
■ An adequate natural language description of devel-
opments in a real-world scene can be taken as
proof of “understanding what is going on.” An al-
gorithmic system that generates natural language
descriptions from video recordings of road traffic
scenes can be said to “understand” its input to the
extent that algorithmically generated text is ac-
ceptable to the humans judging it. A fuzzy metric-
temporal Horn logic (FMTHL) provides a formalism
for representing both schematic and instantiated
conceptual knowledge about the depicted scene
and its temporal development. The resulting con-
ceptual representation mediates in a systematic
manner between the spatiotemporal geometric de-
scriptions extracted from video input and a mod-
ule that generates natural language text. This arti-
cle outlines a 30-year effort to create such a
cognitive vision system, indicates its current sta-
tus, summarizes lessons learned along the way,
and discusses open problems against this back-
ground.

For ages, students have been asked to re-
peat a previously given explanation in
their own words: An experienced teacher

can infer the degree of understanding—or the
lack of it—from the manner in which an expla-
nation has been paraphrased. The ability to
present a “variant formulation” without dis-
torting the essential parts of the original mes-
sage is taken as a cue that these essentials have
been “understood.” During art lessons, in par-
ticular those concerned with classical or eccle-
siastic paintings, students are initially invited
to merely describe what they see. Frequently,
considerable a priori knowledge about ancient
mythology or biblical traditions is required to
succinctly characterize the depicted scene.
Lack of the corresponding knowledge about

other cultures can make it difficult for some-
one with only a European education to really
understand and describe in an appropriate
manner a painting by, for example, a Far East
classic artist.

Familiar human experiences mentioned in
the preceding paragraph will now be “mor-
phed” into a scientific challenge: to design and
implement an algorithmic engine that gener-
ates an appropriate textual description of es-
sential developments in a video sequence
recorded from a real-world scene. Such an al-
gorithmic engine will serve as one example of
a cognitive vision system (CVS), which leaves
room, as the experienced reader has noticed,
for there to be more than one way to introduce
the concept of a CVS. An alternative clearly
consists in coupling a computer vision system
with a robotic system of some kind and assess-
ing the reactions of such a compound system.
To whomever accepts the formulation, “one of
the actions available to an agent is to produce
language. This is called a speech act. Russell and
Norvig (1995)” is unlikely to consider the two
variants of a CVS alluded to previously as be-
ing fundamentally different.

With regard to the first CVS version in par-
ticular, the following remarks are submitted
for consideration: Obviously, we avoid a pre-
cise definition of understanding in favor of hav-
ing humans compare the reaction of an algo-
rithmic engine to that expected from a
human. This fuzzy approach toward the cir-
cumscription of a CVS opens the road to con-
structive criticism—that is, to incremental sys-
tem improvement—by pinpointing aspects of
an output text that are not yet considered sat-
isfactory. One might ask, moreover, whether
unsatisfactory results are the result of an in-
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ously, the threshold regarding computational
expenses is much higher for the evaluation of
entire image sequences than for a single im-
age. Once one is able to pay the price involved
(either by spending money or waiting patient-
ly until time-consuming computations have
been finished), image sequences recorded by a
stationary camera offer an inherent focus of
attention: what moves are relevant, at least on
a short-term basis. In the more general case of
animals, something moving has to be inspect-
ed for whether it is a thread, a prey, or a mat-
ing partner (or possibly a playmate in the case
of young animals).

The discourse domain constitutes another
important ingredient for CVS research. In the
case to be discussed here, inner-city vehicular
road traffic was chosen. It allows one to study
a rich variety of vehicle maneuvers and spa-
tiotemporal vehicle configurations. However,
the amount of background knowledge to be
provided to the system remains manageable.
Vehicle maneuvers can be represented by a
comparatively small number (� 100) of para-
meterized concepts. In addition, the lane struc-
ture of inner-city roads and road intersections
can be extracted from images and provides a
useful reference for both the prediction of ve-
hicle movements and the formulation of textu-
al descriptions. 

The choice of a varied but well-structured
discourse domain raised a considerable barrier
against quick and dirty approaches. In hind-
sight, it was an advantage that some subprob-
lems were amenable to early isolated treatment.
Limitations quickly became apparent, however,
when solutions to certain subproblems could
serve as building blocks in the construction of
a more encompassing system (figure 2). Two as-
pects deserve to be mentioned already at this
stage. First, the necessity to iterate several times
through the design-implementation-test cycle
implied that some components had to be re-
conceived and reimplemented more than once
to remove increasingly discernible bottlenecks
of the overall system. Second, geometric and
conceptual processing gradually separated with
the consequence that an increasingly rigorous
approach became feasible for conceptual pro-
cessing, based on a fuzzy metric-temporal
(Horn) logic, which includes a clear-cut inter-
face to system components for signal and geo-
metric processing.

Subsequent sections outline selected ap-
proaches, milestones, and results during the
development of the CVS sketched in figure 2 in
an attempt to condense the accumulated expe-
rience into insights about CVSs and their po-
tential future development.

ability of a CVS to exploit principally accessi-
ble knowledge or the result of the fact that the
CVS does not command the a priori knowl-
edge necessary to generate an appropriate for-
mulation. Such a question focuses on the sys-
tem-internal representation and exploitation
of knowledge.

Readers familiar with the history of AI will
note that the proposed CVS cannot (easily)
pretend understanding based on ELIZA-type
syntactic manipulations. The price for this ad-
vantage has to be paid in the form of heavy
computational expenses for machine vision
processes. Students who are introduced to im-
age processing with currently available facili-
ties—to record an image sequence using a
notebook is a routine activity today—can
scarcely imagine the effort required in the early
1970s to merely digitize a short video sequence
and transfer it onto a laboratory computer. It
took about four years for the research group I
established in 1971 at the Universität Hamburg
to acquire the facilities to record a sequence
such as the well-known Hamburg taxi se-
quence (figure 1).

There is another subtlety associated with
the CVS to be discussed here: The postulate to
describe essential developments in a scene
provides a built-in focus on changes, in partic-
ular, on movements. The number of verbs, for
example, in the German language (about
9200) is much smaller than the number of
words (about 140,000) available to denote ab-
stract or concrete entities (nouns for living
creatures, inanimate objects, abstract con-
cepts) and their attributes (adjectives). Obvi-

Articles

32 AI MAGAZINE

Figure 1. Frame 10 from the Hamburg Taxi Sequence.
It was recorded more than a quarter of a century ago from our labo-
ratory window at the Universität Hamburg.



The Core Computer 
Vision Subsystem

The discussion concentrates initially on the
four layers in the lower left half of figure 2.
Consecutive layers are connected by bidirec-
tional links to the conceptual primitives level,
which comprises the interface between geomet-
ric and conceptual processing. Subsequently
mentioned examples will mostly refer to image
sequences recorded by a single stationary fixed-
lens camera such that the downward flow of in-
formation toward the sensor-actuator level for
control of camera parameters will be of no con-
cern here. Signal-related image transformations
in the image- signal level such as low-pass filter
operations are not treated.

A clear distinction between the picture and
scene domain level (Kanade 1978) helps to or-
ganize the knowledge representation: The pic-
ture domain refers to the representation of spa-
tiotemporal geometric structures restricted to
the image plane—such as regions in a segment-
ed gray-value image or optical flow field—
whereas structures related to the depicted
three-dimensional (3D) scene are treated in the
scene domain. 

Extraction of Vehicle 
Image Candidates
Given an image sequence of a road traffic scene
recorded by a stationary camera, a first process-
ing step has to detect images of vehicles and es-
timate their parameters, such as their position
within an image frame. Because of limited
computing power, we started by thresholding
gray-value differences between consecutive im-
age frames. The unreliability of such an ap-
proach led to efforts to develop more robust
stochastic tests, but we eventually abandoned
these efforts as well. Change cues can be the re-
sult of many reasons (motion but, in addition,
illumination changes including time-varying
reflections) and, thus, are difficult to interpret.
It appeared more advantageous to directly esti-
mate the frame-to-frame shift of identifiable
gray-value structures (for example, Zimmer-
mann and Kories [1984] and Sung and Zim-
mermann [1986]), or feature-based optical flow
(figure 3). Thresholding the norm of such opti-
cal flow estimates and clustering the surviving
neighboring optical flow vectors of (approxi-
mately) the same length and orientation di-
rectly extracted regions that exhibit in general
a much higher correlation with images of mov-
ing vehicles than change regions (figure 4). 

In principle, each cluster can be tracked
from frame to frame, yielding an image-plane
vehicle trajectory such as the ones illustrated

in figure 5. Image-plane vehicle trajectory data
obtained in this manner have successfully been
associated with motion verbs in exploratory
experiments (Koller, Heinze, and Nagel 1991)
based on considerations developed in Nagel
(1988). 

Experiences during attempts to increase the
robustness of this approach resulted eventually
in the decision to drastically redesign the vehi-
cle-detection and -tracking components at the
picture-domain level and the interface to the
conceptual primitive level (compare figure 2).
In particular for small vehicle images, extrac-
tion and interframe linkage of gray-value fea-
tures can vary considerably from frame to
frame, which, in turn, influences the clustering
of resulting optical flow vectors with the clear-
ly visible effect that trajectories appear ragged
(figure 5). Our research group did resist the
temptation to fight this effect by smoothing
operations in the image plane and decided to
counteract its root cause by improving the
tracking process. 
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Scene Domain Level (SDL)

Behavioral Representation Level (BRL)

Picture Domain Level (PDL)

Natural Language Level (NLL)

Conceptual Primitives Level (CPL)

Image Signal Level (ISL)

Sensor-Actuator Level (SAL)

Figure 2. Coarse-Layer Structure of the Overall System.
The layers underlaid in light gray in a black-and-white printout constitute the
core computer vision subsystem for the extraction of a geometric three-dimen-
sional scene representation. The conceptual representation subsystem is under-
laid in medium gray, the text generation is incorporated into the natural language
level underlaid in dark gray. (From Nagel [2000] where a more detailed explana-
tion can be found; © 2000 IEEE, reproduced with permission). 



originate from features painted onto a planar
facet hovering about half the vehicle’s height
above the road plane. A back projection of op-
tical flow vectors onto this facet provides an
initial estimate for orientation and speed of the
vehicle (figure 6). This initial model pose al-
lows one to associate visible model segments
with edge segments extracted from the image
frame to improve the pose estimate (Koller
1992; Koller, Daniilidis, and Nagel 1993). The
resulting improved vehicle pose constitutes the
starting point of a 3D vehicle trajectory ob-

Switching to a Model-Based Scene-
Domain Tracking Process
Rather than tracking a cluster of optical flow
vectors directly, such a cluster can serve merely
to initialize a 3D–model-based tracking
process, building on ideas reported earlier by
Lowe (1991). A polyhedric vehicle model is
tentatively placed in the scene at a location es-
timated by back projection of optical flow vec-
tors within a cluster onto a plane somewhat
above and parallel to the road plane. This ap-
proach assumes that the optical flow vectors
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Figure 3. Feature-Based Optical Flow Results (Right Panel) Estimated from Image Regions (Left and 
Center Panels) That Have Been Cropped from Two Frames of a Sequence. 

Left and right panels: from Koller et al. (1991) © 1991 IEEE, reproduced with permission; center panel from Koller (1992) © 1992 infix, re-
produced with permission.

Figure 4. A Frame from a Sequence Recorded at a Busy Karlsruhe Intersection.
Left panel, from Kollnig and Nagel (1997), © 1997 Kluwer, reproduced with permission. The center panel shows rectangles enclosing clusters
of optical flow vectors obtained by a feature-based–estimation approach illustrated in the right panel of figure 3. The two triangles inscribed
on each rectangle indicate the image-motion direction obtained from the optical flow estimates. The right panel shows an enlargement
around the three vehicle image candidates, 5, 7, and 9, in the center panel. One can recognize that only a small number of feature-based
optical flow estimates contribute to each cluster (center and right panels from Kollnig [1995], © 1995 infix, reproduced with permission.)



tained through a succession of prediction/up-
date cycles realized by a Kalman filter.

It turned out that shadows could create hav-
oc during such a gradient descent pose im-
provement, as illustrated by figure 7. The lower
contour segments of the car body have been
fitted mostly to data segments associated with
the car’s shadow because the contrast between
lower parts of the car’s body and the shadowed
road surface is smaller than the contrast be-
tween the shadow and the illuminated part of
the dark road surface. Inclusion of the vehicle
shadow in the model projection alleviates this
problem (Koller 1992; Koller, Daniilidis, and
Nagel 1993). 

Improved Three-Dimensional 
Pose Initializations
Numerous experiments with the approach out-
lined in the preceding subsection gradually
convinced our research group to replace the
feature-based optical flow estimates with gradi-
ent-based ones (Otte 1994; Otte and Nagel
1995); these estimates provide a much denser
optical-flow vector field and enable a more ro-
bust initialization (figure 8).

A second significant modification aban-
doned the data-driven aggregation of edge ele-
ments into data segments that subsequently
were tested for association with model segment
projections computed on the basis of the cur-
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Figure 5. Vehicle Trajectories Obtained by Tracking Clusters of Feature-
Based Optical Flow Estimates. (From Otto [1990]).

Figure 6. Initialization of a Bus Model.
A. This panel shows the vehicle image candidate represented by a rectangle oriented along the bus overlaid on the image of a bus taken
from the third frame of the sequence used in figure 4. The two triangles within the rectangle indicate the driving direction estimated from
the optical flow vectors incorporated into the cluster that provided the basis for this initialization. B. The resulting initial model instanti-
ation, projected onto the image plane with hidden lines removed (see also figure 9). (From Kollnig and Nagel [1997] © 1997 Kluwer, repro-
duced with permission).
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“blind” edge-element aggregation process
would result in an incorrect aggregation and,
subsequently, in unwanted matches between
data and model segments. Such mismatches
could distort the pose estimate and thereby in-
creased the risk of tracking failures. 

A third important modification exploits a
priori knowledge about the position of lanes.
Optical flow vectors associated with the images
of vehicles, which drive close to each other in
neighboring lanes at about the same speed, can

rent vehicle pose estimate. As illustrated by fig-
ure 9, edge elements extracted from the current
image frame are individually tested for associ-
ation with visible model segments, thereby ex-
ploiting the knowledge provided by the pre-
dicted vehicle pose to select only edge
elements in the vicinity around visible model
segments. This modification not only avoided
a time-consuming edge-element aggregation
process in areas where it would not matter any-
way, but it also reduced the danger that such a
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Figure 7. The Advantage of Taking Shadows into Account.
The left panel shows an image frame from an early sequence recorded at the Durlacher-Tor-Platz in Karlsruhe (from Koller [1992] © 1992
infix, reproduced with permission). An initialization step for three-dimensional model-based tracking exploited information about vehicle
image candidates obtained from the segmentation of feature-based optical flow fields such as those illustrated in figures 3 and 4. The center
panel shows a polyhedric model for a sedan, superimposed on a window cropped around the vehicle in the lower right part of the left panel,
following a gradient descent fit of data line segments (extracted from the image) to model segments. If the shadow of the vehicle is included
in the model projection—as illustrated by the right panel—the overall fit greatly improves (center and right panels from Koller, Daniilidis,
and Nagel [1993] © 1993 Kluwer, reproduced with permission).

Figure 8. Improved Initialization Exploiting the Segmentation of Gradient-Based Optical Flow Field Estimation.
The left and center panels are analogous to the center and right panel of figure 4, but here the clustering algorithm is applied to a much
denser optical flow field derived by a gradient-based approach described in Otte and Nagel (1995). The right panel illustrates results of a
model-based tracking approach (from Kollnig, Nagel, and Otte [1994] © 1994 Springer-Verlag, reproduced with permission).



be collected together into a single large cluster.
The interactive provision of a polygonal repre-
sentation of the lane structure for the road
plane in the scene enables a heuristic that splits
a single blob of optical flow vectors covering
two neighboring lanes into two subblobs. Each
of these subblobs can then be used to generate
a vehicle image candidate, as illustrated in fig-
ure 10. The image corresponds to a time short-
ly after the traffic lights had switched to green
for vehicles coming from the top. Heavier vehi-
cles or those in the rear parts of the queues are

just beginning to accelerate with the conse-
quence that their speed—and, thus, the associ-
ated optical flow vectors—were still rather
small. Because of the dense optical flow field in
image areas corresponding to (parts of) moving
vehicles, the overlaid optical flow vectors ap-
pear as dark blobs.

Improvement of Tracking Capabilities
Once the initialization phase had considerably
been improved compared to earlier system ver-
sions, less obvious problems in the tracking
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Figure 9. Fitting Fuzzified Model Segments Directly to Gray-Level Gradient Magnitude.
A. This panel shows the visible model segments of the initial model instantiation (see figure 6) “fuzzified” (that is, extended into their image
plane environment) by convolution with a two-dimensional Gaussian filter. B. Edge elements extracted from the same image frame as used
for figure 6 are given, where darker values indicate a higher-gradient norm. C. This panel illustrates the succession of fits obtained by the
update step of an iterated extended Kalman filter. D. The final result is overlaid on the bus image (from Kollnig and Nagel [1997] © 1997
Kluwer, reproduced with permission).

Figure 10. Exploiting Knowledge about the Lane Structure.
The left panel shows a window cropped from a video sequence recorded at a road intersection in Frankfurt, Germany, overlaid by optical
flow vectors whose norm exceeds a threshold. Rectangles corresponding to clusters of optical flow vectors are overlaid the same image area
in the center panel. Vehicle image candidates generated in this manner can cover the image of more than a single vehicle or none at all
(for example because of pedestrians). If knowledge about the lane structure is available, optical flow vector blobs covering neighboring lanes
can be split based on the hypothesis that they are the result of two separate vehicles driving side by side (see right panel). In addition, clus-
ters have been suppressed if their size did not exceed a minimum area threshold. (From Kollnig, Leuck, and Nagel [1995] © 1995 Springer-
Verlag, reproduced with permission).
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that can be exploited for edge-element extrac-
tion thus tends to be much smaller than that
accessible to optical flow estimation. Incorpo-
ration of optical flow estimates improves the
velocity estimation and thereby significantly
stabilizes the tracking process, in particular
during partial occlusion of a vehicle.

As a result of these major improvements—
and a number of other ones that cannot be
treated here because of space limitations—the
rate of successfully tracked vehicle images in-
creased significantly, as documented in Haag
(1998) and Haag and Nagel (1999) (figure 11).

Association of Maneuver Con-
cepts with Vehicle Trajectories

Given the ability to track road vehicles under
realistic boundary conditions, a next step to-
ward a CVS associates concepts for recognizable
movement primitives with segments of estimated
vehicle trajectories. Such an association im-
ports geometric results from the CVS subsys-
tem—see the previous section—across the in-
terface between the scene domain level and the
conceptual primitives level into the conceptual
representation subsystem introduced in figure
2.

Recognizable movement primitives can be
considered elementary maneuvers that on the
one hand can be performed by a vehicle and
on the other hand can be described by simple
verb phrases. To emphasize the distinction be-
tween the system-internal representation of
such an elementary activity and its linguistic
expression, the abstract term occurrence is used
for the internal representation.

Table 1 contains a small subset of occur-
rences for which system-internal representa-
tions have been constructed, here in particular
for verb phrases involving the vehicle as agent
and a location (for details, see Gerber and
Nagel [2002]). Each occurrence can be charac-
terized uniquely by a conjunction of predi-
cates. These, in turn, consist of a conjunction
of as many as three (sub)predicates, namely (1)
a precondition (PREC) that has to be satisfied
before the occurrence in question could be
considered to represent a valid description of
the temporal development in which the agent
is involved; (2) a monotonicity condition
(MONC or MC), indicating the type of admis-
sible monotonous change that might take
place when the occurrence represents a valid
description; (3) a postcondition (POSTC) that
becomes true once the occurrence in question
no longer constitutes an adequate description
of the temporal development in which the
agent is involved.

phase were attacked. A combination of three
major modifications enabled a kind of “quan-
tum jump” for tracking robustness: (1) transi-
tion to half-frame tracking for interlaced video
sequences, (2) exploitation of the direction in-
formation associated with edge elements, and
(3) incorporation of optical flow estimates into
the state update with an iterative extended
Kalman filter.

Based on a judicious discretization of partial
derivatives of a Gaussian low-pass filter, it be-
came possible to estimate image gradients and
optical flow vectors with full-frame resolution
at each half-frame time point: The operator
masks incorporated a suitable interpolation be-
tween odd and even half frames (fields) of in-
terlaced video digitizations (Otte 1994; Otte
and Nagel 1995), allowing a cut in the predic-
tion period by a factor of two, thereby reducing
the extrapolation error to one-fourth com-
pared to full-frame prediction. The implied
doubling of the prediction/update frequency
has to be paid for by a doubling of computa-
tional expenses. This effect has been compen-
sated, however, by the increase in computing
power within eighteen months: It turned out
to be more advantageous to lag behind the
highest tracking speed attainable at any one
time than to trace down complicated tracking
failures that could build up over a long period
by accumulating very small residual discrepan-
cies of the fitting process.

Previously, only the distance between an
edge-element location and the model segment
had been taken into account by the state-up-
date phase of the Kalman filter. The second im-
provement also incorporated the orientation
difference between the gradient direction and
the normal from the location of an edge ele-
ment to the model segment. This modification
allowed the exclusion of edge elements from
being tentatively associated with a model seg-
ment if the orientation difference turned out
to be too large. In addition, edge elements that
are better aligned with the current model seg-
ment contribute more to the state parameter
update than those that are less well aligned al-
though still within the orientation tolerance.

The third major modification extended the
residual function by including the difference
between the displacement rate—determined
for each visible surface picture element on the
basis of the current state estimate—and the op-
tical flow vector estimated at the correspond-
ing image location. Because of the recording
conditions that in our case require a large field
of view of the stationary camera to follow ve-
hicles during significant maneuvers, vehicle
images are usually small. The number of pixels
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Fuzzy membership functions such as those
illustrated in figure 12 encode the (principally
vague) a priori knowledge about the relation
between the (3D) speed estimate for the vehi-
cle in question, as obtained by the geometric
tracking process, and the conceptual values
used to describe qualitatively this numerically
given speed. Similar membership functions
have been defined for the conceptual values
that can be assumed by the predicates
has_course_toward_loc and has_distance_to_loc.
This information is used to convert the quan-
titatively given results obtained by the geomet-
ric tracking process to a degree of validity (a real
number between 0.0 and 1.0) to the “fact” that
the predicate has the corresponding qualitative
conceptual value at a particular (half-frame)
time point. These degrees of validity are evalu-

ated by an inference engine (see Schäfer
[1996]) that combines the conjunction of sub-
predicates—evaluated for each occurrence as a
function of time according to a separately spec-
ified acceptance automaton—to obtain a de-
gree of validity for the association of such an
occurrence with the vehicle trajectory at a par-
ticular point in time. Figure 13 visualizes these
associations for a small part of the trajectory of
the bus (vehicle candidate 10), shown in the
right panel of figure 8.

Representation of Behavior
To this point, only individual actions (maneu-
vers) of an agent vehicle have been treated at
the conceptual level. Associated occurrences
correspond to verb phrases that can be com-
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Figure 11. Typical Results Obtained by Vehicle Tracking at the Scene Domain Level. 
The polyhedral vehicle models used and the resulting trajectories are overlaid in a vehicle-candidate–specific shade, with
a vehicle candidate number plotted next to each vehicle image in the same shade. The video image frame corresponds to
a time shortly after traffic lights had switched to red for vehicles coming from the right. Those vehicles that had turned
left into the two lanes ending at the lower border of the field of view had to slow down because they could not yet proceed
further. The traffic lights had already changed to green for vehicles coming from the top left corner; the first of these ve-
hicles had just begun to cross the intersection. (Courtesy M. Haag.)



prediction edges; see figure 14. A situation node
combines a state representation scheme—ex-
pressed as a conjunction of fuzzy metric-tem-
poral logic predicates—and an action scheme.
The action scheme indicates the action open to
the agent provided the state scheme can be in-
stantiated from observations related to this
agent. In other words, the (time-indexed) re-
sults imported from the core computer vision
subsystem are converted into a model-theoret-
ic set of individuals that are used to interpret
the logic formulas representing the a priori
knowledge about temporal developments in
the depicted scene.

At each consecutive point in time (that is,
for each half-frame), the inference engine acti-
vated for the interpretation task selects the
highest-prioritized prediction link to attempt
to interpret the state representation scheme of
the successor node. If such an attempt fails, it
is repeated iteratively following successively
lower prioritized links until either a state repre-

bined with a noun phrase referring to the
agent vehicle—in the simplest case, just an
identifier that is treated as a proper name—to
construct a single sentence in isolation. A nat-
ural next step consists of an attempt to treat
such actions within their mutual context,
namely, to concatenate individual maneuvers
in a manner compatible with experience to
study the behavior of vehicular agents. Such a
step corresponds to a progression from the
conceptual primitives level in figure 2 to the
behavior representation level.

Situation Graphs and 
Situation Graph Trees
The system has to incorporate, therefore, a pri-
ori knowledge about which vehicle maneuvers
can be concatenated—and under which condi-
tions—into admissible sequences of occur-
rences. Such knowledge about vehicular be-
havior is represented internally as a situation
graph formed by situation nodes connected by
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has_speed(Agent) has_course (Agent,Location) has_distance (Agent,Location)Occurrence

PREC MONC POSTC PREC MONC POSTC PREC MONC POSTC

approach loc moving — moving approaching — approaching not_zero > small

reach loc moving — moving — — — small > zero

drive across loc moving — moving — — — zero — zero

drive away from
loc

moving — moving leaving — leaving small < not_zero

Table 1. Time-Dependent Predicates Defining Occurrences That Refer to Both the Agent and a Location. 
The symbol > indicates a decreasing slope for the value subject to the monotonicity condition MONC; the symbol < correspondingly
indicates an increasing slope. The term has_course denotes the abbreviation of the predicate has_course_toward_loc with the conceptual
values approaching and leaving. Similarly, has_distance stands for the predicate has_distance_ to_loc. See Gerber and Nagel (2002).
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Figure 12. Discretization of Continuous Speed Values into a Set of Intervals.
The graph shows the fuzzy membership functions µspeed value for the subset {zero, small, normal, high, very_high} of discrete conceptual
speed values.



sentation scheme of a successor situation can
be instantiated, or the list of possible successor
situations has been exhausted.

The next steps performed by the inference
engine depend on the position of the last suc-
cessfully instantiated situation node. In princi-
ple, the number of predicates to be checked
during an instantiation attempt can become
rather large, with a high probability that most
predicates remain true at the (frame)time suc-
ceeding the last point in time with a successful-
ly instantiated situation node. Thus, it appears
advantageous to organize situation nodes not
only according to their temporal concatena-
tion but also according to a degree of concep-
tual refinement. A more abstract situation
node can be refined into a less abstract repre-
sentation by either the addition of new predi-
cates to the state representation scheme (spe-
cialization) or the temporal decomposition
into a subsequence of situation nodes referring
to a more detailed state representation scheme.
The (most) abstract situation node cross (for
“cross an intersection”) in figure 14 is refined
into a subgraph constituted by a concatenation
of three situation nodes, namely, (1) drive_
to_intersection, (2) drive_on_intersection, and
(3) leave_intersection. Such a refinement can
take place recursively, as illustrated by figure
14. A subordinate situation node, that is, a situa-
tion node in a graph that refines a more ab-
stract situation node, inherits all predicates
from its superordinate situation nodes. These
predicates are included in the set of logic for-
mulas constituting the state representation
scheme of the subordinate situation node. This
hierarchical organization of a situation graph
greatly simplifies the design and maintenance
of more complex behavior representations: A
situation graph is turned into a special case of
a directed hypergraph, namely, into a situation
graph tree. 

The tree property is important for the situa-
tion graph tree traversation rule followed by
the inference engine. If a situation node has
successfully been instantiated, it is attempted
next to instantiate the entry node of its subor-
dinate situation graph (if there is one): This
rule aims at reaching the most detailed situa-
tion node compatible with the currently pre-
vailing facts. If an attempt to instantiate a suc-
cessor node in a subgraph fails at some later
point in time, the situation graph tree traversa-
tion algorithm returns to the uniquely speci-
fied more abstract situation node and attempts
to continue from there. The unsatisfiability of
a more refined state representation scheme
does not exclude that a more abstract scheme
can still be satisfied by current observations.

Because of this rule, a more general (for exam-
ple, emergency) reaction can still be possible
even if the originally anticipated detailed se-
quence of actions must be ruled out because
their conditions—namely, the satisfaction of
all predicates required by the state representa-
tion scheme of the more detailed situation
nodes—can no longer be confirmed.

A path through a directed situation graph
tree implies that the agent executes the actions
specified in the most detailed situation node
reached at each point in time during traversal;
that is, such a path implies the behavior asso-
ciated with the concatenation of actions en-
countered along such a path. 
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Figure 13. Part of the Bus Trajectory from Figure 8, 
Reproduced as a Set of Shaded Ribbons. 

The width of each ribbon reflects the degree of validity with which an occurrence
(indicated next to each ribbon) from table 1 describes a segment of the bus tra-
jectory. The + sign in the image center indicates the location on the road plane
to which the occurrence definitions refer. Some ribbons have been shifted side-
ways relative to the original bus trajectory to avoid overlaps. A conceptual de-
scription has to be associated consecutively for a minimum number of frames (in-
dicated by hollow ribbon sections) until it definitely becomes accepted. Note how
the different associations either terminate abruptly or peter out as time goes on,
depending on the particular occurrence definition.
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the latter in the upper left quadrant of the
scene depicted by the left panel. This allows,
for example, to determine the degree of occlu-
sion—see figure 16—of vehicles while they
pass behind this traffic sign.

Figure 17 shows enlargements of the image
area cropped within the square window indi-
cated in the upper left quadrant of figure 15 for
three different frames of a subsequence. Dur-
ing the initial part of this subsequence, the

Feedback for Tracking Via the 
Behavioral Representation Level
The exploitation of a priori knowledge incor-
porated into a situation graph tree will be illus-
trated by an approach to cope with the behav-
ior of vehicles which changes while they are
occluded. The right panel of figure 15 shows
(interactively generated) 3D polyhedral models
of a tree, several masts, and a large traffic sign,
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speed(Agent, very_low);

start_in_front_of_intersection

speed(Agent, null);

wait_in_front_of_intersection

speed(Agent, >=low);

proceed_to_intersection

wait_on_intersection

speed(Agent, null);

proceed_on_intersection

driving(Agent);

lane_direction(Agent, Lane, longitudinal);

leave_intersection

on(Agent, depart_crossing:Lane);

drive_on_intersection

on(Agent, crossing_lane:Lane);

lane_direction(Agent, Lane, longitudinal);

cross

agent(Agent);

traj_active(Agent);

proceed_to_intersection_behind_vehicle

patient(Patiens);

Agent != Patient;

orientation(Agent, Patient, in_front_of);

direction(Agent, Patient, straight_ahead);

near(Agent, Patient);

nothing_between(Agent, Patient);

proceed_to_intersection_alone

lane_direction(Agent, Lane, longitudinal);

on(Agent, approach_crossing:Lane);

drive_to_intersection

stop_in_front_of_intersection

speed(Agent, very_low);

Figure 14. Top Four Levels from a Situation Graph Tree.
The top four levels represent a situation cross (an intersection) and its refinement into a subordinate situation graph constituted by the con-
catenation of situation nodes for drive_to_intersection, drive_on_intersection, and leave_intersection. The first two situation nodes within
this subordinate situation graph have been refined further. The action part of situation nodes has been omitted for simplicity. (Adapted
from Haag and Nagel [2000] © 2000 Elsevier, reproduced with permission).



larger bright van passed behind the traffic
sign—see the left (dashed) occlusion curve in
figure 16—and then slowed down in front of
the red traffic light until it had come to a com-
plete stop. The smaller vehicle following the
van, a fastback, was occluded somewhat later
by the same sign (right occlusion curve in fig-
ure 16). This fastback began to slow down im-
mediately prior to occlusion and came to a full
stop shortly afterward when it was completely
occluded. It only began to move again after the
van had started driving when the traffic light
in front of it had switched to green. 

As soon as the degree of occlusion exceeds a
threshold of about 70 percent of the projected
model area, the state update occurs no longer
on the basis of edge element and optical flow
data but instead relies on numeric input de-
rived from the behavior predicted on the basis
of the situation graph. Thus, researchers can
take into account that the fastback in figure 17
brakes and comes to a full stop to avoid crash-
ing into the van in front of it in the same lane.
The fastback will begin to accelerate again only
after the preceding van starts driving, and a
safety distance has built up that allows the fast-
back to follow without danger. To our knowl-
edge, this is the first example of a Kalman filter-
–based vehicle-tracking process being
temporarily controlled not by data but by a
fuzzy metric-temporal logic inference engine
(Haag [1998]; Haag and Nagel [1998]).
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Figure 15. Three-Dimensional Models for Stationary Objects in the Scene.
A frame from a sequence recorded at another Karlsruhe intersection is shown in the left panel (courtesy M. Haag). The small square in
the left upper quadrant indicates where a window has been cropped that is used after enlargement in figure 17. The right panel repre-
sents a somewhat enlarged section from the left panel, overlaid by polyhedral models for a road sign mounted at a separately modeled
mast, for a tree, and for various other masts carrying traffic signs, traffic lights, or lamps. (From Haag and Nagel [1999] © 1999 Kluwer,
reproduced with permission).
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Figure 16. Degree of Occlusion of Vehicles by Stationary Scene Objects.
Degree of occlusion of the vehicles marked in figure 17 by their models overlaid
in a dashed line (the van, passing behind the traffic sign first) and a solid line (the
fastback, following shortly thereafter). Note that the van spent less time being oc-
cluded by the traffic sign because it still drove, whereas the fastback came to a full
stop behind the traffic sign to avoid crashing into the van in front of it in the
same lane. The occlusion of the fastback began to diminish when it emerged from
behind the traffic sign once the van had started to drive again. The small occlu-
sion extremum immediately following the large solid one is the result of pose cor-
rections (see the kick in the fastback trajectory superimposed on the lowest panel
in figure 17) caused by the tracking process once at least about 30 percent of the
fastback had emerged from the occlusion according to occlusion reasoning based
on an evaluation of the relative 3D geometric relations between camera, traffic
sign, and fastback. (Courtesy M. Haag, adapted from Haag and Nagel [1998] ©
1998 Springer-Verlag, reproduced with permission.)
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schema:State State instantiation:

Agens ,driving)
modus(Patiens,standing)

,driving)
modus( ,standing)obj_9

schema:Action Action instantiation:
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approach_preceding_
vehicle obj_9,obj_7(                   )
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schema:State State instantiation:
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start_up_behind_preced-
ing_vehicle obj_9,obj_7(                    )
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schema:State

schema:Action Action instantiation:

State instantiation:

modus(Agens ,standing)
modus(Patiens,standing)
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Figure 17. Feedback to the Geometric Tracking Process Using the Behavioral Representation Level. 
The left column of panels illustrates three particular states from a subsequence during which the bright van, followed by the small fastback,
passes behind the large traffic sign. (Courtesy M. Haag, adapted from Haag and Nagel [1998] © 1998 Springer-Verlag, reproduced with per-
mission).

The center column shows the state representation and the action scheme for the situation nodes approach_preceding_vehicle,
wait_in_front_of_intersection_behind_vehicle, and start_up_behind_preceding_vehicle. The right column shows the instantiation of the corre-
sponding schemes in the center column, now giving the identifier for the individuals that the inference engine substituted for the logic
variables during the interpretation of the predicates shown in the state representation schemes in the center column. The identifiers obj_7
and obj_9 are reproduced in the same shade as the vehicles in the left column to which they refer. Note that predicates shown explicitly as
part of the state representation schemes in the center column form only a fraction of the set of logic formulas constituting the entire state
representation scheme to be satisfied: Predicates belonging to the state representation schemes of superordinate situation nodes have been
suppressed here for clarity (see, too, Haag [1998]). 



Text Generation from 
Conceptual Representations

Given a conceptual representation of temporal
developments in the form of a time-attributed
set of logic formulas, it appears natural to look
for a method that relates natural language text
to logic. If it should become possible to invert
such a method to “turn the meaning” of logic
formulas by algorithmic means into a natural
language text, a road would open along which
the content of a video sequence could be con-
verted into a natural language textual descrip-
tion—a systematic realization of genuine mul-
timedia. 

The discourse representation theory (see, for ex-
ample, Kamp and Reyle [1993]) treats a
method that converts a natural language text
into an internal representation—the so-called
discourse representation structure—which is
closely oriented toward predicate logic. In fact,
the authors discuss conditions and algorithmic
means by which a discourse representation
structure can be transformed into a set of first-
order–predicate logic formulas. We thus stud-
ied this formalism to obtain a systematic ap-
proach toward transforming the fuzzy
metric-temporal logic representation of vehic-
ular behavior extracted from video sequences
into natural language descriptions (see, for ex-
ample, Gerber and Nagel [1998]). Space does
not permit me to go into details. It turned out
that no modules were readily available yet that
inverted the text-to-logic branch. To bridge
this gap, Gerber developed a module with the

aim of providing at least a rudimentary text-
generation component based on partial instan-
tiations of situation graph trees (Gerber 2000).
This module has primarily been used with data
pertaining to the behavior of single vehicles.

The systematic basis of this approach en-
abled us to extend it to generate simple de-
scriptions of the formation and dissolution of
vehicle queues (Gerber, Nagel, and Schreiber
2002). Figure 18 shows two representative im-
age frames from a long video sequence illus-
trating a traffic queue that built up in front of
a red traffic light (left panel) and began to dis-
solve shortly after the traffic light switched to
green.

In this case, the polygonal lane structure re-
ferred to earlier has been used to select all ve-
hicles approaching and crossing the depicted
intersection on the left lane marked in the
right panel of figure 19. Conceptual concatena-
tion of the different lane segments marked in
figure 19 by heavy boundary lines has been
performed by the same inference engine that
evaluates the situation graph trees. A sample of
the algorithmically generated—rather sim-
ple—textual description is given in figure 20.

It will be instructive to reflect on the reasons
for the increasingly objectionable monotonous
formulations found in figure 20. First, each ve-
hicle has been mentioned to provide a check
for vehicles that might have been lost some-
where along the processing chain. In addition,
the system still lacks suitable linguistic abstrac-
tion facilities that would allow replacing the
detailed recounting by a phrase characterizing
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obj_25

obj_15

obj_9

obj_8

obj_6

obj_2

obj_29

obj_27

obj_25

obj_15

obj_9

obj_8

Figure 18. Two Representative Image Frames (Left: 400; Right: 875) from a Road Traffic 
Intersection Sequence That Makes Up a Total of 2320 Frames. 

The frame rate of this sequence is equivalent to a sampling rate of 50 frames a second; that is, the entire image sequence covers slightly
more than 45 seconds of road traffic. (Adapted from Gerber, Nagel, and Schreiber [2002] © 2002 IOS Press, reproduced with permission).



that are too brittle for a long and complicated
sequence of additional evaluation steps. Obvi-
ously, computing resources needed to become
available at sufficiently low prices that univer-
sity laboratories could afford to test computa-
tionally more expensive algorithms, in partic-
ular, ones based on optical flow estimation. 

It took some time until the switch from pic-
ture domain tracking to model-based 3D scene
domain tracking became a seriously investigat-
ed alternative. The systematic introduction of
a priori knowledge in the form of 3D body and
motion models, in combination with the adap-
tation of Kalman filtering to this kind of track-
ing task, provided a quantum jump in robust-
ness. It allowed researchers to experiment with
the evaluation of longer video sequences such
that it became possible to study not only vehi-
cle motion but also vehicle maneuvers. 

A next big step forward became possible
when early feature-based optical flow estimates
could be replaced by gradient-based approach-
es that provided a much denser optical flow
field to work with. The combination of edge el-
ement and optical flow matching during the
state-update cycle then increased the tracking
precision and stability to a point where one
could begin to think about the investigation
not only of single maneuvers but also of entire
maneuver sequences and, thus, about the in-
vestigation of vehicle behavior.

At about this point in the development, ear-

an entire set of repetitive developments. An-
other stylistic tool used by humans in such a
case, namely, a variation in the manner by
which the different vehicles are referenced, is
also not yet available; it necessitates providing
the required identifying properties for individ-
ual vehicles (such as their color or shape) or
spatiotemporal relations (such as beside, slight-
ly to the left of, and the one after it). These last ex-
amples are particularly interesting because
they illustrate the close interaction between
fundamental competences in the geometric
and conceptual subsystems.

Discussion and Conclusions
The idea of having an algorithm convert a
video sequence into natural language text has
been pursued in our group for several decades
now (Nagel 1988, 1977). As the exposition in
the preceding sections illustrated, at least the
semblance of a solution becomes amenable to
systematic investigations. It might be interest-
ing to ponder for a moment why this develop-
ment took so long.

The Interaction between Available
Computing Resources and Algorithm
Development
The development sketched here suggests a
combination of causes. It appears that mere
change detection provides intermediate results
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lobj_2                lobj_5

lobj_8

Figure 19. Lane Structure Exploited for Generation of Traffic Queue Descriptions.
The left panel shows an image frame from the sequence illustrated in figure 18, overlaid by the lane model for this intersection. One lane
segment of the incoming lane entering the field of view from the top left corner is marked by heavy boundary lines. The right panel exhibits
the same image, but this time, the intersection crossing segment and the outgoing segment of this same lane are also marked by heavy
boundary lines. In addition, the lane identifiers for the three segments of this lane are given. (Adapted from Gerber, Nagel, and Schreiber
[2002] © 2002 IOS Press, reproduced with permission.) 



ly attempts to associate conceptual descrip-
tions with geometric results could be tested
systematically enough to lay open less fre-
quently occurring deficiencies. As a conse-
quence, a more systematic approach based on
formal methods became imperative unless one
runs the risk of being swamped by difficult to
analyze deficiencies of ad hoc approaches. 

Chaining all required processing steps from
video recording through to the algorithmic
generation of natural language textual descrip-
tions now offers the chance to systematically
assess an overall approach to detect and re-
move the most disturbing bottlenecks.

On Exercises and Research Problems1

The desire to analyze more complex temporal
developments necessitates the ability to
process long image sequences without gross
failures. Even rarely occurring failures can in-
terrupt the provision of correct geometric re-
sults to the inference processes involved and
thereby prevent the generation of an appropri-
ate description of the spatiotemporal develop-
ment in the scene.

According to our current experience, some
of these bottlenecks still seem related to early

processing stages, in particular, to the detec-
tion of vehicles to be tracked and to a robust
initialization of a model-based tracking
process. Because this is a highly nonlinear
process, a problematical initialization can have
repercussions much later on, both during geo-
metric tracking and during subsequent treat-
ment of tracking results at the conceptual lev-
el. It can be difficult to trace back the root
causes for such problems.

Apart from tracing down erroneously con-
ceived or implemented algorithmic details, pa-
rameter tuning and provision of appropriate
models can turn into a potential bottleneck.
There have been efforts already to continuous-
ly estimate whether the current illumination is
directed (in our case, bright sunshine) or diffuse
(the sky being covered by clouds) (see Leuck
and Nagel 2001). Another effort addressed the
estimation of lane structures from image se-
quences (Mück 2000; Mück, Nagel, and Mid-
dendorf 2000). Further details about these and
other related questions were reported earlier.

A third problem area concerns the provision
of vehicle models. To this point, we have used
mostly standard models for vehicles that can
be observed most frequently at inner-city inter-
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“Obj_2 entered the lane. Later obj_6 entered the lane. The vehicles formed a pair.
Later obj_8 entered the lane. In the meantime the vehicles formed a queue. Obj_8 was the last
vehicle of the queue. Obj_2 was the head of the queue.
In the meantime obj_9 entered the lane. It was the last vehicle of the queue.
In the meantime obj_12 entered the lane. It was the last vehicle of the queue.
It left the queue. In the meantime obj_9 was the last vehicle of the queue.
In the meantime obj_15 entered the lane. It was the last vehicle of the queue.
In the meantime obj_8 left the queue.
In the meantime obj_25 entered the lane. It was the last vehicle of the queue.
In the meantime obj_27 entered the lane. It was the last vehicle of the queue.
In the meantime obj_2 left the queue.
In the meantime obj_6 was the head of the queue. It left the queue.
In the meantime obj_9 was the head of the queue.
In the meantime obj_29 entered the lane. It was the last vehicle of the queue.
In the meantime obj_9 left the queue.
In the meantime obj_15 was the head of the queue. It left the queue.
In the meantime obj_25 was the head of the queue. The remaining vehicles formed a pair.
Obj_25 left the lane.
Later obj_27 left the lane. In the meantime obj_29 remained as single vehicle.”

Figure 20. Output Text Generated for the Vehicle Queues Illustrated in Figure 18. 
(Adapted from Gerber, Nagel, and Schreiber [2002] © 2002 IOS Press, reproduced with permission.)



ble vehicle types, field of view to be covered,
and so on) and the task. A more principled dis-
cussion could concentrate on whether one
should use a fuzzy metric-temporal logic or
Bayesian (belief) networks. Based on re-
searchers’ experience, much larger experimen-
tal series than those used to date will likely
have to be evaluated to achieve reliable results.

A similar problem is likely to come up in the
future if details of natural language text gener-
ation have to be judged. Support for this hy-
pothesis can be found in Sparck Jones and Gal-
liers (1995), where input from video sequences
had not even been considered!

References to literature beyond the comput-
er vision discipline can be followed up with
other links,2 for example, to spatial reasoning.
As the short discussion in connection with fig-
ure 20 illustrated, areas in AI that have devel-
oped largely without intensive contact with
computer vision increasingly gain interest for
CVSs. Clearly, the evaluation of image se-
quences has reached a degree of maturity that
allows the study of the conversion of geometric
tracking results into conceptual representa-
tions and beyond. The hints regarding remain-
ing difficulties can be looked on as bad or good
news, depending on the age and stamina of the
reader. 
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Note
1. Richard Bellman is said to have appended a sec-
tion entitled “Exercises and Research Problems” to
one of his books on dynamic programming. When a
colleague remarked to him that he had forgotten to
indicate which problems were exercises and which
ones were research problems, Bellman reportedly an-
swered, “If you can solve it, it was an exercise; other-
wise it’s a research problem.“ Unfortunately, I cannot
give an exact reference for this definition.

2. Nagel, H.-H. 2001. Towards a Cognitive Vision Sys-

sections, namely, sedans, fastbacks, and station
wagons. The problems in these cases are more
related to automatically estimating the appro-
priate length, width, and height parameters.
This is a kind of hen-and-egg problem: Unless
vehicles can be tracked reliably, parameter esti-
mation becomes unreliable, but reliable vehi-
cle parameters are essential for tracking a vehi-
cle through difficult traffic situations (such as
diminished contrast with respect to fore-
ground and background, nontrivial occlusion
by stationary components of the scene or by
other vehicles). Busses for inner-city public
transport have mostly been standardized in
Germany with available 3D model data, so this
did not generate great difficulties. All other ve-
hicle types have had to be modeled interactive-
ly. 

Readers might have noticed that pedestrians
and bicycle riders have been excluded thus far
from the discourse domain. Results about the
detection, tracking, and description of the be-
havior of persons have been reported by oth-
ers, for example, Remagnino, Tan, and Baker
(1998) and Rota and Thonnat (2000). Given
the gamut of problems hinted at in the preced-
ing sections, it appears important to emphasize
robustness in a somewhat restricted discourse
domain over attempts to admit developments
in a more broadly defined domain. 

Conclusions
This contribution outlined an overall system
concept regarding a—nonexclusive—under-
standing of what constitutes a cognitive vision
system. It aimed first to indicate that such ex-
perimental approaches have become feasible.
An equally important aim was to illustrate
where problem areas developed; why they be-
came hot spots; and which methodological ap-
proach helped to defuse them, at least for a
time. 

The particulars presented do not imply that
the system approach outlined here is the only
or the best one. Alternative approaches toward
tracking and describing road traffic have been
pursued increasingly over the past decade; see,
for example, Buxton and Gong (1995); Chella,
Frixione, and Gaglio (2000); Dance, Caelli, and
Liu (1995); Howarth and Buxton (2000); Intille
and Bobick (1999); Kojima, Tamura, and Fuku-
naga (2002); Neumann (1989); and Pece and
Worrall 2002. It appears too early to decide
which (combination of) approach(es) offers
the greatest promise, given well-defined
boundary conditions regarding specifics of the
discourse domain (required success and false
alarm rates, illumination conditions, admissi-
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tem. http://kogs. iaks. uni-karlsruhe. de/CogViSys/
kogs_CogViSys_homepage_V22_lin. pdf.
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