
■ Mixed-initiative systems are a popular approach
to building intelligent systems that can collabo-
rate naturally and effectively with people. But
true collaborative behavior requires an agent to
possess a number of capabilities, including rea-
soning, communication, planning, execution,
and learning. We describe an integrated ap-
proach to the design and implementation of a
collaborative problem-solving assistant based
on a formal theory of joint activity and a de-
clarative representation of tasks. This approach
builds on prior work by us and by others on
mixed-initiative dialogue and planning systems.

Our goal is the design and implementa-
tion of collaborative assistants that
help people solve problems and get

things done. We’ve all had the bad experience
of working with someone who had to be told
everything he or she needed to do (or worse,
we had to do it for them). A good assistant is
one that not only does what it’s told, but can
also take initiative itself. Collaboration means
working together as a group. Taking initiative to
mean the ability to direct the group’s behavior,
a mixed-initiative system is one that allows the
participants to separately contribute what they
can to the group’s overall success. In collabora-
tive problem solving, this means coming up
with solutions to problems, with initiative
varying depending on who can solve which
problems.

This type of mixed-initiative collaboration
requires a flexible interface that allows the par-
ticipants to interact naturally in order to make
their contributions. For example, a system that
rigidly controls the interaction, such as a tele-

phone menu system, can hardly be considered
to be working with you, much less for you. As
Eric Horvitz put it:

I shall use the phrase [mixed-initiative] to refer
broadly to methods that explicitly support an
efficient, natural interleaving of contributions
by users and automated services aimed at con-
verging on solutions to problems. (Horvitz
1999)

In our research, we are primarily concerned
with systems that interact using spoken natural
language dialogue since (1) this is a very effi-
cient means of communication for people; (2)
it requires little or no training to use; and (3) it
gives us the greatest insight into the nature of
human communication and collaboration. De-
spite the well-known complexities of natural
language, this has seemed to us the most likely
way to achieve the true mixed-initiative, col-
laborative systems envisioned by Horvitz and
others. Frankly, we can’t see any other interface
being both flexible enough and expressive
enough to support mixed-initiative interaction
with a reasonably intelligent system.

In this article, we describe our approach to
building mixed-initiative systems for collabo-
rative problem solving. The emphasis is not on
the details of understanding natural language
dialogue (for that, see, for example, Allen et al.
[2001]). Instead we focus on the design of a col-
laborative agent that, naturally, communicates
using dialogue.

On Collaboration
During collaborative problem solving, agents
are involved in a variety of activities related to
the problems they are trying to solve. They rea-
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son about what they (and others) are doing,
what they ought to do, and whether what they
are doing is going to solve their problems. They
communicate with others about what they are
doing, what they know or need to know, and
what they need others to do with or for them.
They plan how tasks will be performed and
problems solved. They make commitments
that allow other agents to work with them and
that also focus their own attention and re-
sources towards their goals. They perform tasks
for which they are capable and which it is ap-
propriate for them to perform at that point in
time. They learn new ways of performing tasks
and solving problems, either by observing oth-
er agents or by communicating with other
agents (for example, by being told how to do
them). Finally, they respond to and solve new
problems that arise during the performance of
tasks, which often involves learning on the fly.

True collaboration requires an integrated ap-
proach to all these different activities. Point so-
lutions to any one of them might yield a useful
tool but will not result in a truly collaborative
assistant. For example, given the long history
of work in AI planning, one might try to build
a collaborative planning system (Ferguson,
Allen, and Miller 1996; Ferguson and Allen
1998; Allen and Ferguson 2002). While con-
structing plans collaboratively is an interesting
challenge, one quickly finds that these plans
then need to be executed in order to actually
solve problems for users. Robust execution is
then typically itself a collaborative process, so-
called plan repair is definitely collaborative,
and throughout there are important opportu-
nities for learning (about the domain, the
plans, the planning process, the user, the way
to work with the user, and so on). In fact, it
turns out to be very difficult even to construct
realistic, effective plans with users in the loop
without an integrated view of the different as-
pects of reasoning about and using plans.

These considerations have led us to the ap-
proach described in the following sections.
First, a system architecture that embodies the
agency required for a collaborative assistant.
Next, representations of tasks that support the
activities required in order to collaborate.
These representations are used to define ab-
stract tasks that guide the system’s collabora-
tive behavior and allow it to interpret the be-
havior of others. And finally, the agent’s be-
havior is driven by the shared beliefs and
commitments that arise during collaboration.
After briefly describing each of these, we will
present an extended example of the approach
in action, helping a user perform a collabora-
tive task.

Architecture of a 
Collaborative Assistant

The need for an integrated approach to design-
ing collaborative assistants has led us to devel-
op the agent architecture shown in figure 1. On
the left is shown the overall architecture of a
collaborative dialogue system. As described by
Allen, Ferguson, and Stent (2001) and Ferguson
and Allen (2006), the main goal of this archi-
tecture is to avoid the “dialogue pipeline” ap-
proach to such systems. The system architec-
ture is itself agent oriented. The three main
components, labeled “Interpretation,” “Gener-
ation,” and “Collaborative Agent,” operate
continuously, asynchronously, and in parallel.1

This allows continuous interpretation of user
action and input, interleaved and overlapping
generation of system output, and independent
operation of the system in pursuit of its own
desires and goals. Further details and discus-
sion are available in the references cited previ-
ously.

On the right side of figure 1 is a detailed view
of the core Collaborative Agent component.
The structure of the Collaborative Agent is
based on the belief desire intention (BDI) mod-
el of agency (Rao and Georgeff 1991). In the
BDI framework, an agent is driven by its beliefs,
its desires, and its intentions. The beliefs corre-
spond to the agent’s knowledge of itself and
the world, the desires correspond to the states
it wants or is willing to work to achieve, and
the intentions represent its commitments to do
certain things towards those desires. BDI agents
are driven by their intentions. In the case of
collaborative behavior, agents also make joint
commitments with other agents that constrain
their behavior. Our model describes how the
need to make joint commitments drives the di-
alogue behavior of a collaborative agent.

Interaction between the Collaborative Agent
and the other components of the system is in
terms of collaborative problem-solving acts,
which are speech acts in the sense of Austin
(1962), and Searle (1969). Examples are to re-
quest that another agent perform an action, or
to ask them to inform us of some fact. This ab-
straction separates the Collaborative Agent
from any specific interface modality.

The top subcomponent in figure 1, labeled
“Collaborative Action,” controls the system’s
overall communicative behavior. On the one
hand it handles collaborative acts performed
by the user (as reported by the Interpretation
components) and updates the BDI state. On
the other hand, it is itself an agent, attempting
to achieve collaborative goals (such as agreeing
on the value of a parameter or jointly commit-
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ting to performing a task). It does this by re-
questing performance of collaborative acts by
the Generation components, which will even-
tually realize the acts as linguistic (or other)
communication.

The middle subcomponent, labeled “Collab-
orative Problem Solving,” is responsible for the
system’s overall problem-solving behavior.
That is, it maintains the state involved in per-
forming a task, or learning a new task, or plan-
ning to perform a task, and so on. Execution of
these metatasks generates collaborative goals
that result in communication as described
above.

Finally, the subcomponent labeled “Domain
Task Execution” stands for the various services
that the system can perform on its own during
the course of collaborative problem solving. It
is crucial, for reasons described in the next sec-
tion, that these tasks be explicitly represented
so that the system can reason about them.

Task Representation 
for Collaboration

As shown in figure 1, several components of
our system are driven by task models. Collabo-
rative action is driven by models of collabora-
tive acts such as agreeing on something or
making joint commitments. Collaborative
problem solving is driven by models of abstract
metatasks such as performing a task, planning

a task, learning a task, and so on; and domain
task execution involves executable models of
tasks in the domain, for example, filling out a
web form, booking a meeting room, or com-
manding a robot.

To support the many things people do dur-
ing collaboration, such as communication,
planning, execution, and learning, we are de-
veloping a representation of tasks with the fol-
lowing features:

The ability to represent partial knowledge about
tasks: Most task or plan formalisms assume that
one is representing “complete” knowledge of
how to do things, much like how a program
completely characterizes its execution. But dur-
ing collaborative problem solving, one often
encounters partial knowledge about tasks. For
example, while learning how to buy a comput-
er, the system may have learned that choosing
a model, finding the best price, and completing
a requisition are all necessary subtasks but may
not yet know the precise ordering and other
constraints between the steps. Or it might be
able to analyze the state of its learned task and
realize that something is missing between two
of the learned steps. Partial knowledge about
tasks is not limited to learning. During collab-
orative execution, users will typically give only
partial descriptions of what they want to get
done. The system must be able to represent
these partial tasks and then reason with them,
for example, matching the partial description
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against its task knowledge to determine how to
help.

The ability to represent the knowledge require-
ments of tasks: The system needs to know what
it needs to know in order to perform a task suc-
cessfully. Note that these are different from the
parameters of a task, although knowing the
value of a parameter may be a knowledge re-
quirement. These knowledge requirements
drive the system to find information as needed
during the performance of a task. In a collabo-
rative setting, knowledge requirements often
involve other agents, for example, that need to
agree on the value of a task parameter.

The ability to represent tasks at different levels of
abstraction: Most tasks that one encounters in
practice are specializations of more abstract
tasks. For example, buying a plane ticket is a
specialization of purchasing something, which
is itself a specialization of moving or obtaining
something. Representing these abstraction/spe-
cialization relationships is crucial if task knowl-
edge is to be applied in novel circumstances.
This is particularly true for abstracting, gener-
alizing, and transferring learned knowledge to
related tasks.

The ability to represent execution of tasks by
agents: In particular, collaborative tasks neces-
sarily involve multiple agents. Representing
and being able to reason about the roles agents
can play in tasks is crucial for effective collabo-
ration.

Suitable for use in interpreting and generating
natural language and multimodal interaction: The
representation must support communication
about the task and task-related explanations,
such as question-answering. It should support
the modes of reference typical in language-
based descriptions for language-based learning
and for generating descriptions of known tasks.
This means, for example, explicit representa-
tion of and ability to reason about the roles
played by objects in tasks. This requirement is
somewhat specific to our belief in the role of
natural language in effective collaboration, but
any reasonably expressive interface is going to
require something similar.

The representation we are developing treats
tasks as objects that gather together a set of as-
sertions about related events and propositions.
Space precludes a detailed description here, but
it currently provides a vocabulary for asserting
the following types of information: (1) knowl-
edge about how tasks specialize each other; (2)
knowledge about how objects get used in tasks;
(3) knowledge about causing events to occur,
the conditions under which events happen,
and the effects of events happening; and (4)
knowledge about how higher-level events are

broken down into lower-level ones, under
some constraints.

Tasks are treated as descriptions, not pro-
grams. However under certain conditions they
can be translated into programs in a given pro-
gramming language for execution. They can al-
so, however, be directly executed themselves,
or an agent can reason about its behavior on
the fly.

Integrated Problem Solving
We have argued that collaborative interaction
with people requires an integrated approach to
planning, execution, learning, and the many
other things people do while working together.
To this end, the subcomponent labeled “Col-
laborative Problem Solving” in figure 1 is based
on abstract models of these metatasks. The Col-
laborative Agent pursues goals such as learning
a new task collaboratively or collaboratively ex-
ecuting a known task at this level. These tasks
involve the performance of domain-level tasks,
such as learning to extract a specific item of
knowledge from a web page or looking up
some information in a database.

These metalevel models (and indeed the task
models at all levels) serve two purposes. The
first role is the standard one in BDI systems,
namely guiding the agent’s behavior, whether
collaborative or not. For example, to plan what
to do there would be an explicit model of plan-
ning that built up complex task descriptions
(plans) using the domain-level task models.
While this metalevel is typically not explicit in
stand-alone, autonomous AI systems such as
planners, the more cognitively inspired AI ar-
chitectures (such as Soar [Rosenbloom, Laird,
and Newell 1993]) do a similar thing. Even ex-
ecuting a task is represented by an explicit
model of execution that allows the agent to
reason about its own operation.

In the collaborative setting, the metatask
models at the problem-solving level have a sec-
ond, equally important role. This is that they
allow the Collaborative Agent to form expecta-
tions about what might (or should) happen
next. These expectations provide the task-level
focus that is crucial for the interpretation of
user actions or utterances. For example, if we
are learning a task collaboratively, we might ex-
pect that the user is likely to either perform or
describe the next step of the task or indicate
that there are no more steps. If we are planning
collaboratively, the task model would indicate
that any agent that is involved in the task
could add an action to the plan to achieve an
open precondition or add a constraint to re-
solve a conflict, and so on.
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This is similar to the metareasoning possible
in principle in other BDI systems such as PRS
(Georgeff and Lansky 1987) or SPARK (Morley
and Myers 2004). To our knowledge, though,
the metalevels in those systems have never
been extensively developed in practice. Since
these systems are concerned primarily with
task execution, they generally have not con-
sidered the need to use the expectations of task
and metatask models for interpretation of the
actions of other agents.

Collaboration as Joint Activity
We follow (at least in spirit) the view of collab-
oration and collaborative activity as following
from shared or joint intentions (Cohen and
Levesque 1991; Levesque, Cohen, and Nunes
1990; Grosz and Sidner 1986; Grosz and Sidner
1990; Rao and Georgeff 1991; Rao and Georgeff
1992; Sadek 1992; Sadek and de Mori 1997). In
particular, we believe that (1) an agent’s behav-
ior must be driven by its desires and its prior
commitments, (2) a collaborative agent must be
able to make commitments with other agents
to achieve goals of mutual interest, and (3) a
collaborative agent must be able to communi-
cate with other agents to agree about items of
mutual interest, including commitments.

Without dwelling on the details, we use a
language based on that of Cohen and Levesque
(1990a), with the following main modal oper-
ators:

(Bel a P): Agent a believes that P is true.

(Des a P): Agent a desires that P be true (there
can be many sources of desires).

(Goal a P): Agent a is committed to bringing
about that P be true.

(JGoal (a1 a2 ...) P): The given agents have the
joint goal P (called a JPG in Cohen and
Levesque [1990a]).

(MB (a1 a2 ...) P): The given agents mutually be-
lieve that P is true.

This language is used to represent the content
of user and system utterances. It is also used in
task models, for example, to specify knowledge
requirements. The system is able to reason
about beliefs, desires, goals, and the rest, al-
though our current implementation does not
use a full-blown modal logic theorem prover
(but we are considering the possibility).

Initiative and Collaboration
How do the pieces we have described come to-
gether to form a collaborative assistant? And
how does mixed-initiative interaction arise?
We will illustrate both user and system initia-

tive, and the overall operation of the system,
with an extended example. In the example, the
system is designed to help a user with everyday
office tasks, such as purchasing equipment and
supplies. All of the functionality required for
the example has been implemented, although
some parts of the current prototype have not
been updated to reflect the newest aspects of
the model described in this article.

User Initiative
Let’s start with an example of user initiative,
since this is what a traditional dialogue system
would support. Suppose the user says to the
system: “I want to purchase an LCD projector
for my class.” Without dwelling on the inter-
nal details of interpretation, it is worth observ-
ing that there are three possible interpretations
of this utterance (in all three cases, PUR-
CHASE123 will be newly defined to be a task of
type Purchase, whose object is an LCD projec-
tor, PROJ123, and so on).

First, it could be a direct report of a want or
need:

(inform USR SYS
(Des USR (Done PURCHASE123)))

In this case, a suitable response might be “OK,”
and the fact about the user’s desires would be
recorded in the system’s knowledge base.

Second, it could be a statement of a goal that
the user is pursuing independently:

(inform USR SYS
(Goal USR (Done PURCHASE123)))

A suitable response to this might be “Good luck
with that,” and again the system might record
this information about the user’s goals in the
knowledge base.

Finally, it could be a proposal that this be
adopted as a joint goal:

(propose USR SYS
(JGoal (SYS USR) (Done PURCHASE123)))

This is the interpretation that drives collabora-
tion.

These interpretations are evaluated using the
same model that drives the system’s own com-
municative behavior. That is, the Collaborative
Agent evaluates the user’s utterances by con-
sidering whether it would have performed a
similar act, given the current state. The Inter-
pretation subsystem will decide among the
possible interpretations, using dialogue con-
text, user model, reasoner support, and heuris-
tics such as preferring the collaborative inter-
pretation whenever possible on the grounds
that the system is an assistant.

The mechanism for handling user proposals
is, in general, to determine how the proposed
action can be integrated into the current tasks
at the problem-solving level. For this example,
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we have to assume the existence of a top-level
task that permits new goals to be accommo-
dated as subtasks. We whimsically call this task
BE-HELPFUL. Note that the explicit representa-
tion of this task allows the system to (1) know
that it is being helpful; and (2) reason about
what is involved in being helpful. The defini-
tion of BE-HELPFUL provides that if the system
adopts the goal, then not only is performing
the purchase acceptable from its perspective,
but also the system is now committed to per-
forming the joint task.

In deciding whether to adopt the proposed
goal, the system needs to be able to reason
about the suitability of what the user has pro-
posed to determine whether or not it makes
sense before taking it on as a goal. Our ap-
proach for proposals of actions is to check
whether the system knows a task model match-
ing the proposed action (which, of course, is
likely only partially specified). A more sophis-
ticated model for BE-HELPFUL would allow us to
handle more complicated examples, such as
the following. Suppose that the user requests
the LCD projector at 9:00 a.m. Then at 5:00
p.m. she requests one again. Given that LCD
projectors are purchased very rarely, it may be
that the system should double-check with the
user as to whether she wants to buy a second
projector or whether she simply forgot that she
already asked the system to get it. This would
be the sort of proactive help that one would ex-
pect from a good assistant that understands
your intentions.

Note that while this reasoning is proceeding,
the dialogue components are not necessarily
idle. For example, the Generation subsystem
knows from purely dialogue principles that the
system has an obligation to respond to the
user’s proposal. It can therefore generate ap-
propriate communicative behaviors (for exam-
ple, taking and holding the turn with aural or
visual gestures) even in the absence of the con-
tent of the response. And of course, crucial to
supporting natural user initiative, if the user
continues and offers further information or an
additional proposal, the Interpretation compo-
nents can start processing it asynchronously.
This may result in the addition of information
that would affect the Collaborative Agent’s be-
havior, perhaps even changing its response to
the original utterance.

To wrap up the example, eventually the sys-
tem adopts the joint goal and the dialogue sub-
system can generate an acceptance of the user’s
proposal (for example, “Ok, let’s do that”). The
system’s overall behavior is now driven by the
need to achieve the joint goal of (eventually)
purchasing an LCD projector.

System Initiative
If the user initiative case seems simple, the sys-
tem initiative case shows off our model more
completely. Let’s suppose that the system has
the goal of purchasing an LCD projector,
whether because the user proposed doing so or
by some other means (perhaps our user and her
system are responding to a projector order
from elsewhere).

Needing to Collaborate
First, the task model for purchasing needs to
represent the knowledge requirements of pur-
chasing. One approach might have the Collab-
orative Agent incrementally deciding what
needs to be agreed as it works on achieving the
goal of purchasing the projector. Another ap-
proach would use general principles and onto-
logical knowledge to “precompile” the deci-
sions about collaboration. Or in some do-
mains, it might even make sense to simply
encode what are the “necessarily joint” ele-
ments of the solution. Finally, it may be that
what needs to be agreed is specifically what
needs to be agreed, a possibility that we do con-
sider and are implementing.

Regardless of the details, let’s assume that as
part of the performance of PURCHASE123, the
system needs to agree with the user about the
budget for the purchase. This requirement is
represented as:

(MB (SYS USR)
(KnowRef (SYS USR)
(the BUDGET of PURCHASE123)))

That is, the knowledge requirement is that the
user and the system must have a mutual belief
regarding the identity of the budget of our pre-
viously committed-to purchasing.2 The Collab-
orative Agent adopts the goal of achieving this
mutual belief and starts working to achieve it.

Collaborative Behavior
The Collaborative Action subcomponent rea-
sons about collaborative goals (like MB and
JGoal) and how to achieve them through dia-
logue. To do this, it relies on the BDI state of
the system as represented in its KB and a set of
task models treated as reactive procedures. Giv-
en the above goal, the Collaborative Agent
would perform the following procedure:

1. If there is a mutually believed value for the
budget, then the goal has been achieved.

2. Otherwise, if the system believes it has al-
ready committed to a value for the budget, it
will inform the user of that.

3. Otherwise, if the system desires some value
for the budget, then it will propose that to the
user.

4. Otherwise, if it believes that the user desires
some value, then it will check that with the user.

Articles

28 AI MAGAZINE



5. Otherwise, so far as the system believes, nei-
ther party has a preference, so it will ask the
user (other strategies are possible).

This procedure is essentially a compiled version
of the definitions of the speech acts such as in
(Cohen and Levesque 1990a; Cohen and
Levesque 1990b). Interestingly, we also use
these same procedures in reverse for recogni-
tion of user intent during interpretation.

In this example, let’s assume that the first
three queries fail and that the system decides
to ask the user about the budget. The collabo-
rative act will be sent to the Generation sub-
system and (eventually) realized as something
like “What is the budget of the purchase?” The
Collaborative Agent has now done all that it
can do towards this goal, so it suspends work
on that goal pending new circumstances (oth-
er strategies are possible, depending on the sys-
tem’s knowledge of the situation and of the
user).

User Proposals
Suppose the user responds to the system’s ques-
tion with: “Fifteen hundred dollars.” Skipping
the details of interpretation, which would in-
clude, for example, using the fact that the sys-
tem just asked a question about the budget and
checking that $1500 could conceivably be the
value of the budget property of PURCHASE123,
it arrives at the following interpretation (gloss-
ing the representational details):

(propose USR SYS
(JGoal (USR SYS)
(choose (PURCHASE123 budget $1500)))

The standard semantics of the propose act are
twofold: (1) the speaker desires the content of
the act be performed, in this case making the
budget of the purchase be $1500 and (2) the
speaker will commit to this if the hearer will al-
so. The choose action corresponds to the agent
updating its mental state so as to make the in-
dicated property true. The fact that it is a (pro-
posed) JGoal means that both agents must
make the same choice (if accepted).

As with the user-initiative case described pre-
viously, the system must decide whether to ac-
cept or reject the proposal. Regardless of
whether it asked for a value or whether the user
proposed something on his or her own, the sys-
tem needs to reason about whether this value
is acceptable. In many cases this is different
from the initial test that it is a coherent pro-
posal. For example, although $1500 is a per-
fectly reasonable thing to propose for the budg-
et, the system might know that there is only
$1000 available and that it should thus reject
the proposal (with that explanation).

Reaching Agreement
Assume for purposes of the example that the
system accepts the proposal and agrees for its
part to make the budget $1500. The Collabora-
tive Agent generates an accept act, which
would be realized as something like “OK.”

The crucial next step is to observe that when
the Collaborative Agent next executes, it will
notice that there is joint agreement as to the
identity of the budget. That is:

(MB (SYS USER)
(the BUDGET of PURCHASE123))

will be true thanks to the semantics of KnowRef
and MB. This subgoal is therefore marked as
achieved. If, for example, the PURCHASE123
task was blocked, it might now be able to pro-
ceed. Furthermore, note that additional knowl-
edge may have been asserted to the knowledge
base during the interaction, either because of
extended interactions or during the interpreta-
tion process itself. The state in which the agent
resumes PURCHASE123 may be quite different
from that when it was suspended, even beyond
knowing the value of the budget.

Related Work
This work is based on a long tradition of re-
search in AI and computational linguistics. The
semantics of speech acts and the relation to in-
tentions is derived from Cohen and Perrault
(1979) and Allen and Perrault (1980). The log-
ic of intentions and commitment is loosely
based on Cohen and Levesque (1990a). The
challenge for us has been to apply these prin-
ciples in a practical system that supports natu-
ral language dialogue.

Basing interagent collaboration on joint
commitments is key to the Shared Plans for-
malism (Grosz and Sidner 1986; Grosz and Sid-
ner 1990). Collagen (Rich and Sidner 1998)
builds on Shared Plans and implements a col-
laborative assistant that performs actions with
and for a user of an on-screen computer appli-
cation. Rich and Sidner refer to Collagen as an
application-independent “collaboration man-
ager,” which corresponds to our view of the
separate Collaboration component of the
mixed-initiative dialogue subsystem. They also
emphasize that it is left to the underlying
“black box” agent to actually make decisions,
corresponding to our separation between col-
laborative dialogue manager and Task Manag-
er, although it is somewhat unclear exactly
what is communicated between the levels in
Collagen. There are some differences between
our approaches. We have concentrated on the
problems of interpreting natural language in
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practical dialogue and, in particular,
how the same knowledge that drives
collaboration can be used to interpret
the user’s input. The Collagen ap-
proach (based on Lochbaum [1991]) to
“discourse interpretation” is some-
thing that we separate into BDI rea-
soning (which may involve domain-
or task-specific reasoning).

Driving dialogue behavior from
models of rational behavior is also
proposed by Sadek (Bretier and Sadek
1996; Sadek et al. 1996; Sadek, Bretier,
and Panaget 1997). The specific appli-
cation that is described involves very
simple question-answering dialogue
on specific topics. It is hard to tell
whether their deductive approach
would work well in practice for more
general collaboration. We imagine
that in less-constrained situations
there would be difficulties similar to
those we face in trying to handle true
mixed-initiative problem-solving dia-
logue. Finally, another deductive ap-
proach to collaborative dialogue is the
recent STAPLE system (Subramanian,
Kumar, and Cohen 2006), based di-
rectly on Joint Intention Theory. We
are confident that the principles in-
volved are very similar to our own. As
with the previous comparison, any
differences are likely to come down to
the practicalities of natural language
dialogue.

Discussion
Several issues come up repeatedly in
discussion of mixed-initiative systems.
In this section we describe how our ap-
proach addresses each of these in turn.

Task Allocation
On the issue of task allocation and di-
vision of responsibility between hu-
man and system, there are two crucial
points to make. First, task allocation is
treated as a matter of agreeing on the
allocation of responsibility and then
jointly committing to successful per-
formance of the tasks. The process of
agreement occurs naturally in dia-
logue. The joint commitment and its
underlying formal basis forces the
agent to behave properly whether it
can do its part or not. In fact, it will
drive the agent to try and do another
agent’s part if it feels this is necessary

and to tell its collaborators if it knows
it cannot do its part. The second point
is that any division of responsibility
must be dynamic and flexible, able to
be discussed and renegotiated at any
time. Of course different agents will be
able to do different things. But keep-
ing the task specifications separate
from the capabilities of the agents
who perform them will allow the tasks
to be performed again by other com-
binations of agents or under different
conditions.

Control
On the issue of controlling the shift of
initiative and proactive behavior, our
approach leaves this to emerge from
the interaction between the agents.
The human and the system operate
asynchronously and in parallel. Com-
municative initiative is driven by the
system’s “need to know,” that is, by
the knowledge requirements of what it
needs to do. Agreeing on something
with the user (asking the user, telling
the user, clarifying with the user, and
so on) is another kind of task that the
system performs in service of its goals.
Proactive behavior (“system initia-
tive”) is a natural consequence of the
system being goal-driven rather than
simply reacting to user utterances and
actions. When desirable, the “level” of
initiative can be adjusted by designing
the system to have more or less of the
knowledge required by the tasks.

Awareness
The issue of maintaining shared
awareness between human and system
is in some sense the guiding principle
of our approach. Communication and
dialogue are about maintaining this
shared state (and exploiting it for ef-
fective interaction). Agreement (or
mutual belief) is often necessary in or-
der for a task to succeed. Joint com-
mitments between system and user
drive the system’s behavior. Commu-
nicative acts are performed to update
and maintain the shared beliefs.

Communication
On the issue of communication proto-
cols between human and system, we
are primarily concerned with spoken
natural language interaction. As we
have said before, we find it unlikely

that any other interface is going to be
flexible and expressive enough to sup-
port intuitive interaction with a rea-
sonably capable system. Dealing with
language also forces us to confront a
variety of representation and infer-
ence challenges, which, again, would
have come up sooner or later anyway.
Having said this, we do believe that
our model of interaction as collabora-
tion is more broadly applicable. For
the approach to be useful, however,
the interface must meet two require-
ments. First, to support interpretation,
the context displayed or implied by
the interface must be made explicit
and available for use by the Interpre-
tation and Collaboration components.
For example, for a graphical interface,
the interface must explicitly represent
what is visually salient (rather than
simply rendering it), what informa-
tion is being communicated (rather
than just having it in a data structure
associated with a widget), and what
are the ontological relationships be-
tween various elements (rather than
their being simply tokens or labels).
Second, the actions permitted by the
interface must be expressed in terms of
communicative acts with semantically
meaningful content (rather than sim-
ply being tied to programmed call-
backs). These two requirements taken
together allow modalities other than
natural language to be used for collab-
oration. As a bonus, if the interface is
designed with these properties, natu-
ral language could be used in place of
the interface if desired or required.

Evaluation
On the issue of evaluation of mixed-
initiative and collaborative systems,
we feel that this is an important area
for further work. Evaluation of mixed-
initiative systems has always been
challenging, in part because users are
unpredictable (note that this is a fea-
ture not a bug). For several reasons, we
have concentrated on end-to-end or
task-based measures of system per-
formance. On the one hand, poor per-
formance by any given component
(for example, speech recognition)
might be compensated for by another.
On the other hand, stellar perform-
ance by a single component (for ex-
ample, a machine-learning algorithm)
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Notes
1. In our previous work, the component la-
beled “Collaborative Agent” was referred to
as the “Behavioral Agent.” The new name
reflects the emphasis on collaboration and
the component’s central role in managing
collaborative behavior, as described in this
article.

2. For discussion of KnowRef, see Allen
(1979), Moore (1985), and Morgenstern
(1991).  For this example we have also used
a syntax similar to that of KM (Clark and
Porter 1997) for this article, although the
real thing is more complex.
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