. Determining the
most cost-effective responses requires, at a
minimum, estimating (1) the value of the for-
age that is likely to be consumed by grasshop-
pers if no action is taken, (2) the value of the
portion of this forage that would be saved in
current and future years under each treatment
option, and (3) the cost of each option.

Estimating grasshopper forage consumption
requires predicting the behavior of a rangeland
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Figure 1. Western United States Rangeland Grasshopper Densities for 2000.



of artifact behavior, and highly empirical
domains, such as sociology (Allen and Hoek-
stra 1992). In such biological systems, both
models and empirical data exist, but neither is
as such sufficient for accurate prediction. Accu-
rate prediction of the behavior of such systems
requires exploitation of multiple, individually
incomplete, knowledge sources. 

Rangeland ecosystems typify biological sys-
tems having an extensive but incomplete
causal theory and limited empirical data.
Although model-based reasoning can play a
role in rangeland grasshopper management,
there is a general recognition that the interac-
tions affecting grasshopper population dynam-
ics are too poorly understood and too complex
to permit precise prediction through numeric
simulation alone (Allen and Hoekstra 1992;
Lockwood and Lockwood 1991; Pimm 1991).
However, pest-management experts appear
able to provide useful recommendations to
ranchers, indicating that other sources of
knowledge can compensate for the absence of
a complete rangeland ecosystem model.

CARMA’s performance objective is to emulate
as closely as possible the performance of pest-
management experts. The shortage of human
experts makes it important for CARMA to be not
only accurate but also sufficiently intuitive
that it can easily be used and understood by
any of its users, including ranchers, range man-
agers (who often lack pest-management exper-
tise), and pest managers (who might lack expe-
rience with rangeland grasshoppers).

To explicate the process whereby experts
make forage-loss estimations, we performed a
protocol analysis of “solve-aloud” problem
solving by several experts in rangeland
grasshopper management at the University of
Wyoming (Hastings, Branting, and Lockwood
1996). The protocol analysis suggested that
experts predict the proportion of available for-
age that will be consumed by grasshoppers by
comparing the current situation to prototypi-
cal cases.

An example of a prototypical case is a moder-
ate density of emerging grasshoppers in a cool,
wet spring. In this situation, only a low propor-
tion of forage is typically consumed because wet
conditions both increase forage growth and pro-
mote growth of fungal pathogens that decrease
grasshopper populations, and cool conditions
tend to prolong the early developmental phases
during which grasshoppers are most susceptible
to pathogens and other mortality factors. In pre-
dicting forage consumption by comparing new
cases to prototypical cases, such as the cool, wet
spring prototype, experts appear to be using a
form of CBR.

If a particular new case differs in some ways
from the most similar prototypical case, the
expert can perform causal reasoning to adapt
the prediction associated with the case to
account for the differences. For example, if the
population density of emerging grasshoppers
in a cool, wet spring is high (rather than mod-
erate), an expert might predict moderately low
(rather than low) forage consumption because
higher density generally means more con-
sumption.

Experts seem to reason about prototypical
cases in terms of abstract features that are rele-
vant to the expert’s model of rangeland ecosys-
tems, such as grasshopper species, develop-
mental phases, and population density. In
contrast, a rancher’s description is almost
always in terms of directly observable features,
such as the color, size, and behavior of
grasshoppers; temperatures; and precipitation.
As a result, determining the most similar pro-
totypical case requires inferring the relevant
abstract features from a set of observations pro-
vided by the rancher. Experts exhibit great flex-
ibility in inferring these features. For example,
if a rancher is unable to provide the informa-
tion that discriminates most reliably among
grasshopper species (for example, whether the
grasshoppers have slanted faces or a spur on
their “throats”), the expert is able to ask ques-
tions that are less reliable but easier to answer
(for example, are the grasshoppers brown or
green?).

If it appears that grasshoppers will consume
forage needed by livestock, the expert deter-
mines which interventions are compatible
with local conditions, using knowledge such as
that wet conditions preclude the use of the
chemical malathion and that all chemical
treatments are precluded by environmental
sensitivity. Finally, the expert estimates the rel-
ative value of the forage saved in this and
future seasons and the cost of each control
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their conclusions. Moreover, entomologists
can generate causal predictions of the effects of
incremental variations on case facts.

Opportunism: Human experts can use a
variety of different strategies to solve a single
given problem depending on the available
information. Human experts don’t address the
subgoals that arise in decision making in an
invariant order but adapt their problem-solv-
ing behavior to the particular facts of a given
case. 

In summary, the protocol analysis indicated
that experts in rangeland pest management
use an eclectic approach that includes case-
based reasoning for consumption prediction,
rules for inferring case features and acceptable
control measures, and causal reasoning for
adaptation and explanation. Moreover, expert
problem solving is fast and tolerant of inaccu-
racies in data. 

Application Description
CARMA is designed to model the problem-solv-
ing behavior of experts in managing grasshop-
per infestations, as described in the previous
section. CARMA emulates expert human advice
by providing treatment recommendations sup-
ported by explanations in terms of causal, eco-
nomic, and pragmatic factors, including a
numeric estimate of the proportion of forage
consumed and a cost-benefit analysis of the
various treatment options.

measure based on market price. The expert
then advises the rancher to take the most eco-
nomical action, either applying the most cost-
effective control measure or doing nothing.
Experts can justify their advice by appealing to
an underlying causal model but seem to use
this model only in explaining and adapting the
predictions associated with prototypes and not
in performing any sort of simulation.

The protocol analysis identified four impor-
tant characteristics of human expert problem
solving in this field: (1) graceful degradation,
(2) speed, (3) causal explanations, and (4)
opportunism.

Graceful degradation: Human experts can
use, but do not require, highly precise informa-
tion of the type required for accurate model-
based reasoning. Less accurate information can
degrade the quality of advice an expert can
give but doesn’t preclude useful advice. In the
worst case, human experts can provide plausi-
ble advice based merely on the location of the
rangeland and the date.

Speed: Human experts can provide useful
advice quickly, suggesting, consistent with our
process description, that human experts can
use highly compiled knowledge in the form of
prototypical cases.

Explanations in terms of a causal model:
Although the speed and graceful degradation
of human expert performance suggest that
experts can use compiled knowledge, they can
also readily provide causal explanations for
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Overview
CARMA’s consultation process, summarized in
figure 3, consists of the following steps: First,
determine the relevant facts of the infestation
case from information provided by the user by
means of heuristic rules. Second, estimate the
proportion of available forage that will be con-
sumed by each distinct grasshopper popula-
tion (that is, subcase) by matching and adapt-
ing the prototypical infestation cases that best
match the facts of the current case. Third, com-
pare total grasshopper consumption with the
proportion of available forage needed by live-
stock. Fourth, if the predicted forage consump-
tion will lead to economic loss, determine
what possible treatment options are excluded
by the case conditions. Fifth, provide an eco-
nomic analysis for each viable treatment
option by estimating both the first-year and
long-term savings. CARMA’s overall architecture
is depicted in figure 4.

Determining Relevant Case Features
CARMA begins a consultation by eliciting obser-
vations from the user through a window-based
interface. These observations are used to infer
the relevant features of a new case, such as the
species, population density, and developmen-
tal phases of the grasshoppers. CARMA uses mul-
tiple levels of rules for inferring each case fea-
ture, ordered by a qualitative estimate of each
rule’s accuracy or reliability. The rules are
applied in succession until either the user can

provide the necessary information, or a default
rule is reached. 

For example, if the value of the case feature
“total number of grasshoppers per square yard”
is unknown to the user, CARMA instructs the
user to estimate the number of grasshoppers
that would be present in 18 square-foot circles
(2 square yards) and divide the total by 2. If the
user can’t provide this information, the system
attempts to infer this feature using the heuris-
tic that grasshopper density is equal to two-
thirds the number of grasshoppers seen hop-
ping away from the user with each step taken
in the field. Otherwise, the value defaults to
the historic average for the area. By applying
rules in order of their accuracy or reliability,
CARMA reasons with the best information avail-
able.

A typical interface window for determining
the observed grasshopper-type distribution
appears in figure 5. It includes the options why
for describing why this information is impor-
tant to the consultation, help for advising the
user about the various window features and
their operations, how to to explain the proper
procedure for gathering the required informa-
tion, not sure to trigger the selection of an alter-
native rule for inferring the feature, back to
return to the previous screen in the consulta-
tion, and OK to accept the answer chosen by
the user. Display planthopper shows a small
insect in the order Homoptera that resembles an
immature grasshopper in both form and
behavior and that the user should distinguish
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particular, representative point in time selected
by the entomologist. In general, this represen-
tative point is one at which the grasshoppers
are at a developmental phase in which treat-
ment is feasible. An example prototypical case
appears as case 18 in table 1.

A tract of rangeland almost invariably con-
tains multiple grasshopper species, which can
differ widely in consumption characteristics. In
particular, grasshoppers that spend the winter
as nymphs consume far less during the growing
season than grasshoppers overwintering as
eggs. CARMA therefore partitions the overall pop-
ulation of a new case into subcases according to
overwintering type. For example, the new case
set forth in table 1 is split into two subcas-
es—(1) subcase A and (2) subcase B—based on
overwintering type. Prototypical cases each rep-
resent a single grasshopper population.

To predict the forage loss of a subcase, CARMA

first retrieves all prototypical cases whose over-
wintering type matches that of the subcase. The
weighted sum of feature differences between
each prototypical case and the new subcase is
calculated to determine the most similar proto-
typical case. Match weights are determined
from the mutual information gain between
case features and qualitative consumption cat-
egories in a given set of training cases
(Wettschereck and Dietterich 1995). Separate
match weights are computed for each grasshop-
per overwintering type’s seven case features: (1)
precipitation, (2) temperature, (3) rangeland
value, (4) infestation history, (5) average devel-
opmental phase, (6) density, and (7) feeding
type. Quantitative features, such as density, are
converted to qualitative values for computation
of mutual information gain because small
quantitative variations seemed to have little
effect on matching. The difference between two
individual feature values is determined by find-
ing the difference between the positions of the
values in an ordered qualitative feature value
list. For example, rangeland value can equal
one of the qualitative values in the ordered set
{low, low-moderate, moderate, high-moderate,
and high}, so that the matching feature differ-
ence between low and high, the maximum pos-
sible difference, is 4. The forage-loss prediction
associated with the given case is then adapted
to compensate for differences between the cur-
rent case and the most similar prototypical case
using model-based adaptation, discussed in the
next subsection. 

Forage-Loss Estimation
After adaptation, the consumption predictions
for each subcase are summed to produce an
overall consumption estimate. Because of vari-

from a recently hatched grasshopper nymph.
Because a complete case specification is not

always required for useful advice, CARMA fills in
the facts of a new case opportunistically, asking
the user for information only when the corre-
sponding case feature is required for the rea-
soning process to continue. At the earliest
point at which a decision can be made, the
case-feature inference process halts, advice is
given, and the consultation is ended. This
opportunistic policy minimizes the amount of
input required for CARMA to make a decision,
thereby accelerating consultations. For exam-
ple, if the date and location of an infestation
indicate that it is too early to assess the severity
of a grasshopper infestation, CARMA advises the
user to rerun the consultation at a later time
without prompting for further information.

Case Matching
The protocol analysis indicated that pest man-
agers estimate forage consumption by compar-
ing new cases to prototypical cases. These pro-
totypical cases differ from conventional cases
in two important respects. First, the prototypi-
cal cases are not expressed in terms of observ-
able features (for example, “Whenever I take a
step, I see four grasshoppers with brightly col-
ored wings fly”), but, rather, in terms of
abstract-derived features (for example,
“Approximately six nymphal-overwintering
grasshoppers in the adult phase per square
yard”). Second, the prototypical cases are
extended in time, each representing the histo-
ry of a particular grasshopper population over
its life span, and stored as a “snapshot” at a
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Figure 5. Elicitation of Grasshopper-Type Information in CARMA. 



ability resulting from the imprecise nature of
rangeland ecosystems, this estimate is convert-
ed to a qualitative range (for example, high,
meaning that approximately 60 to 100 percent
of the available forage will be lost). The win-
dow explaining estimated forage loss, shown
in figure 6, gives both aggravating and mitigat-
ing factors (that is, factors tending to increase
and factors tending to reduce estimated forage
loss). Explanation text in this and other CARMA

windows is produced using conventional
schema-based techniques (Moore 1995). If the
proportion of available forage that will be lost
to grasshoppers, and the proportion needed for
livestock (and wildlife) exceeds 100% of the
forage available, CARMA concludes that grass-
hoppers will cause economic losses.

Determining Treatment Options
If grasshoppers will cause economic losses, CAR-
MA applies a set of rules to determine the treat-
ment options that are excluded by the condi-
tions of the case. Some of the information

necessary for determining exclusion is already
known from the case features (for example, the
presence of grasshoppers in the first nymphal
instar—the earliest, readily observable develop-
mental phase that hatches from the egg pod,
which lies beneath the soil surface, into the
above-ground environment—indicates an
ongoing hatch, which precludes malathion
and carbaryl bait from consideration). Other
conditions must be determined from further
user input (for example, will it be hot at the
time of treatment? If so, exclude malathion.).

Treatment Recommendation
For each acceptable treatment option, CARMA

provides estimates of the reduced probability
of future reinfestation and current-year and
long-term savings. From the estimated savings,
carma recommends the treatment or treat-
ments that are most economical.

CARMA calculates the total reduced probabili-
ty of future reinfestation for each treatment
type using a Markov model of infestation prob-
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New CaseCase 18
Subcase A Subcase  B

Case 18 after
Projection

Overwintering
Type

Egg Nymph Egg Egg

Feeding Types
Grass 90%

Mixed 10%
Grass 100%

Grass 40%

Mixed 60%

Grass 90%

Mixed 10%

Average Phase 5.0 7.0 4.5 4.5

Density 32.0 3.0 27.0 33.3

Date June 29 June 20 June 25

Precipitation Normal Dry Normal

Temperatures Normal Cool Normal

Infestation History Moderate High-Moderate Moderate

Rangeland
Value

Moderate-Low Moderate Moderate
-Low

Forage Loss 90% (high) ? 90% (high)

Table 1. Case Examples.



save the most under a best-case scenario. Usu-
ally, the worst- and best-case scenarios produce
the same recommended treatment. Following
the treatment recommendation, the initial
phase of the consultation is complete. 

Optionally, the user can then rerun the con-
sultation with one or more case facts or treat-
ment parameters altered. To facilitate the alter-
ing of treatment parameters, CARMA includes a
treatment-matrix window, shown in figure 8,
that permits the user to change the default val-
ues of any of the variables (for example, cost of
chemical, cost of carrier, rate of application,
cost of application, expected efficacy) that
determine the cost of an acre protected of each
treatment option or the cost of adding entirely
new treatments. Although calculation of cost
of an acre protected is straightforward, experi-
ence has shown that it is a common source of
errors, particularly when users are attempting
to determine the costs of reduced agent-area

ability for each location derived from historical
data collected by the USDA and synthesized by
the University of Wyoming Entomology Sec-
tion (Lockwood and Kemp 1987). CARMA com-
putes the current-year savings as the difference
between the value of forage saved and the
treatment cost. CARMA calculates the savings for
future years for each treatment type by multi-
plying the reduced probabilities of reinfesta-
tion by the estimated forage loss for each sub-
sequent year.

A typical treatment recommendation win-
dow, including estimates of future reinfesta-
tion and economic savings, appears in figure 7.
CARMA lists both worst- and best-case scenarios
for most calculations. Note that this analysis
includes no treatment as an option and that
negative savings indicate a loss.

CARMA recommends the treatment that is
estimated to save the most under a worst-case
scenario and the treatment that is estimated to
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Figure 6. CARMA’s Forage-Loss Estimation Window.

Figure 7. CARMA’s Treatment Recommendation Screen.



treatments (RAATs), which involve applying
insecticide to only a fraction of the infested
area. The treatment matrix permits entirely
new parameters and products to be added to
CARMA as they are developed, an important fea-
ture in view of rapid recent refinements in
grasshopper management methods. Easy mod-
ification of treatment parameters permits
“gaming” to explore which combination of
insecticide, rate, carrier, and coverage provides
the best return on investment. For example,
such gaming can permit ranchers and pesticide
vendors to negotiate a price for a pesticide that
is economical given the current infestation lev-
el and the price of substitute forage.

Uses of AI Technology
CARMA uses AI technology in two distinct ways.
First, as described earlier, CARMA’s control strat-
egy emulates human experts’ speed, oppor-
tunism, explanation capability, flexibility in
eliciting relevant case features through a vari-
ety of alternative heuristic rules, and ability to
integrate multiple knowledge sources. Second,
CARMA uses model-based adaptation for the key
reasoning step of predicting the amount of for-
age that will be consumed by grasshoppers. 

Model-based adaptation consists of using
CBR to find an approximate solution and mod-
el-based reasoning to adapt this approximate
solution into a more precise solution. Model-

based adaptation is useful in domains in which
both cases and models are available, but nei-
ther is individually sufficient for accurate pre-
diction. Such domains are typified by chemical
or biological systems with well-developed, but
imperfect, models. Model-based adaptation
has been applied for bioprocess recipe plan-
ning in SOPHIST (Aarts and Rousu 1996; Rousu
and Aarts 1996) for selecting colorants for plas-
tic coloring in FORMTOOL (Cheetham and Graf
1997) and in design reuse (Goel 1991).

Model-based adaptation is appropriate for
CARMA’s advisory task because both empirical
knowledge, in the form of cases, and a grass-
land ecology model are available, but neither is
individually sufficient for accurate prediction
of forage consumption, given the information
that ranchers can typically provide.

Case-Based Reasoning in CARMA

The initial impetus for using CBR for forage
consumption prediction was cognitive veri-
similitude. The protocol analysis suggested
that human experts in this domain reason
using prototypes, which is consistent with var-
ious cognitive studies that have demonstrated
that examples or prototypes often play a cen-
tral role in human concept structure (Klein and
Calderwood 1988; Smith and Medin 1981). 

During the development of CARMA, however,
CBR’s ability to facilitate knowledge acquisi-
tion grew in importance. Few precise records of
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Adaptation
carma uses three techniques for adaptation: (1)
temporal projection, (2) feature adaptation, and
(3) and critical period adaptation. Two of these
techniques—(1) temporal projection and (2)
critical period adaptation—make use of the
rangeland ecosystem model. Temporal projec-
tion is needed because the feature values of each
prototypical case are represented at a specific
point in the life history of the grasshopper pop-
ulation. To determine the match between the
grasshopper population densities of each proto-
typical case and a new subcase, the life history of
the prototypical case must be projected forward
or backward to align its average developmental
phase with that of the new subcase. This projec-
tion requires a model to simulate grasshopper
attrition, which depends on developmental
phase, precipitation, and developmental rate
(which, in turn, depends on temperature)
throughout the interval of the projection.

rangeland grassland infestations are available.
However, there are a number of expert pest
advisers with many years of experience with
rangeland grasshopper infestations.

To capture human expertise, we sent ques-
tionnaires describing hypothetical Wyoming
infestation cases to entomologists (including
pest managers) recognized for their work in the
area of grasshopper management and ecology.
Each expert received 10 cases randomly drawn
from a total of 20 representative cases. The
descriptions of the 20 cases contained at least
as much information as a rancher ordinarily
provides to an entomologist. The question-
naire asked the expert to estimate the probable
forage loss. Eight sets of responses were
received from Wyoming experts, who had a
mean of 18.0 years experience. CARMA’s case
library consists of the 20 hypothetical cases.
The consumption prediction associated with
each case is the mean of the experts’ predic-
tions for that case.
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Figure 9 illustrates how the population in
prototypical case PC must be projected back-
ward in time to PC’ to match the average devel-
opmental phase of new subcase NC. Projection
backward in time increases grasshopper densi-
ty by removing the effect of attrition over the
interval of the projection, whereas projection
forward in time decreases grasshopper density
by adding attrition during this interval. The
vertical bar corresponding to PC and PC’ indi-
cates the confidence range for grasshopper
density, which always increases (indicating
greater uncertainty) as a function of the inter-
val projected.

In feature adaptation, the forage loss predict-
ed by the best-matching prototypical case is
modified to account for any feature differences
(other than average developmental phase)
between it and the subcase. The modification is
a linear function of the feature differences. The
coefficients of the linear function are deter-
mined by a form of introspective learning
(Hanney and Keane 1997; Leake, Kinley, and
Wilson 1995), consisting of hill climbing
through parameter space to optimize leave-
one-out predictive accuracy within the case
library (Branting, Hasting, and Lockwood
1997).

Critical-period adaptation is needed because
grasshopper consumption is most damaging if
it occurs during the portion of the growing sea-

son during which forage losses cannot fully be
replaced by forage growth, termed the critical
period. The forage loss predicted by a prototyp-
ical case must be adapted if the proportion of
the life span of the grasshoppers overlapping
the critical period in the new case differs from
that in the prototypical case. This adaptation
requires determining, for both the new case
and the prototypical case, the proportion of
the grasshopper population’s lifetime con-
sumption occurring in the critical period. For a
more complete description of model-based
adaptation in CARMA, see Branting, Hastings,
and Lockwood (1997).

Experimental Evaluation 
of Model-Based Adaptation
The design of CARMA’s forage-consumption
component was based on the hypothesis that
an integration of model-based and case-based
reasoning can lead to more accurate forage-
consumption predictions than the use of either
technique individually. This hypothesis was
based on the observation that neither the
causal model nor the empirical data available
for rangelands are individually sufficient for
accurate prediction. To test this hypothesis, an
ablation study was performed in which CARMA’s
empirical and model-based knowledge compo-
nents were each tested in isolation and the
results compared to the performance of the full
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approaches—21.1 percent for factored-NN,
34.9 percent for ID3, and 25.6 percent for linear
regression—and for the purely model-based
approach—29.6 percent. CARMA-SPECIFIC and
CARMA-GLOBAL were also more accurate than the
alternative methods on the Wyoming median
set, although linear regression was only slight-
ly less accurate.

The initial confirmation of the hypothesis
that integrating model-based and case-based
reasoning through model-based adaptation
leads to more accurate forage-consumption
predictions than the use of either technique
individually is tentative because the relatively
low level of agreement among experts and the
absence of any external standard give rise to
uncertainty about what constitutes a correct
prediction. A detailed description of the empir-
ical evaluation of CARMA is set forth in Branting,
Hastings, and Lockwood (1997).

Application Use and Payoff
In June 1996, CARMA 2.0 was distributed to the
University of Wyoming Cooperative Extension
Offices and Weed and Pest District Offices in
each of Wyoming’s 23 counties and was made
available for download from a University of
Wyoming web site. CARMA 2.0 was used by
Wyoming ranchers and pest managers every
summer from 1996 to 2001. CARMA has been
endorsed and advocated for use by pest man-
agers by the United States National Grasshop-
per Management Board (NGMB 2001). Perhaps
the greatest interest in the system has been
expressed by the county-level Weed and Pest
District supervisors, who—with the withdrawal
of USDA support—have become the “front-
line” agency in grasshopper pest management.
Workshops to train these individuals in the
optimal use of CARMA were developed and
delivered at the request of the agency.

Although CARMA was designed as an advisory
system for ranchers, CARMA’s ability to robustly
integrate a variety of knowledge sources led it
to be applied in several ways that were not
imagined when the program was developed.
First, CARMA’s economic analysis has been used
to justify pest management policy decisions. In
1998, CARMA’s economic analysis was used to
generate a declaration of grasshopper disaster
areas by Wyoming County Commissions, lead-
ing to low-interest, federal loans by the Farm
Service Administration. CARMA’s economic
analysis played a role in the NGMB’s recom-
mendation of a new treatment approach,
RAATs (Nelson 1999), a strategy now adopted
in six states.

Second, CARMA’s analysis was incorporated

CARMA prediction system under both global and
case-specific adaptation weight modes.

Each predictive method was tested using a
series of leave-one-out tests in which a set of
cases (S) from a single expert was split into one
test case (C) and one training set (S - C). The
methods were trained on the forage-loss pre-
dictions of the training set and tested on the
test case. This method was repeated for each
case within the set (S).

CARMA’s empirical component was evaluated
by performing leave-one-out tests for CARMA’s
forage-consumption module with all model-
based adaptation disabled. CARMA’s forage-con-
sumption module with model-based adapta-
tion disabled is termed factored nearest-neighbor
prediction (factored-NN) because under this
approach, prediction is based simply on the
sum of nearest-neighbor predictions for each
subcase. Two other empirical methods were
evaluated as well: (1) decision tree induction
using ID3 (Quinlan 1986) and (2) linear regres-
sion using QR factorization (Hager 1988) to
find a least squares fit to the feature values and
associated predictions of the training cases.

The predictive ability of CARMA’s model-
based component in isolation was evaluated by
developing a numeric simulation based on CAR-
MA’s model of rangeland ecology. This simula-
tion required explicit representation of two
forms of knowledge implicit in CARMA’s cases:
(1) the forage to an acre based on the range-
land value of the location and (2) the forage
typically eaten in a day by each grasshopper for
each distinct grasshopper overwintering type
and developmental phase.

The accuracy of each approach was evaluat-
ed using leave-one-out testing for the respons-
es from each of the eight Wyoming experts and
for a data set consisting of the median of the
predictions of the Wyoming experts on each
case. The full CARMA prediction system was test-
ed using both global-adaptation weights (CAR-
MA-GLOBAL) and case-specific adaptation
weights (CARMA-SPECIFIC).

The root-mean-squared error rates for each
of the methods are set forth in figure 10. These
rates provide initial confirmation for the
hypothesis that integrating model-based and
case-based reasoning through model-based
adaptation leads to more accurate forage-con-
sumption predictions than the use of either
technique individually. The smallest root-
mean-squared error rate was obtained by
CARMA-SPECIFIC. On the Wyoming expert sets,
the root-mean-squared error rate was 13.3 per-
cent for CARMA-SPECIFIC and 14.2 percent for
CARMA-GLOBAL. The root-mean-squared error
rate was higher both for the empirical
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into industry strategies. Uniroyal (CK Witco)
developed recommendations for the use of
Dimilin, a new chemical pesticide, using
CARMA’s analysis. Similarly, RhônePoulenc
(Aventis) developed recommendations for the
use of Fipronil based on CARMA’s analysis.

Finally, CARMA-based economic analysis was
incorporated into pest management research
in Lockwood et al. (1999) and Lockwood and
Schell (1997).

Development, Deployment, 
and Maintenance

CARMA was developed as a dissertation project
(Hastings 1996). The out-of-pocket develop-
ment costs were small, consisting of several
years of graduate research assistant support
and the license fees for Franz Allegro Common
Lisp, the language in which CARMA was devel-
oped. However, the path to the development
of CARMA was quite circuitous, with a variety of
different approaches to grasshopper advising
having been developed, tested, and rejected.
Thus, the development costs would have been
much higher outside an academic environ-
ment.

In the years since the distribution of CARMA

2.0, there have been a number of changes in
pest-treatment practices. In 2001, CARMA 2.0
was updated to CARMA 3.3 to reflect these
changes and include the treatment matrix dis-
cussed earlier for calculating treatment costs
for each acre under various alternative eco-
nomic conditions. CARMA’s declarative knowl-
edge representation made revising the program
straightforward. These changes were funded by
a grant from a producer of a pesticide intro-
duced after the distribution of CARMA 2.0 and
therefore not included as a treatment option in
the earlier version. CARMA can be downloaded
from the USDA’s grasshopper-control web site
or from the University of Wyoming’s Grass-
hoppers of Wyoming and the West web site.1,2

Conclusion
CARMA demonstrates how AI technology can be
used to deliver expert advice to compensate for
cutbacks in public services. CBR proved to be
an appropriate AI technique for the forage-pre-
diction component both because experts in
this domain appear to reason with cases and
because asking experts to solve example cases
was an effective knowledge-acquisition tech-
nique. Model-based adaptation provided a
mechanism for incorporating rangeland
ecosystem models into the system without the
slow performance, sensitivity to noise, and

diminished explanation capability that would
have resulted from a purely simulation-based
approach. 

A key factor in CARMA’s acceptance among
users is its simple interface and speed, which
make using CARMA straightforward. The combi-
nation of a simple interface, flexible control
strategy, and integration of multiple knowl-
edge sources makes CARMA accessible to inexpe-
rienced users and capable of producing advice
comparable to that produced by human
experts.

Notes
1. www.sidney.ars.usda.gov/grasshopper.

2. www.sdvc.uwyo.edu/grasshopper/carma.htm.
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