
■ Robotics is a remarkable domain that may be suc-
cessfully employed in the classroom both to moti-
vate students to tackle hard AI topics and to pro-
vide students experience applying AI represen-
tations and algorithms to real-world problems.
This article uses two example robotics problems to
illustrate these themes. We show how the robot ob-
stacle-detection problem can motivate learning
neural networks and Bayesian networks. We also
show how the robot-localization problem can mo-
tivate learning how to build complete solutions
based on particle filtering. Since these lessons can
be replicated on many low-cost robot platforms
they are accessible to a broad population of AI stu-
dents. We hope that by outlining our educational
exercises and providing pointers to additional re-
sources we can help reduce the effort expended by
other educators. We believe that expanding hands-
on active learning to additional AI classrooms pro-
vides value both to the students and to the future
of the field itself.

Artificial intelligence has a number of
wonderful domains that help motivate
undergraduate students to enroll in AI

courses and work hard to grasp advanced AI
representations and algorithms. One particu-
larly compelling domain is robotics. Robotics
combines the fantasy of science fiction with
practical real-world applications and engages
both the imaginative and sensible sides of stu-
dents. Examples of robotics-inspired AI span
from early work on AI planning with Shakey

(Nilsson1984) to more recent work on multia-
gent systems and machine learning in
RoboCup (Stone 2000).

In addition to providing inspiration, explor-
ing artificial intelligence representations and
algorithms using robotics helps students to
learn complete solutions. A complete solution
is one in which a student considers all the de-
tails of implementing AI algorithms in a real-
world environment. These details range from
system design, to algorithm selection and im-
plementation, to behavior analysis and experi-
mentation, to making the solution robust in
the face of uncertainty. In our classes we find
that robotics problems encourage students to
investigate how AI algorithms interact with
each other, with non-AI solutions, and with a
real-world environment. Students investigate
how to convert sensor data into internal data
structures, how to weigh the costs and benefits
of physical exploration, whether or not to use
offline simulation and tools, and how to deal
with the severe resource limitations and time
constraints of embedded computation. Despite
the added costs of building complete solutions,
experience with real-world environments helps
ground lessons and stimulates thinking about
new challenges and solutions.

Although robotics has inspired research on
AI representations and algorithms, until re-
cently the cost and size of these platforms has
made it difficult to convey the same line of in-
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neural networks or Bayesian networks and im-
plementing the solution on a Handy Board–
based robot. The second theme is presented in
the context of solving a robot-localization
problem using particle filtering and imple-
menting the solution on an RCX-based robot.

The projects described in this article were de-
signed primarily as part of a stand-alone robot-
ics course for computer science majors. The
hands-on topics covered in this course include
robot structure, drive trains, sensors (infrared,
photo, bump, active sonar), control (open
loop, closed loop), simple behaviors (obstacle
detection, light following, obstacle avoidance),
reactive control, multiple behavior coordina-
tion (algorithmic, priority-based, subsump-
tion), odometry using wheel encoders, forward
kinematics and localization, inverse kinemat-
ics, way-point navigation, simple feature detec-
tion using sonar, probabilistic localization, lo-
cal and global map building, sensor fusion,
vector field histograms, and simple path plan-
ning. For interested students this course pro-
vides hands-on experience that complements
material taught in artificial intelligence courses
for advanced undergraduate and early graduate
students. The projects in this article have also
been used in workshops, including a recent
NSF-sponsored workshop for teachers learning
to use the RCX in education. Please refer to
Greenwald and Kopena (2003) and Greenwald
and Artz (2004) for further information on the
structure and labs of this course.

Obstacle Detection with Neural
Networks, Bayesian Networks,

and the Handy Board
A typical task in a robotics class is to program a
robot to detect and avoid obstacles. In our ro-
bot-building lab course (Greenwald and Kope-
na 2003) we initially assigned this as a non-AI
exercise in processing noisy sensor readings.
We chose to use inexpensive and unreliable in-
frared sensors as proximity detectors for this
exercise. In lectures we taught students stan-
dard methods for processing sensor data, in-
cluding ambient light correction, surface re-
flectance calibration, thresholding, averaging,
and hysteresis. The students were later asked to
use these processing methods to classify sensor
data into one of four obstacle position states:
left, right, center, or none.

This seemingly simple exercise repeatedly
led to frustration and failure. Students reported
frequent invalid infrared readings in any non-
shielded application, indicating that these sen-
sors were useless as proximity detectors for ob-

vestigation to undergraduate students. Low-
cost robot platforms, as surveyed earlier in this
issue (Dodds et al. 2006), have the potential to
mitigate this cost barrier. Investigators have be-
gun to report successful demonstrations of
hands-on robotics using low-cost platforms in
AI courses (Greenwald and Kopena 2003; May-
er, Weinberg, and Yu 2004, Dodds et al. 2004).
These reports, as well as the instructional mate-
rial on advanced AI topics in this special issue,
provide critical supplements to existing texts
and curricular material on general undergradu-
ate artificial intelligence, engineering, and
computer science topics.

Even at low cost ($300–$600 per robot kit), it
is possible to teach advanced AI with the hard-
ware and software resources of these platforms.
Low-cost platforms provide varying levels of
mobility, sensors, development environments,
and processing power. Lego-based platforms
like the RCX (Klassner 2002), or Handy Board
(Martin 1999) are designed for flexible experi-
mentation with mobility. Development envi-
ronments include many standard program-
ming languages like Java, C, Pascal, Forth, and
ADA. Even Lisp is available, as detailed else-
where in this issue of AI Magazine (Klassner
2006). Commonly available sensors include
photoresistors, infrared, touch, wheel encoders
(for odometry), and, most impressively, sonar.
With respect to implementing advanced AI al-
gorithms, the processing power of low-cost
platforms can be problematic. At the low end,
we get from 2 megahertz to 16 megahertz of
central processing unit (CPU) speed and
around 32 kilobytes of random-access memory
(RAM). The education lessons discussed in this
article have been carefully designed to work
successfully with such constrained resources.
We have found that these resource constraints
often provide additional educational opportu-
nities to investigate AI topics like resource-
bounded reasoning. These platforms addition-
ally provide communications protocols so that
off-board processing can be included in com-
plete AI solutions.

We have used low-cost robot platforms in
the classroom to teach many AI topics includ-
ing heuristic search, planning, probabilistic
planning, representing uncertainty, and ma-
chine learning. In this article, we outline our
classroom-tested material for teaching Bayesian
networks, neural networks, and particle filter-
ing. This article is organized around the two ed-
ucational themes just introduced: (1) robotics
problems motivate AI solutions, and (2) robotics
problems encourage complete AI solutions. The
first theme is presented in the context of solv-
ing a robot obstacle-detection problem using
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stacle detection and avoidance. The following
exercise helped us determine whether the
source of the problem was the sensors or the
programmers, and at the same time uncovered
our first educational theme: robotics problems
motivate AI solutions.

We initiated a project to see whether or not
these sensors were actually useless. The result-
ing project demonstrated not only that these
inexpensive sensors could be used for obstacle
detection but also that their inherent unrelia-
bility provides a practical motivation for teach-
ing advanced artificial intelligence techniques
for sensor processing. We describe here how to
take advantage of a low-cost robot platform
with inexpensive sensors to motivate and teach
the artificial intelligence topics of neural net-
works and Bayesian networks.

We focus this section on step-by-step instruc-
tions for using a low-cost robot platform to
teach neural networks (including perceptrons).
We then describe how to extend and modify
this lesson to teach Bayesian networks (includ-
ing naive Bayesian networks). The following
steps are described: (1) building the robot, (2)
gathering experimental data, (3) designing a
neural network, (4) implementing the neural
network, and (5) analyzing the results. For
added educational impact, this lesson can be
preceded by non-AI approaches.

Step One: Building the Robot
The robot (depicted in figure 1) is constructed
from Legos, and it uses a Handy Board as a
computation platform and controller for the
sensors and motors. To help others replicate
the educational exercises in this article we
sketch the major components of our mobile ro-
bot kit in Greenwald and Artz (2004). The mo-
tors each have their own set of gears, enabling
them to transfer rotational power to their cor-
responding wheel. The wheels are placed on
the left and right of the robot, giving the robot
a differential drive. This enables the robot to
move forward, backwards, turn left or right, or
pivot left or right. The gear ratio from each mo-
tor to its wheel is 45 to 1, trading off speed for
power. The head of a plastic spoon is used as a
front caster; it is glued to Lego pieces and at-
tached so that the robot can slide stably on a
geometric plane.

There are four sensors connected to the ro-
bot: two infrared (IR) receiver/transmitter pairs
(IR sensors) and two ambient light sensors
(light sensors). Each IR sensor has a light sensor
associated with it. The light sensor is intended
to provide data about the amount of ambient
light near the associated IR sensor. The light
sensor is placed to avoid the IR sensor’s trans-

mitter while detecting the ambient light being
received by the IR sensor’s receiver.

The IR sensor transmits infrared light away
from the robot. Reflected IR signals are received
if an object is sufficiently near the sensor. The
color, surface texture, angle, and other factors
affect the distance required to register reflected
IR signals in the IR sensor’s receiver. High
amounts of reflected infrared light yield high
signal values. If there is little or no reflected in-
frared, the IR sensor’s receiver registers a low
signal value.

The sensors are placed approximately in a
two-dimensional plane. To differentiate be-
tween an obstacle on the robot’s left or right,
the IR sensors must be placed sufficiently far
apart. However, these sensors cannot be placed
too far apart, or obstacles of small width locat-
ed directly between the sensors will not be de-
tected. IR sensors have a very short range in
which they are effective at detecting obstacles
(our sensors operate best at approximately six
inches from an obstacle, as we determined em-
pirically).

If the robot is moving towards an obstacle,
early detection is critical to prevent the robot
from colliding with it. The IR sensors must also
be placed such that they will receive reflected
IR light in the robot’s path as soon as possible.
This is achieved by placing the IR sensors along
the front edge of the robot (assuming a mostly
forward-moving robot). The implemented ro-
bot has its IR sensors placed six inches apart
along its leading edge.

The robot’s primary movement is forward,
and its primary method for changing direc-
tions is pivoting. The IR sensors are each angled
approximately 20 degrees away from the cen-
ter. This angling allows the robot to “see” ob-
stacles at the front corners of the robot. The
ambient light sensors are placed 10.5 inches
apart on flat panels that are elevated above the
plane on which the IR sensors sit. The light
sensors point straight ahead and are not shield-
ed (although more accurate information might
be obtained by shielding).

Step Two: Gathering 
Experimental Data
Training and validation data are collected from
a series of experiments. Each experiment con-
sists of reading samples from the robot’s sensors
while it is placed in a static environment. The
robot remains stationary during each experi-
ment. The data read from the sensors during an
experiment are stored internally on the robot
and transferred over a serial line to a desktop
computer for processing. The raw data are then
processed into a form that can be used for train-
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the dull surface, and a plastic-coated office
binder as the shiny surface.

Obstacle Distance (two states): The closer an
object is to the sensors, the greater the signal
registered by the IR sensors. We test this using
two obstacle distances: near and far. In our ex-
periments, near is measured as approximately
one to two inches, and far is measured as ap-
proximately five to six inches.

Ambient Light (three states): Ambient light
significantly affects the signal received by the
IR sensors’ receivers. If a lot of ambient light is
present, the IR sensors will deceptively register
high signals. We use three states of ambient
light in our experiments: high, medium, and
low. High light is achieved by using both the
overhead room lights with fluorescent light
bulbs and a desk light with an incandescent
bulb. Medium light is achieved by using only
the fluorescent overhead lights. Low light is
achieved by turning off all light in the room
and using a flashlight or the light of a comput-
er monitor to conduct the experiment. No sun-
light is present in either the experiments or
demonstration of the robot.

There are thus 12 possible combinations of
states for each of the obstacle positions, left,
right, and center, and an additional three possi-
ble states (ambient light variation) when there
is no obstacle; for a total of 39 unique experi-
ments. In each experiment, 1000 samples from
each sensor are recorded.

ing or validating a neural network. The primary
programming environment for the Handy
Board, Interactive-C, has several methods for
transferring data from the robot to a desktop
computer, including an “upload array” tool.

The objective of each experiment is to collect
from the sensors data that represent a specific
state of the robot’s world. In addition to the
presence or absence of an obstacle, there are
several other parameters of the robot’s world
that affect sensor readings. For example, if a
bright incandescent lightbulb is shining near
the robot, the infrared sensors will receive extra
infrared light even if no obstacle is present. In
order to generate a robust neural network that
can detect obstacles in a wide range of environ-
ments, it is necessary to train on data that vary
these environmental variables:

Obstacle Position (four states, primary para-
meter): The presence of an obstacle is described
in one of four states: left, right, center, or none.
Left indicates there is an obstacle on the left of
the robot (and should be detected by the left IR
sensor, and only this sensor); similarly for right.
Center indicates there is an obstacle in front of
the robot (and should be detected by both IR
sensors). None indicates that no obstacle is pre-
sent.

Obstacle Surface (two states): As infrared light
reflects differently off of different surfaces, we
use objects light in color with two different sur-
faces: dull and shiny. We used a dish towel as
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Figure 1. A Robot Used to Teach Neural Networks and Bayesian Networks. 

Notice the Handy Board, two forward-facing infrared sensors, and two forward-facing photocells (and a lot of tape).



We note that the two obstacles in our exper-
iments have relatively flat surfaces that are
placed parallel to the robot’s front edge. The ex-
perimental obstacles are not intended to model
any particular obstacles, but simply serve to al-
ter the amount of light reflected in each case.

Step Three: Designing a 
Neural Network
The inputs to the neural network are: left in-
frared sensor pair (LI), right infrared sensor pair
(RI), left ambient light sensor (LA), and right
ambient light sensor (RA). Each sensor is ana-
log, and the Handy Board conversion to digital
yields an integer value in the range [0, 255].
Higher values indicate lower sensor readings.
For example, if there is very little ambient light,
LA and RA should return very high values
when sampled. For use in a neural network,
each sensor input Si is normalized to a floating-
point value in the range of [0, 1]: Si = Si /255.

The outputs from the neural network are ob-
stacle on left (O1) and obstacle on right (O2).
Each output is a floating-point value in the
range [0, 1]. For interpretation, the outputs are
rounded to the closest integer value: 0 or 1. The
values of the rounded outputs yield the states
described in table 1.

We experiment with fully connected, feed-
forward neural networks with varying number
of hidden layers, trained using back propaga-
tion. 

The activation function a(x) of each nonin-
put node is a logistic function: a(x) = 1/(1 + e–x).

As mentioned in the previous section, the
raw data from the robot are dumped to a host
computer and processed into a form that can
be imported into standard neural network soft-
ware. Any neural network software may be
used on the host computer to design, train, and
validate the network. In our experiments we
use either JavaNNS or SNNS (Zell et al. 1992).

We divide the experimental data into a train-
ing set of 900 samples and a validation set of
100 samples, per experiment. The validation

set is used to avoid overfitting the network to
the training data. The experiments with no ob-
stacle in the robot’s sensor range were repeated
additional times in the training and validation
set to give them an equal weight with the ex-
periments containing an obstacle.

The number of hidden layers in the neural
network and the number of neurons in each
hidden layer are determined by trial and error
in our exercise. More sophisticated network de-
sign methods may also be taught. The students
might first attempt to solve the problem with a
single layer perceptron network and then retry
the exercise with hidden layers, testing
whether or not this classification task is linearly
separable. In our tests (described later on), a
perceptron network was not as effective as one
with two hidden layers.

Figure 2a depicts our most successful net-
work. This neural network consists of two
hidden layers, the first with 16 nodes and the
second with 6 nodes. Mean squared error for
both the training and validation set went to ze-
ro in fewer than 50 training cycles.

Step Four: Implementing 
the Neural Network
Once a neural network is designed, trained,
and validated on the host computer it must be
converted into code that runs on the robot. A
valuable feature of SNNS is its ability to auto-
matically generate C code to implement a
neural network, through snns2c (a tool includ-
ed with SNNS distributions). However, the C
code generated did not compile for the version
of Interactive C (the primary language used to
program Handy Board–based robots) that we
use in the classroom. This is due to the large
memory usage and the linked list type data
structures used in the code generated by
snns2c. Another source of difficulty is that the
Handy Board is not able to store and work with
large stores of floating-point numbers (though
these problems may be alleviated as Interactive
C continues to improve). We developed soft-
ware that converts the automatically generated
C code into legal Interactive C code. Our neur-
al network conversion software is limited to
feed-forward neural networks using the logistic
activation function, as described in this article.
This software may be used on any SNNS-sup-
ported platform. Note that since SNNS gener-
ates C code this exercise can be ported to many
existing low-cost robot platforms.

To test whether or not the implemented
neural network provides useful classifications
of obstacles from sensor data, we downloaded
the resulting Interactive C code to the robot
and incorporated it into a robot-control pro-
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O1 O2 state
0 0 none
0 1 right
1 0 left
1 1 center

Table 1. The Interpretation of Obstacle Position
from the Neural Network’s Rounded Outputs.



(as determined by the neural network code). If
an obstacle is encountered on the left, the ro-
bot backs up and pivots right to avoid the ob-
stacle. If an obstacle is encountered on the
right, the robot backs up and pivots left to
avoid the obstacle. If an obstacle is encoun-
tered in the center, the robot backs up to make
some turning room and pivots 180 degrees
(turns around).

gram. The neural network code itself is con-
tained in a separate file and does not contain
any Handy Board–specific instructions. We first
successfully tested the code in the same static
environments as used for gathering experimen-
tal data, using the LCD display to show the
classification results in real time. We then test-
ed the code by programming the robot to move
in a straight line until it encounters an obstacle

Articles

88 AI MAGAZINE

Obstacle

Left
Light

Right
Light

Right
IR

Left
IR

Obstacle

Left
Light

Right
Light

Right
IR

Left
IR

a

b c

Figure 2. Demonstrating Robust Obstacle Detection and Classification Using Low-Cost Infrared Sensors.

(a) A neural network designed to demonstrate robust obstacle detection and classification using low-cost infrared sensors. The network clas-
sifies obstacle location (none, center, left, right) given left and right infrared measurements and left and right ambient light measurements.
(b) A naive Bayesian network for the same classification task. (c) A Bayesian network for the same classification task, removing the assump-
tion of conditional independence of sensors given the cause (obstacle).



Step Five: Analyzing the Results
Test runs of the resulting neural network con-
trol code were successfully performed in a vari-
ety of ad hoc, indoor obstacle courses. The
trained neural network is effective at detecting
objects in most tested conditions. Both moving
objects (hands or feet) and static objects
(books, bags, boxes, and walls) are detected as
expected. Although we did not detect any de-
crease in classification accuracy with robot
movement, as expected, faster-moving robots
had more difficulty reacting to a detected ob-
stacle. The robot used in this exercise is rela-
tively slow (due to the high gear ratio), and
thus does not appear to be affected by potential
sensor illusions caused by movement. An inter-
esting extension to this exercise would be to in-
clude robot speed as an input to the neural net-
work and gather data from dynamic runs of the
robot.

We empirically determined that the IR sen-
sors used with the robot are not capable of de-
tecting dark obstacles. Neither a black shiny
obstacle (a black, plastic office binder) nor a
black dull obstacle (a black laptop bag) caused
the sensors to register values even slightly dif-
ferent from the readings taken when no obsta-
cle is present. Thus, dark obstacles were elimi-
nated from the experiment. In real-world
environments including dark obstacles, the ro-
bot will need a different method for detecting
dark obstacles. Obstacles that are closer to dark
than light in color simply take longer to regis-
ter as an obstacle, causing the robot to move
closer to the obstacle than expected.

Teaching Bayesian Networks
We have also successfully employed the robot
obstacle-detection problem to motivate stu-
dents to learn Bayesian networks. Bayesian net-
works may be taught as a solution to this clas-
sification task by using a similar set of
step-by-step instructions to that of our neural
network exercise. Steps 1 and 2 (building the
robot and gathering data) are identical. In fact
we exploit this fact by using the data generated
in our neural network exercise to teach
Bayesian networks in a nonrobotics course. As
specified elsewhere in this article, this data is
freely available for others to replicate these ex-
ercises.

In our undergraduate AI course we focus on
Bayesian networks with discrete-valued vari-
ables and discrete conditional probability ta-
bles. To adapt the neural network data for these
exercises we had to first discretize the continu-
ous data. We experimentally determined that
using 4 bins per sensor variable was inadequate
and using 20 bins per variable led to huge,

computationally unmanageable tables. In the
following exercises we discretize each sensor
signal into 10 uniformly sized bins. Teaching
Bayesian network representation and inference
methods using continuous valued variables
would avoid this step.

Our Bayesian network exercises consist of
the following ten abbreviated steps:

Step 1: Build robot (see previous section).
Step 2: Gather experimental data (see previ-

ous section).
Step 3: Use the training data to build the full

joint probability distribution table over all
atomic events. Although it is possible to build
the conditional probability tables directly from
the data, we found it instructive to have the
students build the full joint table and then im-
plement marginalization and normalization
functions to obtain conditional distributions
from the joint.

Step 4: Derive (from the joint) the condition-
al probability tables needed to complete the
naive Bayesian network depicted in figure 2b.
The students first try to solve the classification
task using naive Bayesian networks before in-
troducing more complex variable relationships.

Step 5: Implement the naive Bayesian classi-
fication computation.

Step 6: Evaluate the classification accuracy of
the naive Bayesian network on the validation
set. Note that any fraction of the original data
may be set aside to provide separate training
and testing sets. For simplicity we used the
original training set (90 percent of the data) for
training and the validation set (10 percent of
the data) for testing.

Step 7: Derive (from the joint) the condition-
al probability tables needed to complete the
Bayesian network depicted in figure 2c. Note
that this network removes some of the condi-
tional independence assumptions of the naive
Bayesian network and permits the students to
evaluate any increased classification accuracy
due to the richer representation.

Step 8: Derive an equation to compute the
maximum a posteriori query for the obstacle
variable given the sensor variables. Implement
this equation.

Step 9: Evaluate the classification accuracy of
the Bayesian network on the validation set.
Compare this classification accuracy to that of
the naive Bayesian network.

Step 10: Implement stochastic sampling us-
ing likelihood weighting to perform other
(nonclassification) queries on the Bayesian net-
work.

Comparing the naive Bayesian network of
figure 2b and the Bayesian network of figure 2c,
the students learn that the Bayesian network
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bot obstacle detection provides an effective
method to motivate and teach AI solutions.

Localization with Particle Filter-
ing and the RCX

Localization is also a great problem to motivate
AI solutions. Localization is the problem of de-
termining a robot’s position within a local or
global reference frame (for example, a map).
Contrasted to the obstacle-detection exercise
described above, localization is considered a
more challenging problem in need of intelli-
gent solutions. Localization solutions of vary-
ing complexity and real-world applicability ex-
ist and can be characterized (Borenstein,
Everett, and Feng 1996) into either relative or
absolute localization methods. The former cat-
egory includes odometry (measuring wheel ro-
tation) and inertial navigation (measuring rate
of rotation and acceleration), and the latter cat-
egory includes active beacons, artificial and
natural landmark recognition, and map match-
ing. An educator can teach one or more of
these localization techniques depending on the
platform’s capabilities and the students’ back-
ground preparation in mathematics and algo-
rithms.

At the lowest-cost end, an educator can
teach localization with any platform that in-
cludes a timer and a way to record motor com-
mands. Odometry or dead reckoning can then
be used to figure out where a robot has traveled
with respect to a known initial pose using
trigonometry. However, this solution leads to
fairly inaccurate localization. Another low-cost
method for localization includes the use of a
ground sensor, such as a reflective optosensor,
and artificial landmarks, such as black tape on

captures additional influences among variables
compared to the naive Bayesian network.
These influences lead to better classification ac-
curacy. Additionally, modeling the data with a
Bayesian network permits the study of different
inference algorithms with more varied queries
(other than classification). Although we em-
ployed this exercise in a class without actual ro-
bots, the use of data from real robot experi-
ments made the task more interesting to the
students.

In addition to learning about different repre-
sentations for uncertainty, and differing infer-
ence algorithms for classification, students can
compare the classification accuracy of the re-
sulting Bayesian and neural networks. In our
experiments with continuous data, the percep-
tron network provided a 94.66 percent accura-
cy while all variants of the multilayer neural
network achieved 100 percent classification ac-
curacy. Our experiments with discretized data
show that the Bayesian network and a neural
network with at least one layer of eight hidden
nodes perform the best. Naive Bayesian net-
works and perceptron networks are slightly less
accurate. Example results using discretized data
are summarized in table 2. Note that discretiza-
tion leads to many redundant training exam-
ples for the neural network experiments. This
redundancy caused only a fraction of the test-
ing file to contain distinct values.

Further comparisons between Bayesian and
neural networks can provide student insight in-
to the human readability of the resulting net-
works, the trade-offs between continuous and
discretized variables, and the ability to simulta-
neously capture both classification output and
the degree of belief in that output with
Bayesian networks. These educational lessons
demonstrate that the real-world problem of ro-
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Table 2. Classification Accuracy on Discretized Data.

Representation Correct
(out of 7500)

Accuracy
(classification percentage)

Naive Bayes 5999 79.99
Bayes 6365 84.86
Perceptron 6200 82.66
NN (1 hidden/4) 6200 82.66
NN (1 hidden/8) 6400 85.33
NN (2/4,8) 6400 85.33



a white background. At a slightly higher cost is
true odometry for localization, using a sensor
that measures wheel rotation, for example a
break-beam IR attached to a Handy Board or an
axle-rotation sensor with the RCX. These inex-
pensive sensors are sufficient for teaching kine-
matics and inverse kinematics and provide lo-
calization that can be reliably used for
way-point navigation. With additional algo-
rithmic lessons for error correction (Borenstein
and Feng 1995), these platforms can then be
used to teach map building or at least simple
vector field histograms (Borenstein and Koren
1991). These algorithms require that the target
platform be able to compute the required equa-
tions (floating-point math) efficiently (in time
and space) and process the wheel-rotation mea-
surements rapidly. Both the Handy Board and
RCX platforms provide just enough resources
for these purposes. Localization solutions that
require GPS (global positioning system) or laser
range-finder sensors are beyond the scope of
low-cost robot platforms. However, as we
demonstrate above for obstacle detection, we
demonstrate in this section that these expen-
sive sensors can be replaced by a localization
solution that combines inexpensive sensors
and AI representations and algorithms.

Localization can be used to motivate proba-
bilistic AI techniques, such as particle filtering.
A version of particle filtering applied to robot
localization is Monte Carlo localization (Thrun
et al. 2001). A recent paper (Dodds et al. 2004)
describes a step-by-step approach to teaching
Monte Carlo localization using a camera, a lap-
top computer, and the odometry built into the
Evolution ER1 platform. Here we describe how
to teach Monte Carlo localization at very low

cost using the RCX platform with a sonar prox-
imity sensor and axle-rotation sensors. Imple-
menting localization with a low-cost physical
robot challenges students to consider all the
details of applying an AI solution to a real-
world problem and lets us introduce our sec-
ond educational theme: robotics problems en-
courage complete AI solutions.

Given the limited memory and processing
power of the RCX platform, and the restriction
of using a single proximity sensor pointed in a
fixed direction, we scale down the typical ro-
bot-localization problem. In this exercise, we
ask the students to solve the problem depicted
in figure 3, inspired from an example in Fox
(2003). Similar tasks are also discussed in Rus-
sell and Norvig (2003). The task is to program
the robot to locate itself in a one-dimensional
map consisting of “doors” and “walls” using
Monte Carlo localization. More specifically, the
program computes a probability distribution
(belief state) over possible current poses in a
one-dimensional map, given (1) an (optional)
initial pose, (2) a one-dimensional map of
doors and walls with metric lengths, (3) the
history of robot movement actions, (4) the his-
tory of robot sensor (sonar and axle) readings,
(5) a probabilistic movement model, and (6) a
probabilistic sensor model.

In order to provide a complete AI solution
we ask the students to address the following
tasks: (1) build a robot that moves parallel to
the wall, (2) build movement and sensor mod-
els, and (3) implement particle filtering for be-
lief-state updating. To help the students debug
their programs we provide a simple visualiza-
tion program and communication protocol for
the robot to send particles to the PC host using
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Figure 3. A Simplified Robot-Localization Problem.



wall, at a constant distance away from the wall.
A hardware solution for parallel movement

is to carefully design a single drive-train robot
base. This is a difficult task to engineer with
Lego pieces. A combination hardware and soft-
ware solution is to build a differential drive ro-
bot and teach the students to program a wall-
following routine. A wall-following routine
uses either the sonar sensor or additional prox-
imity sensors and a closed-loop control pro-
gram to adjust robot orientation to maintain a
fairly consistent distance from the wall.

In addition to building and programming a
robot that moves parallel to the wall, students
design their robot base so that they can get as
much useful information from wheel-rotation
sensors as possible. Slippage and friction cause
wheel-rotation measurements to yield poor
odometry estimates. Students address these
problems by observing good design principles
such as building larger wheelbases to avoid ex-
cess orientation errors and building castor
wheels that do not bear significant weight or
induce uneven frictional forces. Students also
learn to limit robot speed while making orien-
tation adjustments and to limit accelerations in
movement. Although the purpose of this exer-
cise is to understand Monte Carlo localization,
students learn that implementing an AI solu-
tion in the real world includes paying careful
attention to the non-AI components of the
complete solution as well. AI educators and stu-
dents can take advantage of the resources dis-
cussed throughout this special issue and select
a desirable level of time and effort to apply to-
ward learning complete solutions. These re-
sources include tools for building and program-
ming low-cost platforms, simulation alter-
natives, and robot programming abstractions.

Step Two: Building the Models
The robot-localization problem is a state-track-
ing problem in which the values of state vari-
ables are updated over time in response to
movement actions and sensor feedback. The
state variables track robot location and orienta-
tion. In a global frame of reference on a two-di-
mensional plane the variables are x-position, y-
position, and orientation µ. In probabilistic
localization we maintain probability distribu-
tions over these three variables, also called the
belief state.

Localization state variables cannot be ob-
served directly in this exercise. They are hidden
variables whose values at a given time can be
estimated from the observed variables, namely
sensor readings and actions. The mappings
from values of observed variables to those of
hidden localization variables are noisy due to

the RCX communications tower. The visualiza-
tion program runs on the PC and provides a
view of the belief state in real-time, as depicted
in figure 4.

Step One: Building the Robot
The main components of the robot needed for
this exercise are a drive train for moving the ro-
bot parallel to the wall, axle sensors to read
wheel rotations for use in odometry estimates,
and a sonar attachment fixed to point toward
the wall. There are many sources of design op-
tions for single and differential drive robots us-
ing Lego pieces, including the attachment and
programming of axle sensors using LEJOS (Bag-
nall 2002). LEJOS is the Java development en-
vironment for the RCX that we use in this ex-
ercise.

There are several sonar sensors designed and
sold for the RCX (Dodds et al. 2006). We select-
ed a low-cost sensor with a range of 30–150
centimeters and an accuracy of 4–5 centime-
ters. This sensor becomes difficult to use if the
robot is permitted to move too close to or too
far away from the wall. The sensor is also prob-
lematic if readings are taken when the sensor is
oriented more than a few degrees away from
perpendicular to the wall. For these reasons,
students are encouraged to engineer either a
hardware or software solution so that the robot
moves as close as possible to parallel to the
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Figure 4. Real-Time Belief-State Visualization 
Tool Showing Initial Localization Particles.



sensing and movement noise. Modeling the re-
lationship between observed and hidden vari-
ables can be done using a hidden Markov mod-
el or dynamic Bayesian network, as depicted in
figure 5. This figure differentiates the observ-
able sonar sensor readings from the hidden lo-
calization variables. It also depicts the two
models that students are asked to build in order
to implement a probabilistic localization algo-
rithm, the movement model and the sensor
model. Rather than learning particle filtering
using instructor-supplied models, implement-
ing a complete probabilistic localization solu-
tion on a robot includes building models that
capture the movement uncertainty and sensor
uncertainty of the students’ specific platform.

The movement model models how the local-
ization state variables change over time in re-
sponse to robot movement. 

In a Markov model the state variables at time
t are a probabilistic function of the state vari-
ables at time t – 1 and the last movement ac-
tion, Pr((xt, yt, µt)|(xt–1, yt–1, µt–1), movement ac-
tion). This model is robot-specific and varies
with the drivetrain design, wall-following code,
and odometry implementation for a specific ro-
bot (as well as environment-specific noise). Stu-
dents can build these models through a combi-
nation of empirical experience with issuing
movement commands to the robot and any
prior knowledge of the robot motion, includ-
ing the use of wheel-rotation sensors and
odometry calculations. In the simplest case we
assume the robot is always given a single move-
ment action, such as move forward for one sec-
ond, and the students empirically measure the

distribution of observed changes in x, y, and µ.
If wheel rotation and odometry are employed,
students will need to measure the wheel diam-
eter, drive length, and gear ratio of their robots.

The sensor model models the expected sensor
readings in different locations of the problem’s
frame of reference. The sensor model depends
on how successfully the students design a robot
that takes sonar readings only when it is a fixed
distance from and parallel to the wall. In the
best case, in our simplified localization prob-
lem, the sensor model need only capture the
distribution of sonar readings when either in
front of a wall or in front of a door (or some-
where in between, if necessary), Pr(sonart–1 ) =
wall or door|(xt–1, yt–1, µt–1), features of known
map). Note that the fixed-position sonar re-
moves any need for pivoting toward the wall.
We can also ignore the y-position and orienta-
tion variables if wall following is implemented
well.

Step Three: Implementing 
Particle Filtering
Given a dynamic Bayesian network capturing
movement and sensor models (including
known map information), we can ask students
to implement any probabilistic inference algo-
rithm to solve the robot-localization problem
(see Russell and Norvig [2003] for discussion).
In this exercise we ask the students to imple-
ment approximate probabilistic inference us-
ing particle filtering (that is, Monte Carlo local-
ization). Particle filtering has three basic steps:
(1) particle propagation, (2) weighing, and (3)
resampling. However, to implement particle fil-

Articles

SPRING 2006   93

Figure 5. A Dynamic Bayesian Model for the Simplified Robot-Localization Problem.
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plete AI solutions. We show how the robot ob-
stacle-detection problem can motivate learning
neural networks and Bayesian networks. We al-
so show how the robot-localization problem
can motivate learning how to build complete
solutions based on particle filtering. These
lessons are demonstrated using two different
low-cost robot platforms and can be replicated
on any robot platform providing mobility,
sensing, an effective development environ-
ment and sufficient processing resources. These
lessons are designed for low-cost platforms so
that they can be accessible to the broadest pop-
ulation of AI students.

Using robotics to teach undergraduate AI is
time consuming. In our experience, however,
we find that this effort is justified by stimulat-
ing student imagination and connecting stu-
dents more closely to real-world applications.
Robotics problems additionally encourage stu-
dents to investigate how AI solutions interact
with solutions from other fields. This article
and others in this special issue can help reduce
the effort required for AI educators and stu-
dents to employ robotics in the classroom by
pointing out available resources and experi-
ence. In our opinion, the hands-on active
learning that students gain using robotics is
worth the effort and provides value both to the
student and to the future of the field itself.
While the intention of this article is to convey
the educational value of robotics, the article al-
so provides evidence that AI can make low-cost
robotics possible in many other contexts as
well. For example, we show how expensive sen-
sors (for example, laser range finders) can be re-
placed by a combination of inexpensive sen-
sors (for example, IR) and AI solutions.

Tools and experimental data files described
in this article (for example, obstacle detection
training and validation sets, supporting scripts,
software) are available at our web site,1 current-
ly under the heading “Laboratory Exercises.”
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