
■ We report on random stimuli generation for
hardware verification at IBM as a major applica-
tion of various artificial intelligence technolo-
gies, including knowledge representation,
expert systems, and constraint satisfaction. For
more than a decade we have developed several
related tools, with huge payoffs. Research and
development around this application are still
thriving, as we continue to cope with the ever-
increasing complexity of modern hardware sys-
tems and demanding business environments.

IBM estimates that it has saved more than
$100 million during the last decade in direct
development costs and reduced time to

market by using artificial intelligence (AI) tech-
nology for the verification of its processors and
systems. The technology is used to generate
tests, or stimuli, for simulating hardware
designs prior to their casting in silicon. It aims
to ensure that the hardware implementation
conforms to the specification before starting
the expensive fabrication of silicon. The tech-
nology reduces the number of bugs “escaping”
into silicon, allowing the casting of fewer sili-
con prototypes. At the same time, the technol-
ogy reduces the size of the verification teams
and the duration of their work.

The current version of the technology
includes an ontology for describing the func-

tional model and capturing expert knowledge,
as well as a constraint-satisfaction problem
(CSP) solver. The ontology allows the descrip-
tion, mostly in a declarative way, of the hard-
ware’s functionality and knowledge about its
testing. A separate, special-purpose language is
used to define verification scenarios. The sys-
tem translates the functional model, expert
knowledge, and verification scenarios into con-
straints that are solved by a dedicated engine.
The engine adapts a maintain-arc-consistency
(MAC) scheme to the special needs of stimuli
generation.

An early version of the technology was pre-
sented to the AI community a decade ago
(Lichtenstein, Malka, and Aharon 1994). AI
techniques were only rudimentally imple-
mented then. Ten or so years of experience
result in a much more sophisticated ontology,
a totally new and dramatically stronger solver,
and great success in deployment. The current
technology has become the standard in proces-
sor and system verification within IBM. It has
been used in the development of numerous
IBM PowerPC processors, i/p-series server sys-
tems, the Cell, and Microsoft’s Xbox core
processors. The system has become a reposito-
ry of extensive processor verification knowl-
edge across multiple IBM labs and many
processor architectures and implementations.
It allows comprehensive reuse of knowledge,
rapid reaction to changes, and gradual reduc-
tion in the need for human experts.
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Problem Description 
Functional verification is the process of ensur-
ing the conformance of a logic design to its
specification. Roughly, a hardware logic design
is a stage in the implementation of the physi-
cal hardware component. In this stage, code
written in a hardware description language
(HDL) describes the structure of the compo-
nent (hierarchy, modules, pin interface), the
allocation of state variables, and the compo-
nent’s behavior down to the binary function
driving each electronic signal. This HDL code
can be simulated using commercial software
tools and can be automatically synthesized
into gate-level circuits. Functional verification
is widely recognized as the bottleneck of the
hardware design cycle and becomes especially
challenging with the growing demand for
greater performance and faster time to market.

Simulation-Based 
Functional Verification 
In current industrial practice, simulation-based
verification techniques (Bergeron 2000), as
opposed to formal methods, play the major
role in the functional verification of hardware
designs. These techniques verify the design’s

actual behavior by simulating the HDL descrip-
tion of the design and driving stimuli into this
simulation model, as illustrated in figure 1. The
behavior of the simulated design is then veri-
fied by comparing it to the expected behavior
implied by the specification.

The current practice for functional verifica-
tion of hardware systems starts with the defi-
nition of a verification plan that enumerates
behaviors to be checked and identifies major
risk areas. The verification plan also devises sce-
narios that isolate errors in these areas. Verifi-
cation engineers then map the verification
plan scenarios into concrete tests that are sup-
posed to cover all those scenarios. This transla-
tion of functional scenarios into tests is non-
trivial because the verification plan is typically
formulated in a natural language with a high
level of abstraction, while the actual test must
be precise and detailed enough to be executed
in simulation.

Random Stimuli Generation 
and Test Templates
Because of the elusive nature of hardware bugs
and the amount of stimuli needed to cover the
scenarios specified in the verification plan,
directed random stimuli generation (Aharon et
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Figure 1. Simulation-based Verification. 



al. 1995) has become the verification approach
of choice. Here, many tests are generated auto-
matically by a pseudorandom stimuli genera-
tor. The input to such a generator is a user
request outlining the scenarios that should
occur when the test is executed at simulation.
For example, in figure 2a we see that the verifi-
cation engineer may specify that all “Add”
instructions generated in some batch of tests
have at least one operand larger than 9999.
This outline acts as a template from which the
stimuli generator creates different tests by fill-
ing all missing detail with valid random values.

Validity and Expert Knowledge Rules
User requests are only one source of rules with
which the test must comply. In addition, gen-
erated tests must be valid, meaning that the
code in a test must comply with the rules spec-
ified by the hardware architecture. The archi-
tecture defines the syntax and semantics of the
programming instructions, including rules on
how instructions may be combined to com-
pose a valid program. Examples of architectur-
al validity rules are shown in figure 2b.

Tests must also conform with quality
requirements, following hints on how a sce-
nario should be biased and stressed so that
bugs are more likely to be exposed. This task is
addressed by a large pool of expert knowledge
rules, exemplified in figure 2c. For example, a
“Fixed-Point-Unit” expert may suggest that
bugs are to be expected when the sum of an
“Add” instruction is exactly 0, hence rule num-
ber 1 in figure 2c. Altogether, for a typical
architecture, up to a few thousand validity and
expert knowledge rules are defined.

Finally, as each individual test corresponds
to a very specific scenario, it is crucial that dif-
ferent tests, generated to satisfy the same set of
input rules, reach out to different scenarios,
hence providing some form of uniform sam-
pling over all possible scenarios satisfying the
rules.

Model-Based Stimuli Generation
IBM has long advocated the use of model-based
stimuli generators (Aharon et al. 1995). Here,
the generator is partitioned into two separate
components: a generic engine that is capable

Articles

FALL 2007   15

(A) User Requests 
1. At least one of the operands in an Add instruction is larger than 9999 
2. In a multiprocessor system, the same processor issues 10 subsequent Load 
    instructions to consecutive addresses 

(B) Architectural Validity 
1. Memory address = base-register data + offset 
2. If memory address is aligned to 4 bytes then Load-Word instruction is atomic 
3. Privileged instruction when user-mode bit is on results in exception 

(C) Expert Knowledge 
1. 30 percent of all Add instructions (a + b = c) should result in c = 0 
2. 20 percemt of all Load and Store instructions should cross page boundaries 
    2.1 Another 20 percent should be exactly aligned to page boundaries 
3. 70 percent of all transactions in a system should contend on the same bus 

Figure 2. Three Sources of Rules.

A few examples are shown for each source.



of generating tests for any hardware architec-
ture, and an input model describing the hard-
ware architecture at hand and the expert
knowledge. A number of technical challenges
confront the designer of model-based, random
stimuli generators: What is a good methodolo-
gy for modeling the complex objects and rules
imposed by the hardware architectures and
expert knowledge? How can this information
be easily migrated to new designs? What is the
best way to describe test templates that can
range from highly specific to highly random
and that must bridge the gap between the
abstract scenarios formulated in the verifica-
tion plan and the concrete tests that are gener-
ated and simulated? Once the rules are formu-
lated, how does the stimuli generator ensure
that all user-defined and validity rules, and as
many expert knowledge rules as possible, are
satisfied? How can the generator produce
many significantly different tests from the
same test template? Finally, how is all this done
in an efficient manner as to not obstruct the
verification process?

As we will show, these challenges lend them-

selves naturally to AI-based solutions. In par-
ticular, we use AI techniques to model and sat-
isfy complex sets of rules stated in a high-level
language and imposed, among other sources,
by expert knowledge and belief systems.

Application Description
The architecture of our test-generation applica-
tion is shown in figure 3. It is a service-orient-
ed architecture (SOA) derived from the separa-
tion of inputs central to model-based systems.
The knowledge base contains both the declara-
tive architectural description of the design
under test and the expert knowledge reposito-
ry. This knowledge base is developed and main-
tained by knowledge engineers who are verifi-
cation experts. Test templates are written by
verification engineers who implement the test
plan. The generic engine, developed by soft-
ware engineers, accepts the architecture model,
expert knowledge, and test template and gen-
erates a batch of tests. Each test contains a
series of hardware transactions that are sent to
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Figure 3. Architecture of Model-based Stimuli Generator. 



execution on the design simulator. As part of
the generation process, the generator uses a
functional reference model to calculate values
of resources after each generated transaction.
These values are needed for the generation of
subsequent transactions and are also used for
comparison with the results of the actual
design simulator. Obviously, a mismatch
between those results indicates a bug in the
design. All parts of the application are written
in C++. Graphical interfaces use the QT library.

It is important to note that the architecture
thus described is completely generic, and has
been used within IBM in a number of test gen-
erators for verifying systems (X-Gen [Emek et
al. 2002]), processors at the architecture
(Genesys PE [Adir et al. 2004]) and microar-
chitecture (Piparazzi [Adir et al. 2003a]) levels,
hardware units (FPGen, DeepTrans [Adir et al.
2003b; Aharoni et al. 2003]), and systems on
a chip (SoCVer [Nahir et al. 2006]). Each
brings its own set of problems and challenges
that are unique to the specific hardware
domain. While all of these generators adhere
to the architecture described, for consistency
reasons we choose one of them, Genesys PE,
as the running example used throughout this
article.

Test-Template Language
We designed a special test-template language
for writing partially specified verification sce-
narios. Here we exemplify this language for the
special case of processor verification, in which

the hardware transactions are single processor
instructions. Figure 4 shows an example of
such a test template. The template describes a
table-walk scenario that stores the contents of
randomly selected registers into memory
addresses ranging from address 0x100 to
0x200, at increments of 16.

As exemplified in figure 4, the test-template
language consists of four types of statements:
Transaction statements specify which transac-
tions are to be generated and the various prop-
erties of each such transaction. For example, in
line 3, a “load” instruction from an unspecified
address to register number 5 is requested. Con-
trol statements control the choice of their sub-
statements in the generated test; for example,
line 6 specifies the selection of either an “add”
or “sub” instruction. Programming constructs
include variables, assignments, expressions,
and assertions. Bias statements as specified on
lines 2, 3, and 7 of figure 4 enable the user to
control the activation percentage of expert
knowledge rules of the types shown in figure
2c. Bias statements are scopal, so the one on
line 2 applies throughout the test, while the
ones on lines 3 and 7 apply only to the instruc-
tions on those lines.

Figure 5 shows some parts of a test resulting
from the test template in figure 4. The first
part directs the simulator to initialize all rele-
vant registers and memory sections with the
specified data. The second part lists the
instructions to be executed by the simulator.
The third part (not shown) lists the expected
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1.  Var: addr = 0x100, reg; 

2.  Bias: resource_dependency(GPR = 30, alignment(4) = 50; 

3.  Instruction: load R5 ? ; with Bias: alignment(16) = 100; 

4.  Repeat(addr ‹ 0x200) { 

5.    Instruction: store reg addr; 

6.    Select 
7.            Instruction: Add ? reg, ? ; with Bias SumZero; 

8.            Instruction: Sub; 

9.    addr = addr + 0x10; 

10. } 

Figure 4. Table-Walk Test Template.



results of all resources as calculated by the
application’s reference model. One can
observe that all test-template specifications
are obeyed by the test, while values not speci-
fied in the template are chosen at random.

Knowledge Base
The knowledge base includes a description of
the design, its behavior, and expert knowl-
edge. For example, the description of a single
instruction is modeled by listing its assembly
opcode and its list of operands. Each operand
comprises the attributes that describe the
properties of the operand and the values they
may accept. Figure 6 shows part of the model
of a “Load-Word” instruction that loads four
bytes from the memory. The operands are
arranged in a tree structure with the attribute
names in bold and the legal values in brackets.
An example of a modeled validity rule (the
first rule in figure 2b) is also shown.

Instruction-specific testing knowledge (rules
of the type shown in figure 2c) can also be mod-
eled as part of the instruction model. For exam-
ple, rule 1 in that figure may be modeled as

Constraint : op1 .data + op2 .data = 0,

where op1 and op2 are the two modeled
operands of an add instruction.

Test-Generation Engine
Test-program generation is carried out at two
levels: stream generation is driven recursively
by the control statements in the test template.
Single-transaction generation (at the leafs of
the control hierarchy) is performed in three
stages. First, the transaction to be generated is
formulated as a CSP: the CSP variables and
domains are taken directly from the transac-
tion’s model, and the (hard and soft) con-
straints are constructed from the various
sources of rules, as depicted by figure 2. Sec-
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Resource Initialization Section: 
Registers: R6 = 8, R3 = –25, …, R17 = –16 

Memory: 0x100 = 7, 0x110 = 25, …, 0x1F0 = 16 

Instruction Initialization Section: 
0x500: Load R5 0xFF0 

    :

0x504: Store R4 0x100

0x508: Sub R5 (R6 – R4)

0x50C: Store R4 0x110

0x510: Add R6 (R4 + R3)

    : 

Expected Results Section: 
    :  

Figure 5. Test Program for the Table-Walk Scenario.



ond, the CSP is solved, that is, all properties of
the transaction are assigned values such that
all hard constraints, and a subset of the soft
constraints, are satisfied. Third, the generated
transaction is applied to the reference model,
and the generator’s internal reflection of
resource states is updated accordingly.

At the system level, a CSP induced by a sin-
gle transaction involves a large number of com-
ponent-level transactions that need to be con-
sistently resolved. The resulting constraint
network is typically too large and too complex
to be solved in a single step — primarily due to
its highly dynamic nature. In this case we fur-
ther partition the problem and generate every
transaction in two steps. First, we solve an
abstract constraint network determining the
structure of the transaction and the identity of
the participating components. Only then do
we construct and solve a detailed network
determining the actual variables. This
approach can be viewed as a form of CSP
abstraction (Emek et al. 2002).

Uses of AI
Our application relies heavily on various
aspects of AI technology. First, all architectural
knowledge and expert knowledge about the
design under test is defined and kept as an
ontology. Second, expert knowledge is applied
as a hierarchical set of rules, realizing the belief
system the modeler and user have about the
relative importance of the rules. Third, produc-
tion rules observe the test-generation process
and insert special transactions when condi-
tions apply. Finally, the application’s core solu-
tion technology is CSP.

Hardware Model as an Ontology
The modeling of hardware information and
expert knowledge is done using an in-house
modeling tool, called ClassMate, that combines
the power of object-oriented and constraint-
based systems. In addition to the standard fea-
tures found in these systems, it has a number of
features that make it particularly attractive for
writing hardware models for stimuli genera-
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Load-Word

Target
Register

Data:[0:28 – 1] 

    Constraint: {SourceMemory.Address = BaseRegister.Data + Offset.Data}

   Address:[0:232 – 1]
Data:[0:232 – 1]

Source
Memory

Offset
Base

Register

Address:[0:15]
Data:[0:232 – 1]

Address:[0:15]
Data:[0:232 – 1]

Figure 6. Partial Model of a Load-Word Instruction.



tion. These include native support for con-
straints between objects and between subcom-
ponents of objects; a type-hierarchy mecha -
nism for creating and classifying taxonomies
commonly found in hardware transactions; a
powerful type-refinement mechanism that
goes well beyond classical inheritance; pack-
ages that allow controlled redefinition of types
for follow-on designs; and a rich set of extend-
ed data types, including collections, metatypes,
and bit vectors for handling such things as
arbitrary-sized address and data values.

Modeling is done in ClassMate with a graph-
ical studio shown in figure 7. The studio sup-
ports browsing and editing (including refactor-
ing) of all objects in the taxonomy. In addition,
it provides a search and query mechanism that
enables users to readily navigate between an
object’s definition and its usages.

Expert Knowledge
The ontology platform described above allows
verification experts to model expert knowledge
as a set of rules as in figure 2c. The important

point here is that these rules are generic and
applicable to a wide range of designs. Hence,
the rules realize the expert’s belief system about
bug-prone conditions and other behavioral
aspects of hardware designs in general.

Once the expert knowledge is modeled, it is
applied by default to all tests generated by the
application. However, the verification engineer
may override this default behavior for any par-
ticular test template by either increasing or
decreasing any of the biases implied by the
expert rules, or by prioritizing between the var-
ious rules.

Production Rules
Our test template language allows the defini-
tion of production rules, called events. An
event consists of a condition and a response
template. After each transaction is generated,
the conditions of all the defined events are
checked. Whenever a condition of an event is
satisfied, its response template is generated.
The response template normally inserts addi-
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Figure 7. Studio for Modeling. 



tional transactions into the test and may trig-
ger other events. A condition may refer to the
processor state, for example, the current value
of some register, or to the generation state, for
example, the number and types of transactions
generated so far (Adir, Emek, and Marcus
2002). An example of a capability of the test
generator enabled by this mechanism is the
generation of relocatable interrupts. These are
interrupts whose handlers do not reside in pre-
defined memory locations. In this case, the
event’s condition identifies that the insertion
of handler code is required, and the event’s
body generates the desired handler code.

Constraint-Satisfaction Problems
There are two main reasons to use CSP as our
core solution technology. First, CSP is declara-
tive — it allows one to state the rules and let
the underlying CSP algorithm enforce them. In
contrast, building a procedural program that
enforces the rules of figure 2 in all possible
instances is a virtually impossible feat. Second,
CSP allows us to simply set prioritizations on
the expert knowledge rules of figure 2c and,
again, use a generic Soft-CSP algorithm to take
this prioritization into account.

Why a Specialized Constraint Solver?
There are quite a few general-purpose con-
straint solvers available, both from academia
and industry. However, CSPs arising from stim-
uli generation are fundamentally different in
some respects from typical CSPs encountered
elsewhere (for example, job-shop scheduling or
rostering). In the next two subsections, we list,
respectively, the most important distinguish-
ing aspects of our problems and the ways we
tackle those problems.

While the technological details we describe
are unique to the domain of stimuli genera-
tion, the overall algorithmic framework of our
constraint solver is the well-known maintain-
arc-consistency (MAC) (Mackworth 1977)
scheme. A basic building block of MAC is a pro-
cedure for achieving consistency over a single
constraint (the Revise procedure in Mackworth
[1977]). This procedure reduces the domains of
the constrained variables by removing all val-
ues (and only these values) that cannot be part
of any assignment that satisfies the constraint.
In the context of a constraint over n variables,
consistency is achieved by projecting the Rn

relation defined by the constraint onto the
individual variable domains. The term propaga-
tor refers to this single-constraint consistency-
achieving procedure. Figure 8 demonstrates the
projection of a constraint R onto two input
domains, A and B, and the resulting reduced
domains: A’ and B’.
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Figure 8. Propagation of Constraints by Projecting Domains.



In cases where constraint propagation is
computationally hard or otherwise prohibitive,
we use stochastic search.

Distinguishing Aspects of our CSPs
Requirement to Randomly Sample the Solution
Space. A certain design model together with a
certain test template defines a single (Soft) CSP.
However, we expect to obtain many different
tests out of this single template. Moreover, we
want the tests to be distributed as uniformly as
possible among all possible tests conforming to
the template. This means that in terms of the
solution scheme, we want to reach a signifi-
cantly different solution each time we run the
solver on the same CSP (Dechter et al. 2002).

Constraint Hierarchy. Expert knowledge is
entered as a set of soft constraints, and these
constraints may be applied in a multitiered
hierarchy (Borning Hierarchy [Borning, Free-
man-Benson, and Willson 1992]) according to
their perceived importance in any specific ver-
ification scenario. While constraint hierarchies
appear in other applications as well, it appears
that stimuli generation stands out in terms of
both the number of soft constraints in the
model and the depth of the hierarchy.

Huge Domains. Many of our CSP variables
have exponentially large domains. The sim-
plest examples are address and data variables
that can have domains of the order of 264 or
larger (see figure 6). Handling such variables,
and in particular pruning the search space
induced by these variables by using constraint
propagation, cannot be done using regular
methods, which frequently rely on the small-
ness of the domain. 

Conditional Problems. Many of our problems
are conditional, meaning that depending on
the value assigned to some variables, extensive
parts of the CSP may become irrelevant (in the
early literature these problems were also
known as “dynamic CSP” [Mittal and Falken-
hainer 1989]). Conditional problems occur also
in other applications, for example, manufac-
turing configuration; however, we encounter a
different flavor of these problems. In one typi-
cal scenario our full problem may consist of
several weakly coupled CSPs, where the num-
ber of those CSPs is itself a CSP variable. For
example, in verification of multicasting, the
number of end stations is part of the verifica-
tion problem.

Domain Specific Propagators. Some of our con-
straint propagators are extremely complex and
require months to implement. However, the
hardware specification may change on the
same time-scale, rendering the implementa-
tion obsolete.

Computationally hard propagators. These are
abundant in the verification of floating-point
units, where typical constraints may require a
× b = c, and that the number of on bits in the
binary representation of a, b, and c is some
constant.

The Generation Core Toolbox
Our solutions to the problems described in the
previous subsection are implemented in the
Generation Core toolbox. This collection of
tools and C++ class libraries provides services
and building blocks for the construction of
stimuli generation tools. The set of services
includes (1) ClassMate, described previously,
(2) GEC, a MAC-based CSP solver, (3) Stocs, a
stochastic CSP solver, (4) Expression-Relation
Propagator (ERP), which is an expression-dri-
ven constraint propagator, and (5) Primitive
Domains (PDs), a collection of set-representa-
tion classes and set operators for dynamic rep-
resentation and manipulation of CSP variables.

The GEC solver manipulates a network of
constraints, where each constraint is represent-
ed by its propagator. Constraint networks may
be dynamically constructed and modified to
enable, for example, problem partitioning by
abstraction. GEC allows well-distributed sam-
pling of the solution space through careful ran-
domization of solution-path decisions. Note
that by committing to randomize the solution
path we rule out the use of variable and value
ordering heuristics.

The supported soft-constraint hierarchies,
conditional problems, and approximated prop-
agators require special attention because of this
sampling aspect. To overcome the inherent
conflict between the notions of constraint hier-
archies and randomized solutions, we define a
“local metric” on the solution of the hierarchy.
We require that if a partial solution can be
extended to satisfy additional soft constraints,
it must be so extended. However, we drop the
requirement of satisfying a maximal number of
soft constraints over the entire search space.
We believe that this also matches well the nat-
ural interpretation of soft, expert knowledge
constraints in the context of test generation.

All propagators implement a common inter-
face. Propagators are treated uniformly, as
black-box procedures, by the solution scheme,
whether implemented by the user to capture a
specific constraint or automatically synthe-
sized by ERP. GEC defines a common interface
for CSP variables, supported by the PD class
hierarchy.

We describe in the following paragraphs
some of the more valuable components and
mechanisms of the Generation Core.
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Expression-Relation Propagator (ERP).
Given a combined arithmetic/logical expres-
sion representing a constraint relation, for
example, (a = b + c) or (c = d), ERP constructs
the respective propagation procedure required
by the solver. As with other expression-based
constraint languages, for example, OPL (Hen-
tenryck 1999), by using ERP we avoid the error-
prone and labor-intensive process of develop-
ing a special-purpose procedure for each
constraint. ERP Expressions include arithmetic,
logical, and bit-wise operators. Apart from the
definition of the grammar, the algorithm only
requires a local propagation function for each
of the operators in the grammar and is usually
easily expandable to include more operators.
The algorithm transforms the parse tree of an
expression into a constraint network repre-
senting the expression. When the resulting
network is acyclic, achieving arc consistency
on the network through the usage of local
propagation functions produces the required
propagation for the combined constraint spec-
ified by the expression. The domains are
reduced to hold all, and only, the necessary val-
ues (Freuder 1982). We use a combination of
several methods to deal with more complex,
cyclic constraints. For more details, refer to
(Bin et al. 2002).

Primitive Domains: Set Representation
and Set Operators. The method used to rep-
resent the domains of CSP variables through-
out the solving process affects the space need-
ed to store the variables and the efficiency of
performing operations on them. Our frame-
work requires the support of exponentially
large variable domains, efficient implementa-
tion of operators that are commonly used by
propagation functions, and an efficient uni-
formly distributed random selection of an ele-
ment from a domain. All this, while exhibiting
a compact memory signature.

The PD class library supports the variable
types commonly used in our CSPs. For each of
the supported types, the library offers one or
more efficient ways to represent domains of
the type, and the required operations per-
formed on the domains. The most commonly
used types are: integers, bit vectors, Booleans,
enumerators, and strings.

Supported operations can be divided into
three main groups: Standard set operations,
such as union and intersection; set-arithmetic
operations, such as addition and multiplica-
tion; and set-bit-wise logic operations, such as
bit-wise xor. Note that these operations are
defined over the Cartesian product of the
operand domains, for example, for integer
domains A and B, A + B = {(a + b)|a ∈ A, b ∈ B}.

The representation method selected for each
variable is a modeling decision, usually based
on the operations in which the variable is
involved. Automatic conversions between rep-
resentation methods are handled by GEC but
should be avoided due to their typically high
computational cost. The challenges are best
illustrated by the integer and bit-vector
domains. We support three alternative repre-
sentation methods for these domains. Unfor-
tunately, none is efficient for all operations, as
described in the following paragraphs.

Set of ranges. The values in a domain are rep-
resented as a set of nonoverlapping intervals
(for example, {[0,100], [200,299]}). Ranges are a
natural way to represent integers, and it is effi-
cient to perform certain arithmetic operations,
such as addition and subtraction, over them.
Ranges are also efficient in performing set oper-
ations, such as union and intersection, with
other sets of ranges. On the other hand, per-
forming bit-wise operations on ranges can be
hard.

Set of masks (DNF). A mask is a bit vector
with don’t-care (“X”) values for some of its bits.
Each mask represents the set of bit vectors that
may be obtained by determining don’t-care
bits. For example, the mask XXXXXX00 repre-
sents all the bit vectors that end with two 0s.
Any set of integers can be represented as a set
of masks. Masks are very effective for bit-wise
operations and can be used efficiently in set
operations with other masks. They are also
convenient as input media for hardware-relat-
ed CSPs. However, performing arithmetic oper-
ations on masks is hard.

Binary Decision Diagrams (BDDs). Binary
Decision Diagrams (Wegener 2000) are data
structures commonly used to represent
Boolean functions. A BDD is associated with a
set of values in a domain by representing the
characteristic function of the set (fD(x) = 1 ⇔ (x
∈ D). Comparisons and basic set operations can
be done very efficiently on BDDs. BDDs also
have efficient algorithms for some arithmetic
operations, such as addition (Wegener 2000).
On the other hand, BDDs are less efficient than
masks in handling bit-wise operations. Figure 9
demonstrates a “plus” operation with DNF and
BDD representations. 

Assumption-Based Pruning. We extended
MAC to be applicable to conditional problems,
and this way enabled propagation of con-
straints under high conditionality (Geller and
Veksler 2005). Under this scheme, termed
assumption-based pruning, propagation takes
into account the state of all universes, in each
of which only a certain subset of the condi-
tional subproblems exists.
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Managing Approximated Propagators.
Some constraints are hard to propagate. An
example is the constraint a = b + c, where the
domains of a, b, and c are large and highly frag-
mented. An approximated projection proce-
dure will aim to reduce the computational
complexity at the cost of producing inexact
output domains (for example, leaving domain
values that cannot be extended to a solution of
the constraint). GEC accepts approximated

projectors but requires that when each variable
is assigned a single value, the projector should
serve as a predicate and validate the assign-
ment. This ensures that the final variable
assignment reached by GEC is indeed a solu-
tion.

The simplest approximation method would
be to keep the affected variable domains intact
if computing the propagation is not feasible.
GEC provides an optional mechanism to opti-
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mize managing this special case. Propagation
precondition is a mechanism that associates
Boolean predicates with constraints. A con-
straint propagator is activated if and only if its
precondition predicate evaluates to true. It is
essential that at some point along the solution
process, for example, when the domains
become small enough, the predicate will eval-
uate to true, allowing GEC to take into account
this constraint. The precondition mechanism
makes GEC aware of pending propagators. This
enables optimization schemes such as post-
poning lower priority propagators (in the pres-
ence of a constraint hierarchy) and variable or
value choice decisions affecting variables that
are constrained by the pending propagator.

Global State Constraints. In a CSP repre-
sentation of a test program, many variables are
constrained by the global state of the processor
(mostly registers and memory values) and, in
turn, influence that state. The huge number of
memory addresses rules out a CSP model in
which every memory cell has a corresponding
CSP variable. In our framework, we use a glob-
al data structure (typically a map or a hash
table) to maintain the state of each statelike
entity. In the CSP model, each state entity is
represented by a single variable of a special,
abstract type. Other CSP variables synchronize
with the state entity through constraint propa-
gators linked to this abstract variable.

Complex Propagators. To cope with fre-
quent changes of hardware specification, we
have developed parametric propagators for the
more complex domain-specific constraints.
These objects capture the most abstract func-
tionality of the propagator. When the design
changes or when the next-generation design
arrives, only simple manipulation of the
parameters (which are part of the hardware
model) is necessary in order to obtain the full
functionality of the new propagator (Adir et al.
2003b).

Stocs. We use this stochastic CSP solver in two
main cases, first, to solve problems with com-
putationally hard propagators; and second,
when the implementation time of some com-
plex propagators is prohibitive. Details of
SVRH, the algorithm behind Stocs, of the
solver’s constraint-based architecture, and of
some use cases may be found in Naveh (2004).

Application Use and Payoff
In this section, we report concrete usage and
payoff of a tool named Genesys PE. This stim-
uli generator is intended solely for the verifica-
tion of processors and multiprocessor configu-

rations. A second tool, X-Gen, is a test genera-
tor for the system level and is described short-
ly at the end of the section. X-Gen is younger
than Genesys PE and shows usage and payoff
schemes resembling Genesys PE at a similar
stage of development.

Since 2000, Genesys PE has been used as the
major functional verification tool for all IBM
PowerPC processor designs. In all these
designs, Genesys PE has been widely deployed
for the core and chip-level verification and has
been partially deployed for unit and system-
level verification. At the core and chip levels,
where most of the complex uniprocessor and
multiprocessor bugs are found, this is the only
functional verification technology used for
verifying the correctness of the processor’s
design.

AI-Related Payoffs
The tool Genesys PE has evolved from its pred-
ecessor, Genesys. The main differences
between the two generations of tools is that the
former did not include many of the AI features
reported above. We can therefore directly com-
pare how these AI enhancements impacted the
tool in terms of verification productivity, qual-
ity, support of healthy processes, and opera-
tional costs. We found significant improve-
ments in all four categories.

Improved Verification Productivity.
With Genesys PE, a verification plan would be
implemented using a compact suite of test tem-
plates compared to its predecessor, Genesys.
This became clear early on in the deployment
of the tool, when a large body of existing
Genesys test templates was converted into
Genesys PE templates. In one typical case, the
verification plan required about 35,000
Genesys test templates. Of these, 1900 test tem-
plates were written directly in the Genesys sce-
nario definition language, and 33,000 were
autogenerated by scripts that enumerated
them. In contrast, the same verification plan
was implemented in Genesys PE with only
2,000 test templates. The functional coverage
of both suites was the same. The reduced num-
ber of test templates allowed rapid testing of
the design when late changes were introduced
shortly prior to casting in silicon, thereby
reducing time to market.

Improved Verification Quality. The CSP-
based test-generation technology allows
Genesys PE to expand the space of verifiable
scenarios over Genesys. For example, scenar-
ios that define conjunctive constraints (for
example, satisfy the conditions for multiple
exceptions), were sometimes impossible to
generate with Genesys but often achieve full
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coverage with Genesys PE. In addition, the
new test-template rule-definition language
provides a large range of programming con-
structs that allow complex scenarios to be
described in their most general form (Behm et
al. 2004). In Genesys, only a subset of such
scenarios could be written, and those did not
always cover the desired events.

Improved Verification Processes. Due to
its sophisticated modeling approach, Genesys
PE allows verification scenarios to be
described in a design-independent manner.
This capability has had a large impact on
processor verification methodology inside
IBM. It has led to the development of a large
body of high-quality test templates that cover
the PowerPC architectural and microarchitec-
The templates are used in the functional veri-
fication of every PowerPC design throughout
the company.

Reduced Operational Costs. Past projects
that used the Genesys test-generation technol-
ogy included a team of about 10 verification
engineers at the core and chip levels. Deploy-
ing Genesys PE reduced the size of the core ver-
ification team from 10 to 2–4 experts now
responsible for coding the test templates. The
direct saving from this reduction is estimated
at $2–$4 million for a two-year project.

Market Value
The market value of Genesys PE may be cal-
culated by considering the decreased time to
market and the resulting increase in revenue.
It is commonly estimated that a three-month
delay in arriving to market decreases revenue
by 10 to 30 percent. We consider as an exam-
ple IBM’s Power5 based p-Series Unix server
verified with Genesys PE (Victor et al. 2005).
According to IDC reports,1 IBM sold more
than $4 billion of these servers in the last
year. For this product alone, IBM’s most con-
servative estimates tag the additional revenue
due to decreased time to market made possi-
ble by Genesys PE’s early detection of func-
tional bugs at $50 million. A conservative
estimate for the overall savings of the appli-
cation is $150 million.

Application Development
and Deployment

The Genesys PE development project was initi-
ated in 1998 as a next-generation processor
stimuli generator. The existing tool at the time,
Genesys, had been deployed for more than
eight years.

Developing the 
Test-Generation Engine
The development work followed a feasibility
study period in which a very simple test gener-
ator was developed to test the capabilities of a
new constraint solver and to prove its ability to
support Genesys PE’s verification language.
The architecture-independent test-generation
engine was developed by a team of four to six
experienced programmers in C++, for UNIX /
Linux and AIX platforms. In parallel, a separate
team of two to three programmers continued
to develop the constraint solver and other core
technologies. The two development teams
belong to the same organization unit. This
enabled close cooperation while maintaining a
clear separation between the different mod-
ules. Most of the functionality of the new tool
was implemented in 18 months.

Developing the Knowledge Base
The development of the knowledge base was
separated into two phases. In the first phase,
the generic, architecture- independent part of
the model was developed by the same team
that worked on the test-generation engine. The
effort consisted mainly of defining rules that
implement generic testing knowledge and rules
that facilitate the test-generation process. This
part of the knowledge base is shared by all the
designs that use Genesys PE. In the second
phase, an automatic converter was used to con-
vert the large body of design-dependent testing
knowledge that existed in Genesys. This helped
increase users’ confidence that the system is at
least as good as the old one, and allowed a
quick bring up. However, it also meant that the
initial system did not utilize the full capabili-
ties of Genesys PE.

First Deployment
The successful integration of Genesys PE into
user environments was a gradual and painful
process that took several months. Initially users
were reluctant to make the transition to the
new tool; they already had a reliable working
system, Genesys, and a full verification plan
implemented in Genesys test templates.
Genesys PE, on the other hand, was a new and
largely untested tool. Bringing it to work in
production mode at user sites meant that thou-
sands of tests were generated and simulated
every night on hundreds of machines. This
process unearthed numerous bugs in the gen-
erator that could not be detected during the
development phase, since the development
team could not match the human and compu-
tation resources for this task.

Users started to use Genesys PE to test-verifi-
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cation scenarios that could not be fully
described in Genesys, but continued to use
Genesys for their ongoing verification work.
This helped increase their trust and enthusiasm
for the new tool without compromising their
ongoing verification schedule. It also gave the
development team time to improve the tool’s
reliability and make it more robust.

The next stage in the integration process was
to automatically convert the large body of
Genesys test templates to Genesys PE and to
prove, using functional coverage measure-
ments, that Genesys PE provides the same lev-
el of coverage as Genesys. Once this stage was
successfully completed, the road was clear for
having Genesys PE fully replace the Genesys
tool inside IBM.

Knowledge Engineers Training
The deployment of Genesys PE also involved
the training of Genesys knowledge engineers
to maintain the Genesys PE knowledge base.
Knowledge engineers had to become familiar
with the concept of CSP solving and to under-
stand the difference between functions and
constraints, and between hard and soft con-
straints, in order to model instructions and
operands accurately enough to allow for suc-
cessful test generation. It took knowledge engi-
neers about a year to fully grasp the Genesys PE
modeling approach.

Applying the Technology
at the System Level
Following the successful application of the
technology for processor verification, a new
project called X-Gen was initiated in 2000,
with the goal of applying the technology for
system-level stimuli generation (Emek et al.
2002). X-Gen was designed with a similar
knowledge-based architecture as Genesys PE
and also uses GEC. The main difference is the
modeling language, which reflects on the dif-
ferences in the domain: components, system
transactions, and configurations become first-
class entities of the language.

In 2002, X-Gen was tested by running in par-
allel with a legacy stimuli generator for sys-
tems, which was not knowledge based. The test
showed that X-Gen was able to achieve higher
coverage metrics in one-fifth of the simulation
time and in one-tenth of test templates. This
positioned X-Gen as the primary stimuli gen-
erator for IBM high-end systems, and since
2002 it has been used in the verification of
most high-end system designs, including the p-
Series server and the Cell-processor-based sys-
tems.

Maintenance
The multitude of designs simultaneously veri-
fied with our application and the ever evolving
and changing hardware specification make
maintainability crucial for long-term success.
We have found that the application’s service-
oriented architecture provides solutions to a
number of key maintainability concerns, such
as defining responsibilities, knowledge reuse,
adapting to change, and ongoing upgrades.

Defining Responsibilities
The application’s architecture helps define a
clear separation of responsibility and source
code ownership. Each part of the tool is main-
tained by its respective development team.
Knowledge engineers (three to four per tool)
provide on-site support for the users and adapt
the knowledge base to design changes. Tool
developers (seven to eight per tool) are respon-
sible for generic upgrades of the tools and pro-
vide second-line support for the users. Two to
three core technology developers provide solu-
tions to new requests coming from the appli-
cation development teams.

Knowledge Reuse
The partition of the tool into a generic genera-
tion engine and a knowledge base allows a
high level of reuse. All the capabilities of the
test generator, and the generic testing knowl-
edge, are immediately available for any new
design. In addition, designs that belong to dif-
ferent generations of the same hardware archi-
tecture are modeled in a hierarchy that reflects
their lineage. Thus common building blocks,
such as instructions, operands, resources, and
common testing- knowledge are also shared
between the designs.

Adapting to Change 
Hardware design verification usually starts
when the hardware architecture is still evolv-
ing. Thus, any change to the hardware specifi-
cation must be reflected in the knowledge base
and reference model in a timely manner. The
separation between the two modules allows
them to be developed in parallel. In addition,
the fact that the different modules are devel-
oped and maintained by different teams helps
check the correctness of one module relative to
the other.

Ongoing Upgrades 
The test-generation tools continue to develop
in a process of staged delivery. This allows grad-
ual evolution of the tools with user feedback.
Knowledge engineers and tool developers
maintain separate systems, and synchronize
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sources during each release—typically once a
month. Tool developers are located in different
geographical areas and time zones from the
users and the knowledge engineers. However,
the use of a unified defects database and regu-
lar weekly phone conferences helps ease com-
munication difficulties.

Summary 
We presented random stimuli generation for
hardware verification in IBM as a sophisticated
application relying on various AI techniques.
We discussed the challenges and huge payoffs
of building this application. Overall, we are
happy with our solution. As detailed above, we
made existing AI technology adequate to our
distinguishing needs by developing it beyond
the known state-of-the art.

Lessons Learned 
One important lesson can be learned from our
ongoing attempts to design the domain-specif-
ic languages (for example, those used by
Genesys PE and X-Gen) as pure constraint lan-
guages that are also natural to the domain
experts and knowledge engineers. Had we suc-
ceeded with that we could have synthesized
the tools directly from ClassMate’s metamodel,
thus significantly reducing implementation
time of the more specific languages and allow-
ing fast buildup of new verification domains.
However, we consistently found that natural
declarative modeling of hardware architectures
(and even testing knowledge) is significantly
different from modeling the test-generation
problem, which may be a pure CSP. It turns out
that a great deal of domain insight and explo-
ration is required in order to come up with a
natural domain description language and an
effective transformation to the CSP representa-
tion from that language. This challenge is
mostly about finding the right abstractions
over the specific domain, identifying its central
pillars, and then embedding them into the CSP
construction process of the expert system. Our
general conclusion is that at least in some cas-
es of complex knowledge domains, it is inher-
ently impossible (or at least very difficult) to
compromise between the CSP language and
the natural description of the domain. This in
spite of the fact that CSP is widely acknowl-
edged as the most expressive satisfaction para-
digm known.

Next Horizons 
The research and development around the
application presented here is still thriving,
and we are steadily exploring more sophisti-

cated CSP and knowledge representation tech-
niques to keep up with the ever-growing com-
plexity of hardware systems and business
requirements. A large portion of our current
and future research lies in trying to find opti-
mal description languages for our models and
in developing simple, efficient, and generic
CSP transformations for constructs of these
languages. An additional outcome of the
unavoidable coexistence of domain and CSP
languages is the necessity, when the applica-
tion fails to reach the expected outcome, to
perform CSP analysis and debugging by
domain experts, which are not necessarily CSP
experts. Therefore, friendly analysis and
debugging capabilities of the underlying CSP
model are another major research direction
we are taking. Finally, closing the verification
loop by utilizing coverage-directed generation
is a Holy Grail of the verification field. As our
pioneering work in this area suggests (Fine
and Ziv 2003), this also may be achieved by AI
techniques, namely machine learning using
Bayesian networks. We are actively exploring
this direction.
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