
■ This article surveys previous work on combining
planning techniques with expressive representa-
tions of knowledge in description logics to reason
about tasks, plans, and goals. Description logics
can reason about the logical definition of a class
and automatically infer class-subclass subsumption
relations as well as classify instances into classes
based on their definitions. Descriptions of actions,
plans, and goals can be exploited during plan gen-
eration, plan recognition, or plan evaluation.
These techniques should be of interest to planning
practitioners working on knowledge-rich applica-
tion domains. Another emerging use of these tech-
niques is the semantic web, where current ontol-
ogy languages based on description logics need to
be extended to reason about goals and capabilities
for web services and agents.

Most real-world planning applications
are naturally knowledge rich. Yet
planning research to date has concen-

trated on languages and algorithms to repre-
sent and search through decision spaces in or-
der to generate feasible plans. Typical planning
systems use very small amounts of knowledge,
and the representations of the domain or the
planning tasks are typically not very expres-
sive. A challenging area of future research is the
integration of existing planning algorithms
with rich representations of domain-specific
knowledge about planning tasks and objec-
tives, actions and events as part of a plan, and
the complex relations among them. The com-
bination of these techniques will result in plan-
ning systems that will be better equipped to ad-
dress more effectively the needs of real-world
planning applications.

Recent interest in web services and their
composition to create distributed applications

also brings this topic to the forefront of re-
search. Planning approaches have been used as
a framework for web service specification and
composition (Kim, Spraragen, and Gil 2004;
McDermott 2002; Ankolenkar et al. 2002). The
richer the representation of the capabilities of
web services and of their relations to other ser-
vices, the more automation can be brought to
bear for web service composition. Rich repre-
sentations of goals and capabilities would also
support other purposes such as matching of re-
quests to existing services. The semantic web
vision (Berners-Lee, Hendler, and Lassila 2001)
brings a renewed interest in reasoning about
tasks, goals, and plans using rich domain de-
scriptions.

This article gives an overview of different us-
es of expressive representations of planning
knowledge, focusing on description logics as
expressive knowledge representation frame-
works with well-understood reasoning com-
plexity and tractability. Although these uses
have been investigated in the description logics
arena, they have not been incorporated within
state-of-the-art planning algorithms. I discuss
four main uses of description logic to represent
planning knowledge, specifically: (1) object
taxonomies to reason about the planning state
expressed with descriptions of the different
types of objects in the domain; (2) action tax-
onomies to reason about action types at differ-
ent levels of abstraction; (3) plan taxonomies
to reason about plan subsumption of partially
ordered plans; and (4) goal taxonomies to rea-
son with expressive representation of goals and
their parameters.

The article draws examples from three imple-
mented systems. The systems are only partially
described here, the reader is referred to the ci-
tations for more details on the approaches
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based systems that can express definitions of
classes and relations. Description logic lan-
guages differ in expressivity, which determines
the computational complexity of the reasoning
algorithms for each language. Class definitions
can include disjunction and negation as well as
constraints on the relations to other classes. A
relation between a class (its domain) and anoth-
er class (its range) can be constrained in cardi-
nality and type. Relations can also be given de-
finitions and therefore have subclasses as well.
Class partitions can be defined by specifying a
set of subclasses that represent the partitions
and can be exhaustive if all instances of the class
belong to some partition and disjoint if there is
no overlap in the subclasses. A class can be de-
noted as a primitive class and not given a defin-
ition, and in that case its subclasses and in-
stances must be explicitly indicated. 

Description logic systems use these defini-
tions to automatically organize class descrip-
tions in a taxonomic hierarchy and automati-
cally classify instances into classes whose
definitions are satisfied by the features of the
instance. Specifically, description logic reason-
ers provide two key capabilities: (1) class sub-
sumption, where a class C1 subsumes another
class C2 if its definition includes a superset of
the instances included in C2; and (2) instance
recognition, where an instance belongs to a class
if the instance’s features (roles and role values)
satisfy the definition of the class. Description
logic systems also have mechanisms to detect
inconsistent definitions and support reasoning
through inheritance and default values. Be-
cause of multiple inheritance, the taxonomic
hierarchy is often a lattice.

To illustrate the use of these different kinds
of reasoning, I use a simple example that shows
how to represent office meetings and then dis-
cuss how a meeting planner could exploit these
representations. Figure 1 shows a representa-
tion, not complete for lack of space, of meet-
ings and other events in a description logic.
Classes are capitalized, and relations are shown
in lowercase. An activity is defined as anything
that has a start time, a day, a month, and a year.
A work activity is defined as an activity that has
a work location, which can be one of several
given meeting rooms or an office. Anything
that has a start time, a day, a month, a year, and
two participants is considered to be a meeting.
Conversely, any meeting must have those five
features. Meetings can also have a project, a
presentation, a duration, and a location, but
these features are not necessary nor sufficient
for something to be a meeting. Relations for
presentations and meeting participants and
presenters are also shown. Mtg7986 is specified

used. One of these systems is CLASP (Devanbu
and Litman 1996), a system developed to rea-
son about action taxonomies and action net-
works. CLASP was applied to a telephony do-
main and was integrated with the LaSSIE
software information system (Devanbu et al.
1991). This article also draws examples from
SUDO-PLANNER (Wellman 1988), which ex-
ploited plan subsumption to control the search
during plan generation. It was designed to rea-
son about trade-offs in decision making under
uncertainty and was developed for medical ap-
plications. SUDO-PLANNER had other features
not described here, including uncertainty rea-
soning and partial goal satisfaction, policy con-
straints to relate actions to external events,
conditional effects, and qualitative probabilis-
tic networks. I also use examples from EXPECT
(Gil 1994, Swartout and Gil 1995, Gil and Melz
1996, Blythe et al. 2001), an architecture for
problem solving and reasoning that supports
interactive acquisition of knowledge. EXPECT
exploits structured representation of goals and
capabilities to support sophisticated matching
during problem solving as well as facilitating
the generation of natural language paraphrases
of problem-solving knowledge. The same goal
and capability representations were used in the
PHOSPHORUS agent matchmaker used in a
multiagent system for an office environment
(Gil and Ramachandran 2001, Chalupsky et al.
2002). 

I will begin this article with a brief introduc-
tion to description logics. I then describe how
to use description logics to reason about ob-
jects, actions, plans, and goals. I use examples
taken from three implemented systems and al-
so summarize along the way other related re-
search that often integrates this work with oth-
er techniques in knowledge representation,
planning, and natural language. 

A Brief Introduction to 
Description Logics

This section gives a short and informal intro-
duction to description logics. See the papers by
Brachman and Levesque (2004) and Baader et
al. (2003) or the dl.kr.org web site for a compre-
hensive introduction and overview of descrip-
tion logics, their formal underpinnings, exist-
ing implementations, and applications. The
role of description logics in the semantic web
and their use in web ontology language stan-
dards are discussed in the papers by Antoniou
and van Harmelen (2004); Horrocks, Patel-
Schneider, and van Harmelen (2003); and
Baader, Horrocks, and Sattler (2003).

Description logics are an extension of frame-
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as an instance, and several roles and their
ranges are given, but notice that no parent class
is specified.

Given these definitions, a description logic
system would make the following inferences,
which are in some cases quite subtle in the way
they exploit the definitions. The Meeting class
is a subclass of the Activity class, given that the
definition of a meeting is subsumed by the de-
finition of an activity since it has a start time,
day, month, and year. A meeting may have a
presentation. The relation presenter is a sub-
class of the relation meeting-participant. Smith
is a presenter in mtg7986 and therefore is a
meeting-participant. Mtg7986 is an instance of
the Meeting class, given that mtg7986 com-
plies with the definition of a meeting because it
has a start time, day, month, year, and two
meeting participants. 

Knowledge bases developed with description
logics are more modular and maintainable,
since the reasoners are able to derive the taxon-
omy automatically and therefore the descrip-
tions of classes and instances do not need to
take into account all other definitions in the
knowledge base. Note that by not stating ex-
plicitly the class of the instance mtg7986 we
can decouple the definitions of the classes and
the instances and therefore develop a more
modular and maintainable knowledge base.

Description logic systems also facilitate the
development of knowledge bases by detecting
inconsistent descriptions. The reasoners would
detect that mtg8897 is not consistent, since a
work activity cannot have a location that is not
a conference room or an office. Another impor-
tant capability of description logics is to sup-
port queries that in effect form new classes on
the fly. The figure shows a query for any in-
stances that are meetings of the Trellis project,
which will return mtg7986 and any others that
satisfy that definition.

Some well-known description logic systems
include CLASSIC (Brachman et al. 1991) (used
in CLASP); NIKL (Moser 1983) (used by SUDO-
PLANNER); LOOM (MacGregor 1991) (used by
EXPECT); FaCT (Horrocks 1998); and RACER
(Haarslev and Möller 2001).

Ontology languages for the semantic web
based on description logics are now de facto
World Wide Web Consortium (W3C) stan-
dards. OWL, the Web Ontology Language1 in-
cludes in its specification three flavors of in-
creasing expressivity and complexity. OWL-DL
is a description logic built as an extension of (a
subset of) RDF2 with a reasonable level of ex-
pressivity and at the same time there already
are highly optimized implemented systems for
its language. OWL-Lite is a simpler subset of
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(defconcept Activity
    :is (:and Thing
              (:exactly 1 start-time)
              (:exactly 1 day)
              (:exactly 1 month)
              (:exactly 1 year))
    :constraints (:some duration)
    :exhaustive-partition Work-Activity Non-Work-Activity)

(defconcept Work-activity
    :is (:and Activity
              (:the location Work-location)))

(defconcept Conference-room
    :is-primitive (one-of 9cr 11cr 12cr 4cr 10cr) 

(defconcept Office
    :is-primitive (one-of 901 919 949 934 950 913) 

(defconcept Work-location
    :is (:or Conference-room Office))

       (defconcept Meeting 
   :is (:and Thing
             (:exactly 1 start-time)
             (:exactly 1 day)
             (:exactly 1 month)
             (:exactly 1 year)
             (:at-least 2 meeting-participant))
   :constraints (:and (:some topic)
         (:some project)
         (:at-most 1 duration)
         (:at-most 1 location)))

(defrelation presentation
   :is (:and (:the domain Meeting)
             (:the range Document)))

(defconcept Document :is-primitive thing)

 (defrelation owner
   :is (:and (:the domain thing)
             (:the range Person)))

(defrelation presenter
    :is (:composite-relation presentation owner))

(defrelation meeting-participant
   :is (:or (:and (:the domain Meeting)
     (:the range Person))
     presenter))

(instance mtg7986
  :start-time 1500
  :day 12 :month December  :year 2003
  :project Trellis
  :presentation Trellis-kickoff-slides.pdf
  :meeting-participant Diaz
  :location 9cr)

(instance Trellis-kickoff-slides.pdf Document
  :owner Smith)

(instance mtg8897 Work-activity  :location Street)

(query ?TM (instance ?TM 
              (:and Meeting 
                    (:the project Trellis))))

Figure 1. Some Descriptions to Represent Meetings in a Description Logic.



logic restricted to conjunctions of feature re-
strictions and equality. An action can be ap-
plied to a state if the precondition expression
subsumes the current world state. The expres-
sion in the effects results in the assignment of
the values or restrictions in the features men-
tioned. 

Artale and Franconi (1998) define a temporal
description logic that incorporates Allen’s in-
terval relations (Allen 1984) and that can be
used to specify descriptions of actions and
plans in terms of temporal relations to world
states and other actions.

Reasoning about 
Action Taxonomies

Actions can be described at many levels of ab-
straction. For example, driving and flying are
both moving actions with specific means of lo-
comotion. Walking is also a moving action that
does not require a transportation vehicle. If we
describe moving actions in terms of their prop-
erties and constraints, they can be organized in
a taxonomy that will then enable more effi-
cient reasoning about actions through abstract
classes. Simple action taxonomies that do not
utilize description logics have been used for
case-based planning (Alterman 1986), plan
generation (Tenenberg 1989), and plan recog-
nition (Kautz 1991). The advantage of using de-
scription logics is that the taxonomy can be
constructed automatically by the system based
on the class descriptions provided, instead of
being built by hand, which is more time-con-
suming and prone to error. This can make the
taxonomies and the approaches more scalable
to problems with large numbers of complex ac-
tions.

I illustrate this idea with CLASP. CLASP used
a STRIPS-like representation (Fikes and Nilsson
1971) of actions in the plan and assumed a
propositional representation of planning prob-
lems with conjunctive expressions of precondi-
tions and states. Figure 2 shows the core defin-
ition of actions and states, as well as some
example actions and states in the telephony
switching domain. The core definition of an ac-
tion shows that it has actors, preconditions,
and add and delete lists. Domain-specific types
of states and actions are described using the
corresponding core definitions. A system ac-
tion is defined as any action performed by the
system (not by a user). A connect dialtone ac-
tion is defined as an action performed by a sys-
tem that provides a dialtone when the tele-
phone is off the hook and idle. Specific states
and actions are created as instances of the class-
es defined in these taxonomies. The initial and

OWL-DL. OWL-Full extends OWL-DL with ad-
ditional constructs, extending on RDF as well.
OWL and its predecessors have made descrip-
tion logic systems widely accessible and used at
unprecedented levels.3

The following sections illustrate some of the
uses of description logics in the context of di-
verse planning tasks and application domains. 

Reasoning about 
Object Taxonomies

Planning systems often reason about how ac-
tions transform an initial state of the world in-
to a final state, changing the domain objects as
actions are executed. State information is often
expressed as a set of ground predicates, in some
cases organizing objects into small type hierar-
chies. Expressive representations and reasoners
can be used in planning systems to define com-
plex domain terms and objects. For example, a
meeting planner could reason about events
and differentiate meetings from other activities
and pose dynamically formulated queries
about new kinds of meetings with different
combinations of features, such as meetings rel-
evant to specific projects, using the definitions
shown in figure 1. These descriptions can also
be used to reason about actions based on types
of objects. For example, a meeting planner
could use different criteria to handle meetings
that are relevant to multiple projects. 

CLASP, SUDO-PLANNER, and EXPECT all
represented the objects in their respective do-
mains in description logics, and as a result they
were able to represent actions, plans, and goals
in terms of object classes and the kinds of rea-
soning that can be supported with them. State-
of-the-art planning algorithms could be ex-
tended with state descriptions expressed in
description logics and could support precondi-
tion matching through description logic rea-
soners. 

The TINO mobile robot uses description log-
ic to generate high-level plans (De Giacomo et
al. 1996). The representation of the domain in-
cludes static axioms, used to represent back-
ground knowledge that does not change as ac-
tions are executed, and dynamic axioms that
represent the changes caused by the actions.
Conditional plans are generated, and during
execution different branches can be selected
based on sensory feedback.

The representations of actions using the rep-
resentation of actions (RAT) using terminolog-
ical logics  planning framework (Heinsohn et
al. 1992), used to design multimodal presenta-
tions in WIP (Wahlster et al. 1993), represents
preconditions and effects using a description
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goal states are defined as instances. Specific ac-
tions are defined as instances as well, for exam-
ple connect-dialtone-on-u1 is performed by a
switching system and requires the user to be
idle.

CLASP used CLASSIC’s classifier to reason
about action taxonomies. For example, it
would infer that Connect-Dialtone-Act is a sub-
class of System-Act based on their definitions.
It would also infer that connect-dialtone-on-u1
is a System-Act, given that a switching system
is a kind of system and is the agent of that ac-
tion. 

In SUDO-PLANNER, actions were represent-
ed as concepts, with action parameters as con-
cept roles and action constraints represented as
role restrictions. A taxonomy of action types
enabled SUDO-PLANNER to exploit inheri-
tance and classification. Figure 3 shows several
examples of how actions are described in SU-
DO-PLANNER. Given these descriptions, the
system deduces that open-lung-biopsy is a
surgery through subsumption reasoning. 

Action taxonomies are particularly useful for
organizing plan taxonomies, a topic I will dis-
cuss in the next section.

Reasoning about 
Plan Taxonomies

Plan taxonomies can be built in various ways.
This section illustrates how plan taxonomies
can be built based on the actions that compose
the plan, based on the initial conditions and
goals achieved, based on how they change the
initial state over time. Because the actions in
the plan can be related through complex con-
structs, reasoning about plan subsumption is
often done by extending a description logic
with additional mechanisms.

Plan taxonomies have a variety of uses in
planning. Plan taxonomies can support several
aspects of reasoning about plans, including or-
ganization of plan classes, retrieval of plan
types and instances with description-based
queries, and validation of plans based on de-
scriptions of valid classes of plans. This should
be very useful in applications in which large
amounts of complex plan instances need to be
managed. For example, planning systems could
retrieve relevant plans based on description-
based queries that refer to types of features of
the current planning problem.

One use of plan taxonomies is to assist dur-
ing plan generation. Some plans can be de-
scribed as a network of actions, and hierarchi-
cal task network (HTN) planning approaches
use these networks to generate plans (Ghallab,
Nau, and Traverso 2004). Plan taxonomies

could help organize plans based on the types of
actions used within these decompositions.
Other planning approaches use plan space
search by incrementally adding new actions to
the plan (Weld 1999). Reasoning about how
two plans relate to one another is important in
order to ensure that any two areas of the solu-
tion space are searched only once. This results
in more efficient search. It is also important for
planning algorithms to exhibit a property
known as systematicity, which means that they
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(DEFINE-CONCEPT Action
   (PRIMITIVE
   (AND Classic-Thing
        (AT-LEAST 1 Actor)
        (ALL ACTOR Agent)
        (EXACTLY 1 PRECONDITION)
        (ALL PRECONDITION State)
        (EXACTLY 1 ADD-LIST)
        (ALL ADD-LIST State)
        (EXACTLY 1 DELETE-LIST)
        (ALL DELETE-LIST State)  
       (EXACTLY 1 GOAL)
        (ALL GOAL STATE))))

(DEFINE-CONCEPT State
   (PRIMITIVE Classic-Thing))
   
(DEFINE-CONCEPT System-Act
   (AND Action
      (ALL ACTOR System-Agent)))

(DEFINE-CONCEPT Connect-Dialtone-Act
   (AND System-Act
    (ALL PRECONDITION
     (AND Off-Hook-State
      Idle-State))
    (All Add-LIST Dialtone-State)
    (ALL DELETE-LIST Idle-State
    (ALL GOAL
     (AND Off-Hook-State
      Dialtone-State))))

(DEFINE-CONCEPT Callee-Off-Hook-State
   (PRIMITIVE State))

(DEFINE-CONCEPT Callee-On-Hook-State
   (PRIMITIVE State))

(DEFINE-CONCEPT Callee-Off-Caller-On-State
   (AND Callee-Off-Hook-State Caller-On-Hook-State))

(CREATE-IND state-u1on-u2off
    (AND state-U1on State-U2off))
    
(CREATE-IND connect-dialtone-on-u1
    (AND Connect-Dialtone-Act
         (FILLS ACTOR switching-system)
         (FILLS PRECONDITION state-u1off-idle)))    

Reproduced with permission from Artificial Intelligence Journal.

Figure 2. Core Definitions and Examples of Actions and 
States in CLASP (from Devanbu and Litman [1996]).



sequences of actions that can be executed in
the world. Figure 4 also shows a scenario in
which the caller picks up the phone, gets a di-
altone, dials and gets a busy signal, and hangs
up causing the system to disconnect. 

CLASP supported subsumption and classifi-
cation of plans and scenarios by extending the
functions provided in CLASSIC for concepts
and instances. A plan description A subsumes a
plan description B if the initial state and goal
state of A subsume the initial and goal states of
B and if the plan expression of A subsumes the
plan expression of B. The subsumption of plan
expressions was defined by considering action
networks as an extension to deterministic finite
automata (DFA) where the transitions are
CLASSIC subsumption checks. The plan expres-
sion EA of a plan class A subsumes the plan ex-
pression EB of a plan class B if the languages ac-
cepted by their corresponding DFAs are
subsumed, that is, DEA’s language is a subset of
DEB’s language. A scenario is an instance of a
plan class if the action network of the plan ex-
pression of the scenario is accepted by the DFA
defined by the plan expression of the plan
class. 

MRL also used description logics to query
and index plan libraries (Koehler 1996). MRL is
a case-based planning system that uses con-
junctive expressions of preconditions and goals
to be achieved by a plan and retrieves relevant
plans to a new case by querying the plan library
about plans whose preconditions and/or goals
subsume the new case. Plans in the library are
indexed by features that reflect the main prop-
erties of the problem. A plan in the library is
considered more specific than another if its in-
dex is more specific. 

SUDO-PLANNER used plan taxonomies to
guide plan generation using plan space search
(Weld 1999). It represented plans as partially
ordered sets of actions and used plan subsump-
tion to detect nodes in the search that are re-
dundant with others and therefore need to be
eliminated. Plan subsumption was evaluated
through bipartite graph matching. Figure 5 il-
lustrates some examples of plans shown as se-
quences of three steps (for example, P is [a1 a2
a3]). To simplify things, we will denote actions
by letters with subscripts where subsumers
have a lower number (for example, a1 sub-
sumes a5, b2 subsumes b3). The lines show sub-
sumption of individual steps (for example, a1
subsumes a3, a4, and a6.). A plan subsumes an-
other plan if their steps have an exclusive pair-
wise (isomorphic) subsumption relation in the
order in which they appear in each plan. The
search algorithm used plan subsumption to
eliminate redundant nodes from the search

can map out the search space that they explore
in an organized, comprehensive, and nonover-
lapping way. Typically in planning algorithms
two plans are considered to be related based on
the specific steps and links that they include.
These algorithms could use plan taxonomies to
relate plans in more sophisticated ways, ex-
ploiting different levels of abstraction of ac-
tions and plans as well as definitions of aggre-
gate steps and domain knowledge. 

CLASP used plan taxonomies to organize,
validate, and retrieve plans in a library. Plans
are defined in CLASP’s language, an extension
to CLASSIC. Plans are described as networks of
actions that achieve a goal from a given initial
state. The action networks, denoted as PLAN-
EXPRESSION, are partially ordered plans that
include iteration and branching. A PLAN-EX-
PRESSION can be described with the constructs
SEQUENCE, LOOP, REPEAT, TEST (conditional
branching), OR (disjunctive branching), and
SUBPLAN. The SUBPLAN construct supports
modular definitions of plans through defini-
tions of meaningful subnetworks. Figure 4
shows the core definition of a plan, as well as
some domain plans to illustrate these con-
structs. Subtypes of the class plan can be de-
fined to create a taxonomy of plan types. For
example, a plan for plain old telephone service
(POTS) can be defined as one in which a caller
picks up the telephone and dials; if the callee’s
phone is off hook, the caller gets a busy signal
and hangs up; otherwise the call proceeds. No-
tice that Originate-And-Dial-Plan is a subplan
that is defined separately, and its plan expres-
sion is inserted in the appropriate node of the
POTS plan expression. Specific plans are called
scenarios, and they reflect different linearized
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(defconcept surgery 
   :is (:and action 
             (:the route invasive-path-into-body)))

(defconcept biopsy
   :is-primitive action ...))

(defconcept open-lung-biopsy
   :is (:and biopsy
             (:the route open-lung-path)))

(defconcept open-lung-path
   :is (:and invasive-path-into-body ...))

Reproduced with permission from Michael Wellman.

Figure 3. Examples of Action Descriptions 
in SUDO-PLANNER (from Wellman 1988).



space. A node is eliminated if its plan is sub-
sumed (dominated) by another node. New
search nodes are created by adding constraints
to a parent node, either by making a step more
specific (according to the action taxonomy) or
by eliminating a step. We will denote a partial
plan (including the null plan) as A*. For exam-
ple, a node with a plan A* a1 A* could be ex-
panded to a plan a2 A* or A* a1 b5 A*. Figure 6
illustrates how redundant paths are handled. In
this example, a2 b7 A* is subsumed by a1 b5 A*,
and thus eliminated.

Plan taxonomies can also be defined using
sets of constraints, including temporal con-
straints. T-REX (Weida and Litman 1992) ex-
ploits action taxonomies and temporal net-
works of actions in order to compute plan
subsumption. T-REX presents an approach to
plan recognition in which, after observation of
a new action instance, the entire set of hy-
potheses is reworked as a result of the classifica-
tion of the instance.

Reasoning about 
Goal Taxonomies

An important issue in reasoning about plans,
processes, and activities is the description of
the desired goals (or objectives or tasks) as well
as which actions (or procedures or agents) have
the capability to achieve them. In planning sys-
tems, goals and capabilities are typically de-
scribed as a predicate with a name and several
arguments and are matched through straight-
forward variable unification. Goal taxonomies
could be used to support more flexible match-
ing approaches exploiting subsumption to re-
late otherwise disparate descriptions. This is es-
pecially important given the recent emphasis
on distributed approaches, in which planners,
agents, or services need a certain goal accom-
plished by others, but each may have its own
way to describe the goal.

EXPECT uses goal taxonomies for matching.
A theme of the work on EXPECT is that the rep-
resentations in a knowledge base should be un-
derstandable to end users, since a user needs to
understand how a system is solving a problem
before embarking on adding new knowledge.
As a result, EXPECT’s representation of goals
and capabilities is inspired in earlier natural
language work (Swartout, Paris, and Moore
1991; Swartout and Moore 1993). They are rep-
resented as verb clauses using a case-grammar
formalism (Fillmore 1968). Each capability
consists of a verb that specifies what is to be
done and a number of cases that specify the
roles of the objects. Each case is effectively a pa-
rameter and is specified with a role name and a

type using terms that are defined in a domain
ontology. A typical role is a direct object (de-
noted as OBJ); other role names are often
prepositions. 

Figure 7 shows some examples of how goals
and capabilities are represented in EXPECT.
With the definitions given for move, move car-
go by air, and airlift, the system determines that
move cargo by air and airlift are equivalent. It
will also infer that mv23 is an airlift, and the
query for airlift instances will return mv23.

An important feature is the declarative repre-
sentation of qualification parameters (in addi-
tion to data-passing parameters) for goals and
capabilities. Qualification parameters express
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Figure 4. Core Definition and Examples of CLASP Plans 
(from Devanbu and Litman [1996])

 (DEFINE-PLAN Plan
   (PRIMITIVE
      (AND Clasp-Thing
    (EXACTLY 1 INITIAL)
       (ALL INITIAL State)
         (EXACTLY 1 GOAL)
    (ALL GOAL State)
    (EXACTLY 1 PLAN-EXPRESSION)
    (ALL PLAN-EXPRESSION
     (LOOP Action)))))

(DEFINE-PLAN Pots-Plan
  (AND Plan
   (ALL PLAN-EXPRESSION
     (SEQUENCE
       (SUBPLAN
      Originate-And-Dial-Plan)
       (TEST
      (Callee-On-Hook-State
       (SUBPLAN Terminate-Plan))
      (Callee-Off-Hook-State
       (SEQUENCE
      Non-Terminate-Act
      Caller-On-Hook-Act
      Disconnect Act)))))))
      
(DEFINE-PLAN Originate-And-Dial-Plan
   (AND Plan
      (ALL PLAN-EXPRESSION
       (SEQUENCE Caller-Off-Hook-Act
                 Connect-Dialtone-Act
                 Dial-Digits-Act))))

(CREATE SCENARIO
 pots-busy-scenario
 (AND Plan
  (FILLS INITIAL state-u1on-u2off)
  (FILLS GOAL state-u1on)
  (FILLS PLAN-EXPRESSION
     (caller-off-hook-u1
      connect-dialtone-on-u1
      dial-digits-u1-to-u2
      non-terminate-on-u2
      caller-on-hook-u1
      disconnect-u1))))



(assign (OBJ (the-set Breakbulk ContainerCar-
go))) (TO (the-set sh1 sh2 sh3)))

A method with the following capability
could be applied to achieve this objective:

(assign (OBJ (set-of (subtype-of Cargo))) (TO
(ship))

This is done by a matcher, which automati-
cally translates goals and capabilities into
LOOM definitions following an algorithm de-
scribed by Gil and Gonzalez (1996). The bot-
tom of figure 8 shows the concepts that would
be created by the system to reflect the capabil-
ity and goal just discussed. LOOM’s classifier
then reasons about these definitions and places
them in a lattice, where more general defini-
tions subsume more specific ones. An example
is shown in figure 8. Notice that subsumption
reasoning uses the definitions of the domain
terms (for example, definitions of vehicles, air-
crafts, and trucks) in order to build the lattice.
As a result, the capability to “move cargo with
a vehicle” will subsume one to “move cargo
with an aircraft,” because according to the do-
main ontologies vehicle subsumes aircraft. The
capabilities are automatically organized accord-
ing to their definitions, and they can be com-
pared based on their place in the lattice.

When a goal arises during problem solving,
subsumption-based matching can help find
suitable capabilities, but in some cases no sub-
suming capability may be available. In these
cases it may be possible to fulfill the goal by de-
composing it and expressing it in different
terms. This allows a more flexible matching
than is possible if one required an exact match
for goals and methods. EXPECT supports sever-
al types of reformulations.

A covering reformulation transforms a goal in-
to a set of goals that partition the original goal
based on subclass partitions. If all the goals in
the set are achieved, the intent of the original
goal is achieved. For example, suppose a goal of
moving cargo has been posted, but no applica-
ble methods have been found. Suppose that
cargo is partitioned into several subcategories
such as breakbulk, container, and so on. and
that there are methods to move each of these
categories; the original goal can then be refor-
mulated into several new conjunctive goals to
move each type of cargo in the partition.

A set reformulation is like a covering reformu-
lation except that it involves a goal over a set of
objects that is reformulated into a set of goals
over individual objects. 

An input reformulation is somewhat similar to
the support that some languages provide for
polymorphic operators. This kind of reformula-
tion occurs when a goal is specified with a gen-
eral parameter and no single method is avail-

what needs to be done with data parameters in
an explicit way but are not strictly necessary to
carry out operations on the data parameters.
Both data and qualification parameters may be
single instances or concepts or sets of instances
or concepts that may be intensionally or exten-
sionally specified. For example a goal to com-
pute the factorial of a number would be repre-
sented with a qualification parameter
“factorial” and a data parameter that would be
the number. The parameters in goals and capa-
bilities may be of the following types:

a specific instance, for example, the USS Corona-
do, represented as (the-instance USS-Coronado)

an abstract concept to specify a qualification para-
meter, for example, air superiority, represented
as (the-concept air-superiority)

an instance type, for example, barge, represented
as (barge)

a concept type, which includes all its subtypes,
for example, command-and-control-structure,
represented as (subtype-of command-and-con-
trol-structure)

a set of instances, intensionally or extensionally
specified, for example, Mexico and Canada, rep-
resented as (the-set Mexico Canada)

a set of concepts, intensionally or extensionally
specified, for example, types of cargo can be re-
ferred to as (the-set Breakbulk ContainerCargo)
or intensionally as (set-of (subtype-of Cargo)).

A posted goal or objective during problem
solving could be to allocate cargo to a set of
ships, represented as:
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Figure 5. Plan Subsumption in SUDO-PLANNER Can Be Viewed as Bipartite
Graph Matching. 

Plan P subsumes plan Q since a1 subsumes a3, a2 subsumes a4, and a5 subsumes
a6. Plan R does not subsume plan S because there is not a one-to-one correspon-
dence based on subsumption for each of the three actions in the plans.

ai subsumes aj when i < j 

a1 a2 a5

a3 a4 a6

a1 a4 a5

a2 a3 a6

P

Q

R

S

a1 a2 a5

a3 a4 a6

a1 a4 a5

a2 a3 a6

P

Q

R
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able at a sufficiently general level to handle the
parameter. In that case, the goal can be refor-
mulated into disjunctive subgoals based on the
subtypes of the parameter given in the ontol-
ogy.

These structured representations of goals and
capabilities have been used in three different
and related contexts that require reasoning
about goals: problem-solving goals, planning
objectives, and agent capabilities.

Problem-solving knowledge that can be rep-
resented in EXPECT consists of a set of meth-
ods. Each method has a capability that declares
what task can be achieved by the method, a
body that describes how the capability is
achieved, and a return type that characterizes
what the method produces. The method body
is written in a programming language that in-
cludes basic constructs such as a conditional
test and can also include other goals. These
goals may be matched by the capabilities of
other methods, in which case they will be used
when the method is applied, resulting in a tree
structure of methods. EXPECT capability de-
scriptions for methods are specified in a similar
way to goals, except that variables may appear
in the capability descriptions. These are bound
when the capability descriptions are matched
with goals. Because it uses structured represen-
tations of method capabilities, EXPECT can
reason about how different methods relate to
each other. This is useful for organizing meth-
od libraries as well as to support the acquisition
of new problem-solving methods. These repre-
sentations also support natural language para-
phrasing, which is useful to develop adequate
knowledge-acquisition tools accessible to end
users with no logic or programming back-
ground.

A second use of this kind of structure in the
goal representation is to describe steps or tasks
in plans that accomplish those goals. Under-
standing tasks and reasoning about types of
tasks can be useful to express concisely proper-
ties of those types of tasks, such as their dura-
tion or their cost. For example, INSPECT (Va-
lente et al. 1999) is a knowledge-based system
for plan evaluation and critiquing built with
EXPECT that analyzes a manually created air
campaign plan and checks for commonly oc-
curring plan flaws, including incompleteness,
problems with plan structure, and unfeasibility
due to lack of resources. Given a plan as a set of
tasks and objectives, it would point out, for ex-
ample, that if one of the objectives in the plan
is to gain air superiority over a certain area,
then there is a requirement for special facilities
for storing special fuel that is currently not tak-
en into account. This was done by reasoning

about the kinds of objectives (goals) in the plan
and their requirements based on their type and
expressed through the goal taxonomy.

A third use of this kind of structured repre-
sentations of goals is agent matchmaking. This
was used in the PHOSPHORUS system within
the Electric Elves architecture (Gil and Ra-
machandran 2001, Chalupsky et al. 2002).
Multiagent architectures typically offer match-
making services that an agent can query to find
what other agents can perform a given task. For
example, a route planning agent may invoke
threat detection agents in order to make a safe
choice among all possible routes. Typically,
simple string matching suffices since the agent
communities are relatively small and the
agents that need to issue a request can be told
beforehand what other agents are available and
how they have to be invoked. In addition, most
current multiagent systems assume that an
agent can perform a few tasks (often just a sin-
gle task), where the advertisements and invoca-
tions of agents are negotiated in advance by
the agent designers and thus can be significant-
ly simplified. In large and heterogeneous com-
munities of agents, where the agent that for-
mulates the request would have no idea of
whether and how another agent has advertised
relevant services, there is a need for more so-
phisticated matchmaking mechanisms. The
kinds of goal representations used in EXPECT
provide a richer language for advertising the ca-
pabilities of agents and would support more
flexible matching algorithms. In PHOSPHO-
RUS, the agent capabilities are translated into
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Figure 6. The Search for a Plan in SUDO-PLANNER Is Guided 
by a Strategy Called Dominance Proving.

Any search node whose plan is dominated (that is, subsumed) by a plan in anoth-
er node is eliminated. Here, [a2 b7 A*] is subsumed by [a1 b5 A*], so its node is
eliminated from the search.

A* a1 A*

a2 A*

a2 b7 A*

A* a1 b5 A*

a1 b5 A*

...

XA* = {ai…aj}
ai subsumes aj when i < j



fects, conditions, and substeps and found them
effective to interpret purpose clauses (for exam-
ple, cut the square in half along the diagonal in
order to make two triangles) in natural lan-
guage. 

In summary, structured representations of
goals and capabilities support complex sub-
sumption-based matchmaking and goal refor-
mulations. An important benefit of goal tax-
onomies is loosely coupling between goals and
capabilities, that is, between what is to be ac-
complished and what are possible ways to get it
accomplished. This is a key feature as planning
systems scale up and move towards distributed
frameworks.

Summary and Future Prospects
Description logics have been used in several as-
pects of planning, including plan analysis, plan
generation, plan recognition, plan retrieval,
and plan evaluation and critiquing. Through
expressive class descriptions and subsumption
reasoning, description logic systems can sup-
port sophisticated queries about planning
knowledge based on object taxonomies, action
taxonomies, plan taxonomies, and goal tax-
onomies. These taxonomies can be combined
to create powerful abstractions of planning
knowledge. Description logic languages and
systems can be extended to support temporal
and control constructs that are central to plan-
ning problems. By incorporating these tech-
niques, state-of-the-art planning research
would be better positioned to tackle the chal-
lenges of reasoning about plans in knowledge-
intensive environments in military planning,
enterprise and process modeling and manage-
ment, scientific research, and space operations.
As the planning community continues to tack-
le more practical and ambitious tasks, descrip-
tion logics are an important ingredient to scale
up and provide the kinds of knowledge repre-
sentation and reasoning capabilities required
by these applications.

Description logics are now central to the se-
mantic web vision, since the adopted web on-
tology language OWL is based on description
logics. The combination of description logics
and planning techniques becomes directly rel-
evant to reasoning about web services and
agents in terms of their goals and capabilities.
A knowledge-rich web with semantic under-
pinnings, where many simple tasks are auto-
mated and more complex tasks can be auto-
mated through their composition, is unlikely
to be a reality without building on the tech-
niques described in this article.

LOOM descriptions as described earlier. The
matchmaker uses subsumption, reverse sub-
sumption, and several kinds of reformulations
to find agents relevant to a request. 

Other goal and action taxonomies have been
developed based on linguistic theories. Di Eu-
genio and Webber (1992) use Jackendoff’s Con-
ceptual Structure primitives (Jackendoff 1992)
and maps them to class descriptions; for exam-
ple, carry can be defined as a kind of move with
a physical means of taking an object. Di Euge-
nio (1994) augments these descriptions with ef-
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(defconcept Move
   :is (:and Action
             (:some obj Cargo)
             (:some with Vehicle)))

(defconcept Vehicle
   :is-primitive (:partition Aircraft Ship))

(defconcept Move-cargo-by-air
   :is (:and Move
             (:some obj Cargo)
             (:all with Aircraft)))

(defconcept Airlift 
   :is (:and Move (:all with Aircraft)))

(defconcept Cargo 
   :is-primitive thing)

 (defconcept Breakbulk
   is-primitive Cargo)

(defconcept ContainerCargo
   :is-primitive Cargo)

(instance mv23 Move
    (obj container23)
    (with C-140)
    (on 7-25-04))

(query ?A (instance ?A Airlift))

(defconcept AssignBB&C 
   :is (:and Assign
             (:the obj (:and Extensional-Concept-Set
(:filled-by Concept-name Breakbulk)
(:filled-by Concept-name Container)
             (:the to (:and ship Extensional-instance-set
(:filled-by Instance-name sh1)
(:filled-by Instance-name sh2)
                              (:filled-by Instance-name sh3)))

(defconcept z98  
   :is (:and Assign
             (:the obj (:and Cargo Intensional-Concept-Set))
             (:the to (:and ship Intensional-Concept))))

Figure 7. Examples of Goal and Capability Representations in EXPECT. 

The last two concepts are automatically created by the matcher to represent a ca-
pability and a posted goal, respectively, that are related through subsumption.
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Notes
1. See the OWL Web Ontology Language Overview
edited by Deborah McGuinness and Frank van
Harmelen (http://www.w3.org/TR/owl-features).

2. RDF Schema, edited by Dan Brickley and R. V.
Guha (http://www.w3.org/TR/rdf-schema/).

3. See http://www.w3.org/2001/sw/WebOnt/ for
good introductory materials, methodology for prac-
tical use, and pointers to implemented tools such as
editors, parsers, and reasoners.
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